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Abstract For controllable systems, a computationally simplified adaptive pole-placement control is
introduced, which leads the input and output of the closed-loop system to be bounded. Compared with pre-
vious work, modifications to parameter estimates may stop at specially designed stopping times and the number
of modifications decreases from infinite to finite. Further, the dimension of parameter to be modified is re-
duced so that the computational load is gradually lessened.
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A necessary and sufficient condition for linear systems with known coefficients to be
arbitrarily pole-placed is that the system is controllable. It is desirable to solve
the adaptive pole-placement problem also under the controllability condition.

For minimum-phase systems, the boundedness of system output guarantees the bound-
edness of system input. There have been many works where adaptive controls are given
so that the system input and output are bounded in the closed-loop, for instance,
references [1, 2].

For non-minimum-phase systems, in order to get a stable closed-loop system, various
methods are adopted to construct adaptive controls, for instance, the self-excitation
method of Kreisselmeier™ and Giri'¥, the large-excitation method of Chen and Zhang',
the parameter modification method of Lozano, etc.' The system Kreisselmeier considered
is with constant parameters and of disturbance-free and uncertainty-dynamics-free. The
adaptive controls given by Kreisselmeier have self-excitation ability, i.e. when the estimated
parameters are not satisfactory so that the system input or output diverges, then the con-
trol law will use the divergent input or output signals to force the estimated parameters
to approach their true values, and further, make the performance of the closed-loop system
better. Giri et al. apply this idea to solving the adaptive control problems for systems with
bounded disturbances, unmodeled dynamics and slowly time-varying parameters 7. Chen
and Zhang investigate stochastic systems with constant parameters and average bounded
disturbances. They introduce external signal to the involved system to improve the signal-
noise ratio, so as to get more exact parameter estimates, and then, design adaptive control
via certainty equivalence principle”. For systems with constant parameters, bounded
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disturbances and unmodeled dynamics, Lozano et al. combine dead-beat method with the
least-squares method to estimate system parameters, and show that the estimated
parameters are self-convergent. They use this self-convergent property to modify the esti-
mated parameters to overcome the difficulty stemming from singularity of the Sylvester ma-
trix corresponding to the estimated parameters, and theoretically, present a pole-
placement-based adaptive stabilization method. Recently, for stochastic systems with con-
stant parameters and average bounded disturbances, Guo'®, based on the self-convergence of
the weighted least-squares, gives a stochastic search method which can improve the.
controllability of the closed-loop systems and needs only to compute at most two
determinants at each time.

This paper introduces a stochastic stopping time method such that the estimated pa-
rameters are modified not at each time and the modification will stop in a finite time.
Based on the rank of the limiting matrix of F(t), the dimension of the parameters to be
modified is adaptively reduced, and the computational load is gradually lessened. For
example, for a 3-dimensional system, if the rank of the limiting matrix of F(t) is 1, then
according to the methods of this paper, only 7 determinants of 6-dimensional matrices and
1 singular value decomposition need to be computed in contrast to 46 656 determinants of
the same dimensional matrices as required in ref. [6]. Further, only a finite number of
modifications is needed in this paper, while in ref. [6] the modification should be continued
forever. By using the stopping time method of this paper, the input and output of the
closed-loop system are bounded under the computationally simplified adaptive
pole-placement control if the open-loop system is controllable.

1 System model and parameter estimation .
Suppose that the system is described by the following difference equation:

A@Z)y(t)=B(z)u(t) +w(t), _ (1.1)

where u(t), y(t), w(t) are system input, output and disturbances, respectively; z is the unit
shift-back operator,

A(z)=1+az+ " +a,z", B(z)=bz+ " +b,z" (1.2)
Denote the unknown coefficients in A(z) and B(z) by Gé[al, “:, a, b, =+, b, and set
pt—1)y=[-y—1), =, —y(t—n), ut—1), =, u(t—n)]. (1.3)

