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SUMMARY

This paper concerns adaptive stabilization for single-input/single-output (SISO) continuous time systems
with unknown coefficients and containing stochastic or deterministic disturbances. The conditions used
here are possibly the weakest: neither the positive realness condition nor the availability of the upper
bound of system disturbances is needed; the only condition imposed on the system structure is
stabilizability, which is necessary for stabilizing a system even in the case where the system coefficients
are known. The adaptive control given in the paper is switched at stopping times either on external
excitations or on certainty equivalence controls defined by the pole assignment method at fixed times. It
is shown that after a finite period of time the external excitation is no longer used and the system is
stabilized in the long run average sense.

KEY WORDS Adaptive stabilization Stochastic system Continuous time Stopping time
Pole placement

1. INTRODUCTION

For the last two decades much attention has been paid to adaptive stabilization of both discrete
time (see e.g. References 1—10) and continuous time (see e.g. References 11-21) stochastic and
deterministic systems. Authors of previous papers, in addition to the stabilizability assumption
which is necessary for the problem in question, require various extra conditions. For example,
input strict passitivity and a priori knowledge on the location of the parameters are required
in Reference 19; a lower bound for the coprimeness degree is needed in References 5, 7, 8 and
19; a location restriction on the unstable zeros is used in Reference 11; the minimum phase
condition and the strictly positive realness condition on the transfer function of the system
noise are applied in Reference 17; some conditions on the system input or output are needed
in References 18 and 20; and CB is assumed known in Reference 21, where B and C are matrix
coefficients for the system input and output respectively.

The purpose of this paper is to remove all extra restrictions on the system structure, i.e. to
adaptively stabilize a system under the stabilizability assumption only. Let us explain this more
precisely.

Let S be the integral operator

t
Sy = S ys ds
(1]
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and let the SISO continuous time stochastic system be described by
AS)yi=yo+ SB(S)us + C(S)we + Sn: V120 )

where A (S), B(S) and C(S) are polynomials in § with unknown coefficients but known orders:
I

P q
AS)=1+ 2, a:S', B(S)= ), b:iS*Y, C©S)= 2, i’ )
i=1 i=1 i=0
In (1), {w:, %] is a standard Wiener process with respect to a non-decreasing and right-
continuous ¢-algebra { %] defined on a probability space (Q, P, %), yo is the initial value,
Fr-adapted y, and u, (i.e. y: and u, are F-measurable,) are the system output and input
respectively and #-adapted 7, is the system disturbance, which is different from that driven
by the Wiener process and may be deterministic.
When /= p and c, = gap, system (1) has the state space representation

dXt = Ax; dr + Bu; de+C dwt + D’l]; dr (3)
dyr =DTx; df + g dW: (4)
with
- 1 1
_zl i by Co— gao 0
A=| {l: B=|:], Cs : ; D| . |tm

—dm 0 bm Cm-1— gam—l 0

&)

where m=max{p,q}, ao=1, a;i=0 for i>p, bj=0 for j>¢q, cx=0 for k >/ and X"
denotes the transpose of a vector or a matrix X.
When C(S) =0 and 7, is deterministic, system (1) turns out to be a deterministic one:

t
Xt = Axt + Bu; + Dy, Yi= Yo+ S DTx, ds
0

Let us denote the collection of unknown coefficients of A4(S) and B(S) by 8:
0=I[-ai, ..., —ap, b1, ..., bgl " (6)
For § we use the least squares (LS) estimate @, which is defined as (see e.g. References 17,
19, 20 and 22)

I3 -1
db; = Repi(dy. — 00, df) with R,= ([+ S CsPy ds) (N
0
and

‘p;r= [yf! reey Sp_lyt; Uty wuny Sq_lut] (8)

where 0y € % is arbitrarily chosen.
Based on 6;, we want to design an adaptive control so that the system is stabilized under the
following assumptions:

Al. A(S) and SB(S) are coprime, b, # 0.

