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Abstract—In this paper, the optimal feedback control for
regulating generalized state-space systems with quadratic cost
is presented by using an algebraic method, and the weighting
matrix @ in the cost is allowed to be positive semi-definite.

1. Introduction

SINCE ROSENBROCK (1974) introduced the restricted system
equivalence (RSE) for the generalized state-space system,
i.e. for the linear system

Ex=Ax+ Bu (1)
with E being singular and det (sE — A) #0, there has been a
lot of research into various problems such as controllability
and observability of the system (Campbell, 1980; Yip and
Sincovec, 1981; Verghese et al., 1981; Cobb, 1984; also see
Lewis, 1986), poles assignment and the elimination of
impulsive behavior of the system by state feedback (Cobb,
1981), and optimal regulators with quadratic cost, i.e. the
LQ problem (Pandolfi, 1981; Cobb, 1983a; Bender and
Laub, 1987a, b), and so on. However, the weighting matrices
in the LQ problem investigated by Cobb (1983a) are positive
definite. In this paper, the LQ problem is treated
algebraically for the general case where Q is allowed to be
positive semi-definite, and the problem is transformed into
the LQ problem for a regular state-space system by invoking
strong stabilizability and strong detectability of system (1).
We believe that the algebraic method adopted here is easier
than the geometric one used by Cobb (1983a) for engineeers
to comprehend. The same problem has also been considered
by Bender and Laub (1987a,b). They used Hamiltonian
minimization. However, for the infinite-horizon case,
stronger conditions are required there than that required in
this paper.
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2. Optimal regulator with quadratic cost
For system (1), with initial state x(0”) which can be
consistent or not (Cobb, 1983b), consider the cost functional
J(u, x(07)) :f (x"Ox +u'Ru) dt (2)

.

where u is the input, u € R’, x is the state, x e R”, Q and R
are constant matrices, @ is positive semi-definite and R is
positive definite. Let 9 be the set of admissible controls in
which any admissible control is piecewise sufficiently smooth

and makes J(u, x(07)) finite. Then the LQ problem is to find
the optimal control u* € 9, such that

J(u*, x(07)) = ﬂiaf} J(u, x(07)). 3)

Definition 1. System (1) is strongly stabilizable if
rank [sE—A Bl=n (4)

for any complex s with non-negative real part and s = «.

Lemma 1. Let T be a non-singular matrix such that
Bl]
B,

where E, has full row rank; then equation (4) holds at s =
if and only if
.
=n.
B,

The proof of the lemma was given by Verghese ez al. (1979).
Equation (4), holding at s =, is a necessary and sufficient
condition for eliminating impulsive behaviour of system (1)
(Cobb, 1981).

SE,— A,

o 5)

TsE—A B]=[

E
rank [ !

B ©

Lemma 2. For system (1), there exists a state feedback
matrix K € R™" such that the system

Ex=(A+BK)x+ Bv (7
is RSE to the system
X, =Ax,+ By
8
{ 0=x,+ Bv ®)

if and only if equation (4) holds at s =, where x, € R"E,
ng=rank E, x,eR"™"E, A eR"E""E, B, eR"¥*', B,e
R("_"E)*"_

By saying that system (7) is RSE to system (8), we mean
that there exist two non-singular matrices F, G € R"*" such

Bl]
B,

that
G 0]

_[sl,,E—Al 0
0 Ll

F[sE — (A + BK) Bl[ 0 it

—ng
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Definition 2. The system

Ex=Ax+ Bu
: 9
Y i ©)
is strongly detectable if
C
rank [sE—A}_n (10)

for any complex s with non-negative real part and s = .
A criterion of testing that equation (10) holds at 5 = = was
given by Verghese et al. (1981); see Lemma 3.

Lemma 3. Equation (10) holds at s = o for system Z, if and
only if there are no constant vectors @, e R", B#0, such
that

[sEﬁA]ﬁ:[EOaf]’ for any s e C. (11)

Decompose matrix @ of cost (2) in different ways:
Q =C*C = CiC,, and denote

Ex =Ax + Bu
.{y - (12)
Ex=AX+ Bu
21-{y i 3)

Then we have the following lemma.
Lemma 4. Z is strongly detectable if and only if X, is.

The lemma shows that the strong detectability for system =
is independent of the decomposition of matrix Q. We omit
its proof and proceed directly to the LQ problem for system

).

Theorem. If system Z is strongly stabilizable and strongly
detectable, then the LQ problem for system (1) has a
solution, the optimal control is realized by a linear state
feedback when t>0, and the optimal closed loop system is
asymptotically stable.

Proof. The basic idea of the proof is to transfer the LQ
problem of a generalized state-space system into that of a
regular system by means of conceptions of strong
stabilizability and strong detectability.