Then (1.1) can be expressed as
y()=00(t—1) +w(t). (1.4

For different disturbances w(t), different parameter estimation algorithms will be adopt-
ed. Precisely, the following two cases will be dealt with, respectively.
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Case 1.1. w(t) is the dynamics uncertainty, but there are two known nonnegative
constants  and g such that |w(t)|<y+p|le(—1)|]. In this situation, the dead-beat
least-squares method is introduced to estimate the unknown parameter 6. Let

ot-=_—2=D S y©O
D= Hpa-nr YO THilee-DI 9
_ n N — Ot — 1N (4 —
()=p+ THlec=DI’ e®) =y -0 (t—De(-1), (1.6)
v(t)=e(t)’+ o (t—DF(t—Do(t—1), ()]
3(t) =(1+trF(0))(8(2)* +85(t)), (1:8)
(0, if W) <6(1),
'1“)_{ 1, if W(t)>3(0), (1.9)
where £>0 is a given positive constant; trF(0) denotes the trace of F(0).
The dead-beat least-squares method can recursively be presented as
0(t)=0(t— 1)+ A(t) F(t) o (t — e(t), (1.10)
B AMt—1D)F(@t—1o(t—Det—1)F({t—1)
FO=Ft-D - — e c=nre=Nec=1) (1.11)
where initial values 6(0) and F(0)>0 are arbitrarily chosen.
Case 1.2. {w(t), %} is a martingale difference sequence, and
sgg)E[wz(r+l)|L9j]400 a.s.
In this situation, the weighted least-squares method is used to estimate 0:
- P(t)o(t) _
0(t+1)=0(t)+ 70 + o0 PO?0) [y(t+1) =6(t)e(1)], .(1.12)
P(t) p(t) @' (1) P(1)
1)=P(t)— 113
=P~ 70 + e 0P0w0 (19
where initial values 6(0) and P(0) >0 are arbitrarily chosen,
f(r)=log(1 +IPO)I+ §U||<ownz)”", 5>0. (1.149)

In the case where A(z) and B(z) are coprime, refs. [6] and [8] show that 6(t), F(t)
and P(t) given by (1.5)—(1.11) and (1.12)—(1.14) are self-convergent, i.e. for any adapted
control {u(t)}, 6(t), F(t) and P(t) converge to finite limits as t goes to ©0.
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2 Adaptive control based on finite number of parameter modification

When the adaptive pole-placement control is designed, according to the certainty
equivalence principle the first problem one has to deal with is the possible degeneracy
of the Sylvester matrix resulting from the estimated parameter 6(t). To overcome this
difficulty, ref. [6] introduces a vector f(t) to modify 6(t), and uses the modified value

0(1) =0(t) + F(t) (1) 2.1

to replace 0(t) in the Sylvester matrix, where for Case 1.1, F(t) is given by (1.11), while
for Cases 1.2, F(t)=P"(t).

B(t) introduced in ref. [6] has the following properties.
Property 2.1. f(t) is bounded.

Property 2.2. f(t) makes the absolute value of the detenninénr of Sylvester matrix
M(0(t)) corresponding to 0(t) uniformly greater than a positive constant for a t,=>0 and
all t2t,

Express 0(t) in blocks:

0 =[a1), -, a, @), b, -, b,O], (2.2)
and set

At, 2)=1+a(t)z++a,(t)z", B(t, 2)=b(t)z++b,(1)z". (2.3)

Then M(0(t)) is non-singular, where

1 EI(I)“““ E,‘(t) 0-- 0 .

o 1 - S

: 0

M(g(t))g 0 0 1 a,) S a,(t) 2.4)

El(t) ............ bn(l‘) 0 0

0 o S

: W ~ 0

0 - 00 F](I) ............ Eﬂ({)

Therefore, A(t, z) and B(t, z) are-coprime. Furthermore, for any stable polynomial C(z)
with order less than or equal to 2n—1, polynomials R(t, z) and S(t, z) are solvable from

A(t, 2)S(t, z)+B(t, z)R(t, z)=C(2). (2.5)

Suppose that y*(t) is a known, bounded signal. According to the certainty equiva-
lence principle, the pole-placement adaptive control should be

u(t)=[1-5(t, 2)]u(®)—R(t, 2)y()+C(z) y*(). (2.6)
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From refs. [6, 8] we have the following

Proposition 2.1. Suppose that A(z) and B(z) are coprime, and that B(t) in (2.1) has
Properties 2.1 and 2.2. .

Case 1.1. If 0(t) and F(f) are generated by (1.5)—(1.11), then there is p>0 such that
for any u€[0, ), the input and output of the closed-loop system are bounded under the
adaptive pole-placement control given by (2.1)—(2.6)%.

Case 1.2. If the parameter estimates are given by the weighted least-squares method
(1.12) — (1.14), then the input and output of the closed-loop system are bounded under the
adaptive pole-placement control given by (2.1)—(2.6)".