A2. s
t
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Assumption Al is not the weakest condition to stabilize a system for the case where 0 is
known, since in this case for stabilizability the necessary and sufficient condition is that the
greatest common factor of A(S) and SB(S) be unity or a stable polynomial. However, in
Lemma 6 in Appendix I it is shown that Assumptions Al and A2 together are actually
equivalent to the following.

Al’. The greatest common factor of A(S) and SB(S) is unity or a stable polynomial,
by # 0, i.e. the system is stabilizable.

1 7
A2’ su —5 Zds< o as.
r;r()}f+1 oﬂs

Therefore, without loss of generality, in the sequel we will use Assumptions Al and A2
directly.

2. ADAPTIVE CONTROL

To define the adaptive control, we need the certainty equivalence control, the external
excitation and the stopping times where the switches of control take place. This will be
completed after several lemmas.

Lemma 1V

Let k > 0 be an integer and E(S) =1+ e1S + -+ + exS* with e # 0 be a stable polynomial,
i.e. E(z) # 0 for any z with Re(z) > 0, where Re(z) denotes the real part of a complex number
z. Then there is a constant p. > 1 (depending on E(S) only) such that

k t Si 2 t .
& jiy
> SO (E(S) x:\) dhg i L 22 dx

for any square-integrable process {x:]}.

For the proof we refer to Reference 17.
If A(S) and SB(S) are coprime and b, # 0, then for any polynomial

ES)=1+e1S+ -+ ep+gS° with epig#0 9)
there exists a unique pair of polynomials (G(S), H(S)) such that
A(S)G(S)—-SB(S)H(S)= E(S) with 0(G(S) <g-1 and AHES)=p (10)
where here and hereafter d(X(S)) denotes the degree of polynomial X(S) in S.
From (10) and (1) it is clear that
E(S)y:= A(S)G(S)y:— SB(S)H(S)y:
=G($)[A(S)y:— SB(S)u:] + SB(S) [G(S)ur — H(S)y:]
=G(S) [yo+ C(S)w: + Sn] + SB(S) [G(S)u: — H(S)y:] (11)
and
ES)u:= A(S)G(S)u: — SB(S)H(S) u,
=H(s) [A(S)y: — SB(S)u:] + A(S) [G(S)ur — H(S)y:]
=H(S) Yo+ C(S)w:+ Snil + A(S) [G(S)ur — H(S)y:] (12)
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Noticing that 0(G(S)) < g¢—1, from (11) and Lemma 1 we see that in the case where @ is
known, if 8(C(S)) < p, E(S) is stable and the control u; is defined by

G(S)u— H(S)y:=0, 120 (13)

then under Assumptions Al and A2 the system output is bounded in the average sense, i.e.
1 .

sup —— s ds< o a.s. 14

zg% t+1 S 0 X (19

Similarly, from (12), d(H(S)) = p and Lemma 1 it is clear that under Assumptions Al and
A2 the control u,; defined by (13) is bounded in the average sense, i.e.

1 b 5
—_— sids < .S. 15
e |, S 6
if 3(C(S)) < g—1 and E(S) is stable.

Therefore, in the case where 6 is known, if d(C(S)) < min{p, g — 1} and Assumptions Al
and A2 hold, then for any stable E(S) the control defined by (13) stabilizes the system, i.e.

t
sup L S ¥+ud)ds<oo as. (16)
r20 [+ 1 Jo

Replacing a;, i=1,...,p, and bj, j=1,...,q, in A(S) and SB(S) respectively by their
estimates a;; and bj; given by 6;, we denote the results by 4,(S) and SB;(S). In the case where
A:(S) and SB;(S) are coprime, in a similar way to (10) we can obtain a pair of polynomials
(Gi(S), Hi(S)).

If 8;, is an ‘accurate’ estimate for 6, then the certainty equivalence control given at time f;
will hopefully work for ¢ > ;. However, in general we have no reason to expect that 8, — 8 is
small.

In order to obtain a ‘good’ estimate 6,, we will use the excitation technique. For this we give
two lemmas.