(a) Reforming J(u, x(07))
In view of the strong stabilizability of system X, from
Lemma 2 we can find a matrix K; € R™" such that the system
Ex=(A+ BK,)x + BV (14)
is RSE to the system

i, =Ax;+ By (15)
0=x,+ B,v (16)

i.e. there exist non-singular matrices F, G € R™*" such that

x=G#k (17)

FEG = [Iaf g] (18)
F(A+ BK,)G = [’3‘ Inig] (19)
FB = [ 2] (20)

where np=rank E, B,eR"™, B,eR" "0 A e
R"E*ME, ¥ =[x{x]]%, x, € R"E, x,e R""E. Let x(f) be the
solution of system (1) driven by ue 9 with initial state
x(07). Set

v(t) = u(t) — K x(t). (21)

Then x(f) satisfies (14), since #(t)=G 'x(t), then
components x,(f) and x,(t) of ¥(¢) satisfy (15) and (16),
respectively. Rewriting J(u, x(07)) via (16)—(21), we have

I 0 I
= T B G® 07[I, K}
=[5 51 1 5
Gr@D=] [5]] 9 2| lo 4o
L D
o rlle 26 2 ¢ -2 3]
x[o elle, 1llo | 9 “B|,[% @&
0o I
Representing the weighting matrix in (22) by
M, M
M=[ by ”] 23
b My )

where M,; € R"e*"E, M, € R"E*", M,, € R”*’, we have
“Tx, 1 TMy My][x
J(u, x(07)) = [ 1][ il 12][ l]dr. 24
@ (@) o- LV M Mxpllv 4

(b) Showing M,, positive definite and rewriting cost (24).
Assume the contrary, i.e. that M,, degenerate, then there
exists ag€ R, oy #0, such that ajM,,a, =0. Thus we have

0 aM[0 af*=0 (25)
that is,
8 215 06 31| § - lal-o
0 RILK, Lll0 I 0 1,2 & )
It follows that
0 0
QG[BZ%] il - ch[ Bz%]. (26)
Letting
0
p=6| 4., | @
and noticing that O = C*C, then we obtain
Cp=0. (28)
From (26)-(27), (18)-(20), it follows that
F(SE—A)B=F(E—(A+ BKI))G[ ¢ ] + FBK B
Bya,
_[sh,— 4, 0 ][ 0 ] _[B]cro]
[ 0 . M, + FBay = .t (29)
Letting
a= G[BIC”O] (30)
0
and noticing (29) and (18), we have
(SE—A)p= F“‘[Bb%]
il S P Y
F {FEG + [ 0 1,1l 0
—EG [Bg”“] = Ea. (31)
Combining (28) with (31) gives
C 0
[sE—A]ﬁH[Eaf]’ for any s € C. (32)

Since system Z is strongly detectable by assumption, applying
Lemma 3 to (32), we obtain 8 =0. Therefore, ap=0 from
(26)-(27). This contradicts the hypothesis. It follows that M,,
is positive definite. Now cost (24) can be rewritten as the
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form
J(u, x(07))
=fm{ X1 ]t[Mu_Mle;le{z 0 ]
MM, +v 0 M,
Xy ]
X i dr
[M221M12x1 +v
= j (xIMTix, + wM,,w) di (33)
where e
w(t) = M Mixx, (1) + v(r) (34)
Mﬁ:Mn_MuM;z]M‘l:z (35)

and M7, is positive semi-definite as M is positive
semi-definite. Since J(u, x(07)) << for any u € % and M,, is
positive definite, we see that w(t) € L% Hence w(t) is neither
a Dirac-6 function nor its derivatives. Furthermore, since the
trajectory x(¢) is a linear combination of a Dirac-é function,
its derivatives and piecewise sufficiently smooth functions
(Cobb, 1981), we can see that w(t) is piecewise sufficiently
smooth. Paying attention to (15)-(17) and (34), we have

x-lz(Al_BlM'ZZ]M{Z)xl"'Blw’ £=0 (36)
0=x,— BM3;)M%Lx, + B,w, t>0. (37)
Hence #(t), then x(1), are also piecewise sufficiently smooth.

(c) Equivalence of the LQ problems
Denote by %, and %, the LQ problems, respectively, for
system (1) with cost (2) and for linear system (36) with cost

I0, 1) = [ GiMEw, WMy dt (39)
0

where we W, and W is the set of piecewise sufficiently
smooth functions which make cost (38) finite. Consider ?,
with the initial condition

x(0) =L, 0]G'x(07). (39)
In view of (21), (34) and
() =L, 01G™'x(n), (40)

the solution x(f) of system (1) driven by an admissible
control u e % with initial state x(07) gives an admissible
control w € W and a solution x,(r) of system (36) driven by w
with initial state (39). Combining (33) with (38) and noticing
that w(t) is piecewise sufficiently smooth, we conclude that

J(w, x,(0)) =J (1, x(07)). (41)
Hence
min J(u, x(07)) = min J(w, x1(0)). (42)

Inversely, if the solution x,(¢) of system (36) driven by w € W
with initial state (39) is given, then we can obtain a control
function u(), and a solution x(r) of system (1) driven by this
control function with initial state x(07) by using the following
relations:

) =G =G [—Bz(w(r) - ?%Mfzx,m)]’ >0 (&)
and
u(t) = w(t) - M M5, (0) + Kyx(0). (44)
Here
o £,(0)
x0%)=0] —By(w(0) - M;;M;le(on]' (45)

x(0%) does not equal x(07) in general, and

x(07)—=x(07)

0
- G[—Bz(w(m — Ma M3, 0) = [0 1,_, ]G 'x(0" )]'
(46)

A jump may occur to x(f) when ¢ moves from =07 to 0%;
this is because x(0”) may be inconsistent with wu(r).
However, x(f) does not have any impulsive behaviour.
Hence
0+
(x"Qx +u'Ru)dr=0 (47
o
and
I(u, x(07)) =J(w, x,(0)). (48)

Equation (48) shows that u(f) is an admissible control, i.e.
u(t) € U. Thus we have

méiﬁlr‘l,](w, x,(0)) = {‘réiqr: J(u, x(07)). (49)

The equivalence of %, and % now has been proved by (42)
and (49), i.e.

min J(u, x(07)) = min J(w, x,(0)) (50)

where x,(0) is defined as in (39). Obviously, problem %, is
much easier to solve.

(d) Solution of problem %,
Let

5, {xl =(A; — BM;'M7)x, + Byw, (51)

y=Cx,

where C, is defined as in M{;=CJC,. It is clear that
stabilizability of system Z implies that of Z,. We show that
system Z, is detectable below.

Assume the contrary, i.e. that Z, is not detectable, then
there exist a complex s, with a non-negative real part, and a
nonzero vector &, € R"F such that

[snfng— 4, stz )= G2)
Thus
[ alls]- £
and
(sl — Apea, = —-BM3' M. (54)
Putting
P 55
from (53), (35) and (22)-(23), we have
0B,=0 (56)
and
K\ =Mz Mia,. (57)

From (18)-(20), (54)-(55) and (57), we obtain

(soE —A)B, = F"‘{F(JUE —(A+BK))G

L
X [BszzﬁMfz:le + FBKI,BI}
=F7§{|:SOInE_Al 0 ]
0 _Irt—n;;

i)t [a]xs)-
X[BzMz‘z‘ e |m+| g K.B,t=0. (58)

Combining (58) with (56), and noticing that 0 = C°C, we

can see that
C
LOE vA]ﬁ' o

Since system Z is assumed to be detectable, §, =0, and then
equation (55) gives &; =0. This contradicts the hypothesis.
Hence system Z, is detectable.
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We now give the solution to the LQ problem £,. Since
system I, is stabilizable and detectable, the LQ problem for
system (36) with cost (38) has a unique solution (Kutera,
1972; Kwakernaak and Sivan, 1972):

w*(f) = —M%'BIPx,(t) (59)
where P is the unique positive semi-definite matrix satisfying
the Riccati equation:

P(A; — BLM,'MT,) + (A, — BBM3'MT,)°P
— PBM5'BIP+ M{;=0. (60)

The optimal closed loop system is asymptotically stable, and
the value of the optimal cost functional is

J(w*, x,(0)) = x{(0)Px; (0). (61)

(e) Solution of problem P,

It has been shown that %, and %, defined in (c) are
equivalent. Therefore, from (43) and (44) the solution of the
LQ problem for system (1) can be derived and written as

w* = (K, — Mz'(BiP + ML), 01G™)x, 1>0. (62)

This is the state feedback with a constant gain. It should be
mentioned that (62) holds only for £ >0, but not for r=0 in
general. Driven by u*, the state x(r) jumps from x(07) to
x(0%) at first, and then operates as a closed loop by control
law (62). It is not hard to verify the asymptotical stability of
the optimal closed loop system. The minimal cost is given as

Jw*, x(0) = ([, 0Gx(O)]P[L,, 0]G 'x(0").

(63)
Example. Given a system described by

0 1 le_[l 0][x,] [O]
[0 0][x2_01 zy ] Tl (64)
with initial state x(07) =[1 1]% The cost functional is

oo

J=| (}+ud)de (65)
L

Obviously, system (64) satisfies all conditions required in the
theorem. Following the procedure developed above, we can
find the optimal control, the trajectory, and the minimal cost
as follows
u*=—exp(—t); xi=—exp(—t),
x3=exp(—t), t>0

s =1, (67)

The above representation of the optimal control can be easily
written in a state feedback form, when ¢ >0. Notice that a
jump occurs to x(f) when ¢ moves from ¢t =07 to 1 =0".

(66)

3. Conclusion

The contribution of this paper is to establish the
equivalence of the LQ problems between system (1) and a
regular system subjected to the strong stabilizability and
strong detectability of system (1), and then to derive the
optimal control of the LQ problem for the generalized
state-space system. It is clear that the result developed here
can be applied to the optimal tracking problem for
generalized state-space systems. Also, the authors are
hopeful about the potential possibility of its application to
stochastic optimal control with quadratic functional and
optimal state filtering.
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