Parameter f(t) in (2.1) is modified in the following way in reference [6]:

Let m=2n, I=m™"", and take arbitrarily ml positive numbers o, o, -, a,, such that
o, >0,_,+1. Set B,=[o, o, -, o/, #={B, i=1, 2, -, ml}, and define

h(B(1)) &1detM(6() + F() (D)), 2.7)
B(t—1), if h(B)<(1+)h (1)), VBEA,
B, j=min{i: h(B) =1+ h(B—1)), and h(B)>h(B), VA,

where y is a small enough positive number.

B = {

From this, we see that such a parameter modification requires computing (2n)”
determinants of 2n-dimensional matrices at each step, and the modification procedure will
not stop at any finite time.

In this section, we introduce a stopping time, and make the modification finished in
finite steps. In the next section, we will reduce the dimension of f(t), and hence, gradual-
ly reduce the computational load.

Let 7,=1. Select B, €.# such that

h,(8,) = max h, (6). (8)

Define a
rk+1=inf{r: t>7, h(p,)< %h‘*(ﬁu)}, 29)
B(t) =B:,(s tE[1, Ty (2.10)

Theorem 2.1. Suppose that A(z) and B(z) are coprime. Let &t) and F(t) be generated
by (1.5)—(1.11) for Case 1.1, and let 0(t) and P(t) be generated by (1.12)—(1.14) for
Case 1.2 with F(t)=P"*(t). If B(t) is chosen by (2.9) and (2.10), then under the adaptive
control given by (2.1)—(2.6), there exists an integer k, such that rkué 00; that is, B(t) will
take a constant value after finite steps of modification. In this situation, for Case 1.1 there
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is p>0 such that for any u€[0, u), the input and output of the closed-loop system are
bounded, and for Cases 1.2, the input and output of the closed-loop system are bounded.

Proof. Tt suffices to prove that there exists an integer k, such that 7, =o0. In this
case, according to (2.10), ﬂr)=ﬁ% for all I?‘I‘.’,(o, and Properties 2.1 and 2.2 are satisfied by
P(t). Then, the boundedness of the system input and ‘output follows from Proposition 2.1.

Since 0(t) and F(t) are convergent,
h(B,) 2 1detM(6(t) + F(£)B)] = h(B) >0, for all BEA .
Divide .# into .# =.#, \) #, such that h(B,)>0 for any B, in .#,, and h(ﬁ,_)=0 for
any B, in 4,
From eq. (4.33) of ref. [6] it follows that 2 h(;)>0. Thus .#; is a nonempty subset
of #. Let h2 Héijllh(ﬁ,.). Then h>0, since .# is finite and .# is a nonempty subset of .#.

In the sequel, we will frequently use the following simple fact: if f(t) = =f>0, then
there exists T such that

1) ~;—f(s)>0, for all t, s>T. @.11)

For any p€.#, there exists T'(f) such that h(f) <2h/3 for all t=T'(f)). Thus,
|detM(6(t) + F(t) 8,)| > —gj-h>|detM(G(r)+F(r)ﬂj)| VpEe.#, and BE.#,, (2.12)

if t?ﬂ Jrﬁna;(ﬁ{T(ﬁ,.), T'(B)}. This implies that B, selected according to (2.8) must
i€, ByE

belong to .#, for large enough t. Therefore, B €.#, if k is large enough (i.e. 7, large
enough). Further, from (2.11) it follows that .

h(B.,)> % h(B,), Yt=T(B,), Vs=T(B,). (2.13)

Let T= max T(f;). It is clear that T<0, since .# is a finite set. If k is large enough,

Bi€.a

then %,>T, and it follows from (2.13) that h(B,)> %h“(ﬂ,k), Vt>t>T(B,). Thus, there

exists an integer k, such that 7, = 0.

3 Dimension reduction for parameters under modification

In the adaptive control law designed in the last section, a stopping time is adopted
such that parameter f(t) is no longer to be modified after finite steps. This saves a lot
of computational load. However, since f(t) is 2n-dimensional, the method used above re-
quires computing (2n)** determinants of 2n-dimensional matrices at each step, and this is
very time-consuming. In this section, we try to reduce the dimension of B(t) so as to.



No. 1 ADAPTIVE POLE-PLACEMENT OF CONTROLLABLE SYSTEMS 109

essentially lessen the computational load. Taking a 3-dimensional system as an example,
46 656 determinants of 6-dimensional matrices need to be computed at each step. Howev-
er, if the dimension of f(t) can be reduced by 2, i.e. from 6 to 4, then the number of
determinants to be computed at each step will be reduced to 1296, and the computational
load will be decreased by more than 97%.