Lemma 2
Let ¢
re=1+ § ol 2 ds
0
and let A\ denote the smallest eigenvalue of the matrix R; ', where ¢, and R; are as given
by (8) and (7) respectively. Then the parameter estimate 8, given by (7) and (8) has the property
x[(t+ 12" + log 1]
xS

where /= 0(C(s)) and x is a random variable independent of time ¢.

16— 8] * < vtE20

The proof is given in Appendix II.

Lemma 3

Let o be an arbitrary positive constant. Define for i=1,2,...,p+ ¢

NP+l i (p+q)! . A SR ;
Bi=(=1) am with 0!'21 and 12 1x2xX---Xi (17)
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and for any 1 >0
ui =1+ B1Sui + -+ Bp+oSP ! with wui=1 (18)

If u, = u/ for t > rin (1), where 7 is a given stopping time, then Assumptions Al and A2 imply
that there exist T> 7, p >0, p' 20 and a > b > 1 such that

Mih = pb’ and r<p'a viZT (19)
The proof is given in Appendix III.

Let R(S) be a stable polynominal in S and let £ and £7 denote the filtered values of u, and
¥: respectively, i.e.

R(S)t'=u, and RS =y vi=0 (20)
Set
Ce=[SE2, ..., SPEL, SEF, ..., S9%F]T
It is easy to see that
R(S)§:=Ser 21)
Arbitrarily choose a deterministic sequence {e/} such that
O<e<l, e —0, e(t+1)— o (22)

In what follows, by the norm of a polynomial
A(X(S) :
X@®)= 2 x5
i=0
we mean
3(X(S)) L\
1) = ("2 Ix1?)
=
We now define two sequences of stopping times {r;} and {o;] as follows:
0=T0<O’1<71<02<Tz<"'

t
gi= inf{t; Ti1+ 1: 5 eses ds = [(t+1)% + ¢ log ri]er X
0

A(S)G:(S) — SB:(S)H:(S) = E(S)

is solvable with respect to G,(S) and H,(S) subject to
9(G:i(S)) £g—-1 and  3(H«(S)) = p;

1

2 2 oo -y
| GeS) I + 1| H(S) I € 5

S[ (8 —0/5¢5)* ds < efTu((ti + 1)2)} (23)
0

t
Ti =inf{t >ai+1: 5 (&Y - 0%¢)% ds > e2T((oi + 1)2)} (24)
0

where g = d(R(S)), r: is as defined in Lemma 2, E(S) is a stable polynomial in S given by (9),
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e is the constant appearing in Lemma 1 when k= p+ g, and

A /ot
T(x)=(t+1) sup {x+L L (pZ}: (S7E2) + f{) (st?)z) ds] @5)
J= J=

0ghg!t A+1

Finally we define the adaptive control u, as

H,.(S)y: — [Gs(S) — 1uy, if t€ (oi,7:] for some ; > 1 28)
where u/ is as given in Lemma 3.

From (23)—(26) we see that the mechanism of the adaptive control (26) is similar to that in
Reference 9: if the accuracy of the parameter estimate is not satisfactory, then we use the
external excitation #/ to make the LS estimate more accurate; if the parameter estimate is
acceptable, then we use the certainty equivalence control to stabilize the system.

Since the upper bounds for || G(S)||* + || H(S) ||%

t

S Ads  and Sr [R-1(S)C(S)ws] 2 ds
0 0

B [u,’ if 2€ (7;,0i+1] for some i >0
p—

are unknown, we include a multiple 1/, in the last but one inequality of (23) and put (¢ + 1)?
in T';(-) in the last inequality of (23) in order to guarantee o; < 0.

It is natural that the complexity of an adaptive control depends upon the a priori knowledge
about the system structure and system disturbances. The less the a priori knowledge is, the
more complex the adaptive control is. When the system disturbance C(S)w, or n, does exist,
it seems unavoidable to apply a rather complicated control similar to that given by (26) (see
e.g. References 9 and 16) to guarantee the stability of the closed-loop system.