Lemma 3.1. Suppose that F(t),—, F, the rank of F is j, and that there is an orthogonal
matrix U(t) such that

U(®) F()U*(1) =Diag(4,(1), =, 4, (1)) and A(t) ZA(t) =+ =4, (1).

For integers i<k<2n, U, (t) denotes the matrix consisting of the ith to kth rows of
U(t) in their original order. For integers s<2n and i=1, -, (2n)*, set B, ,=[o, o", -,
s—1
c® 1, where 0,20, ,+1.

Suppose further that 0 satisfies detM(6)#0. Then there is a constant ¢>0 independent
of t and F(t) such that for any large enough t,

sup _ [detM(0(t) + Uy, (0, ) >e. Is€{j, j+1, -, 2n).

i=1,

Proof of Lemma 3.1. Let B*(t)=F'(t)(6—6(t)). Then it follows from ref. [6] that
{B*} is bounded. By a straightforward computation, we have

F(t)p*(t) = Uy, (t)Diag(4,(t), -, AU, (t)B*(t)
+Ur;+|1:t1n)(r)Diag(j-s+|(t)s " A}J(t))U(s-FI};(Zn)(t)ﬁ*(t)'

Noticing' that the second term on the right-hand side of the above equation converges to
zero, and detM(0(t) + F(t)*(t)) =detM(0) #0, we have

detM(6(t) + Uy, (t)v(1)) #0, for all large enough t,
where w(t) =Diag(4,(t), -, 4())U,.,(0)B*(2).

Replace F, in Theorem 2 of ref. [6] by Uj..(t), and let v(s,)=[1, o, -, a,.'"m"]'.' Then
(4.21)—(4.25) of ref. [6] still hold, and 6* and B* in (4.26) are replaced by &t)+ Uj. (t)v(t)
and v(t), respectively. Then the remaining part of the proof of that theorem is still true.
This implies the desired result.

Lemma 3.2. Under the conditions of Lemma 3.1, there is a bounded {B(t)} such that
Ur.‘s(t)ﬁi. s=F(t)ﬁ(r)) for a"y ﬁi. 5 S“'<"“j'
Proof. Take B(t)=U;. (t)Diag(4,'(t), -, 4, '(t)). It is evident that {f(r)} is bounded.

From

. . Ul's
F(@O) =[U}(0), Ul on(®Diag(d,(0), -, ’“2"“”[ U .{-S,)(z) ]
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it follows that F(t)B(t)=U5.,(t)B, ,.

Let j(t) denote the rows of U, ;(,(t), and write U(t) in blocks: U(t) =[U,5, (1),
U+ an(®]"  Specifically, in the case where j(t)=0 we agree that U, ,(t)=0.

Take initial values 7,=0, j(7,)=0 and a,]E(O, %AM(‘EI)). For k=1 (and further, recur-

sively for k=2, 3, ---) define B, ., such that
|detM(8(rl) + U::j{li)(ti)ﬁk(t,-], j(tl-))|
. A
= max . ]detM(B(tl) + Ul:j(r‘-](Ti)ﬁk, j[t;))l =gr,—(ﬁk(r,-). j(r;))’ (3' l)

k=1, 2, =, () ()

where g,(f,, j)) =[detM(0(t) + U ., (1) By, jiep)l-

Define
1::+,=inf{t: t>1, and lj(,!](t)égi}, (3.2)
" = 1

T:‘+1=Inf{t: t>t, and gt(ﬁk[t;). j(:,-)) < Eg:,-(ﬁk(q], j(q])}’ (3.3)

e t|'+ 1’ lf gr,(ﬁk{li), j(tl-)) =0!
Tl _{ o0, otherwise; (3.4)
Ty =min{t,,, W, T}, 3.5)
Jj@)=j(@) =1, if 7, <7}, and [7,= 0, (3.6)
j(THI) =j(7i) +1, if T:':I{Co! or, t:'+|?f:"+| and 7}},=00; 3.7

1

S ™ 3 At (Tinn)- (3.3

Lemma 3.3. Suppose that F(t). > F and the rank of F is j. Then there exists an integer
Iy such that 7, ,, =, and j(7,)<j, i.e. the dimension of ﬁ,‘(,m,_ jug) 1S MOt greater than j.

Proof. Denote by S the totality of B, , where i runs over {1, 2, -, (2n)*} and k runs
over {1, 2, -, 2n}. § is obviously bounded. Since 6(t) and U(t) converge, we have

9B, ) 1detM(B(©) + Ui (1), ) =g (B, )>0, VB, ,€S.
For any g(B, ,) >0, according to (2.11) there exists T(f; ,) such that

0.6, 0> 5 9.6, ), Vt, s>T(B, ). (39)

Separate S into S, and S, such that S=S, S, and

g e[ 5o if 9(B,)>0.
S, if 9B, 0 =0.
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Since .#, in Theorem 2.1 is a subset of S,, S, is a nonempty subset of S. Set
g= 51_111;1; g(B, ). Then g>0 because S is finite and S, is a subset of S.
For each g, €S, there is T'(B,,) such that
9(B,.,) =IdetM (6(t) + Uy, (1) B,, )|
2 '
<2 g<a(. ), Vi> max (T, ), T'6, )} (3.10)

Noticing that F(t)7==F and the rank of F is j, we have A,(t), = 4,>0 for k<j. Thus
from (2.11) it follows that, for large enough s,

A(D)> % as), Viss. G.11)

Suppose the converse, i.e. 7,<% for all i. Since the dimension of F(t) is finite, (3.6)
occurs finitely many times. This is because, otherwise, (3.7) occurs infinitely many times,
and this is impossible.

It follows from (3.11) that for large enough i,

1 e . .
A’j(:,-)(t) > ? A;'((,-)(Ti) =&, if .}(Ti) <j (3.12)

Hence, for large enough i, if (3.6) occurs, then from (3.2) and (3.12) we must have j(t)>].
In this case, according to Lemma 3.1, there must be a j(t)-dimensional vector B, ;) €S,
Therefore, from (3.10) it is known that B, ;., given by (3.1) belongs to S, whenever
(3.6) octurs, if i is large enough. Recalling (3.9) we know that when i is large enough,
if (3.6) occurs, then (3.7) is impossible for s>i. Thus, if (3.6) occurs infinitely often,
then (3.6) is only possible for all large enough i. However, once (3.6) occurs, j(z;) will
reduce by 1, and hence, after finitely many steps there must be j(r)<j. This, however,
is impossible according to (3.12). Therefore, it is impossible that (3.6) occurs infinitely
often. Hence, there exists i, such that 7, ,,= 0.

We now suppose that j(z,)>j. Then lj%,(t),:*mO. From (3.2) it follows that 7} ,,<
®, so 1,,,<%. This contradicts 7,,,=%. Thus, j(z,) <.

Define 0(t)=60(t) + Ur. i) Biy, jap fOr t€[7, 7,4,) as the modification of 6(t).
Theorem 3.1. Suppose that A(z) and B(z) are coprime, and that 0(t) and F(t) are
generated by (1.5)—(1.11) for Case 1.1, while 6(t) and P(t) are given by (1.12)—(1.14) for
Case 1.2 with F(t)=P"*(t). Define the adaptive pole-placement control:
o {[I—S(f, 2)]u(t) —R(t, 2)y(t) +C@)y*(t), if detM(B(t)) #O,
u(t)=

05 0 the rwise N
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where S(t, z), R(t, z) and M(0O(t)) are generated by (2.1)—(2.5); C(z) and y*(t) are the
same as those in the last section. Then in Case 1.1, there is a p>0 such that the input
and output of the closed-loop system are bounded for any p€[0, u); while in Case 1.2, the
input and output of the closed-loop system are bounded.

Proof. From Lemma 3.3 we have

1
Id'et M(G(r)—i_U::j{rﬂ))(t)ﬁk(:ﬂ)], j{t‘o))|> _z'g'to(ﬁ"('io’- j('i'd]])>0’ for t;rio'
Since j(7,) <j, by Lemma 3.2 we see that there is a bounded f(t) such that

B() =0() + Uf. 1, OBucep, 169 =00 + F(OB(0), for t>7,,

Thus, the modification here not only has the same structure as in (2.1), but also makes
{B(t)} satisfy Properties 2.1 and 2.2. The theorem follows directly from Proposition 2.1.

Remark. In Case 1.2, similar to ref. [8], the adaptive LQG problem can be solved by
introducing an attenuating excitation signal, provided that A(z) and B(z) are coprime.
It is worth noticing that here, f(t) is modified only for finitely many times.
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