It is worth noticing that the excitation signal used in (26) is different from those used in
References 9 and 16: u/ in (26) is deterministic and independent of system (1) (see (28) below).
As shown in Lemma 3 the excitation #/ in (26) diverges to infinity as ¢ goes to infinity, but
Lemma 5 below proves that u/ is actually used only for a finite period of time. Excitation and
switching techniques for discrete time adaptive control systems are described in detail in
References 23 and 24.

We now consider the solvability of (1), (7) and (26) for y:, 0; and u,.

Lemma 4

Assume that the system disturbance 5, does not affect the solvability of the closed-loop
system. Then the system consisting of (1), (7) and (26) has a unique solution (y;, 0;, u;).

Proof. Consider
AS)yi=yo+ SB(S)u: + C(S)w, 27

From the assumption of the lemma it suffices to show that the system consisting of (27), (7)
and (26) has a unique solution (¥, u:, 0;).
From (17), (18) and (51) in Appendix III it follows that

ui=H"eMH vt>0 (28)

where H and A are as defined by (50) in Appendix III.
Hence u/ is uniquely defined for all # > 0, no matter what adaptive control is applied.
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Substituting (28) into (27), we get
A(S)ye= yo+ SB(S)(H"eMH) + C(S)w, (29)

which has a unique solution y, for all ¢ > 0.

Thus ¢, and R; in (7) and (8) are well defined for all ¢ > 0. This in turn implies that equation
(7) is a linear stochastic differential equation with continuous coefficients in the interval [0, T']
for any given T = 1. Thus equation (7) has a unique solution 8, which is continuous in [0, T']
for any given T > 1.

Therefore o, can be defined from (23). Furthermore, o, is a stopping time, since by definition
(23) 61 2 1 and

[wagtl={w:a>t1€eFr=%F vix1

If g1 < oo, then from (26) and (27) it follows that

AS)  =SBO®)|[»]| _[»+CS)w:
[—Ha.(S) Gu,(S)][u,]_[ 0 } Vi> o (30)

This is a linear stochastic differential equation with time-independent coefficients.

Noticing that A (S)GsS) — SB(S)H,,S) =1 at S= 0, we see that A(S)G,,(S) — SB(S)H,,(S)
is not identically zero, so (30) has a unique solution (y:, u;) for all ¢ > ¢;. This in turn implies
that (7) has a unique, continuous solution 6; in the interval [¢1, T'] for any given 7' > o; + 1.

Thus 7; can be defined from (24). Furthermore, 7, is a stopping time, since by definition (24)
nnzo+land ViZo+1

by c
<=0 [w: 1 =1 = [w: 5 E -0t ds<e2M((o1 +1)?), o1+ 1 €A < t} cF
0

Repeating the same argument, we see that the system consisting of (27), (26) and (7) has a
unique, continuous solution (y, us, 8;) in [0, T'] for any given T > 0. Q.E.D.
3. MAIN RESULTS

We now formulate and prove our main results of this paper.

Lemma 5

Suppose that Assumptions Al and A2 hold and the system disturbance 7, does not affect
the solvability of the closed-loop system. If the stable polynomial R(S) in (20) satisfies
d(R(S)) = a(C(S)) + 1, then under the adaptive control (26) there exists a positive integer-
valued random variable J such that o; < e and 7; = « a.s., where [7;} and {o;] are as defined
by (23) and (24) respectively.

The proof is given in Appendix IV.

Theorem 1
Under the conditions of Lemma 5 the adaptive control (26) stabilizes the closed-loop system
(1), (7) and (26) in the following sense:
lim su 1
= p t+ ]
where £7 and £/ are as given by (20).

t p+l . )
S ( 2 (898 + i (S’&“)z) ds< e a.s. (31)
j=0 j=o

0
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Proof. By Lemma 5 we know that there exists a positive integer-valued random variable i
such that o; < e and 7; = 0 a.s. Hence from (26) it follows that

H, (S)y:— Go(S)u: =0 a.s. VYiZoi (32)
Noticing (23) we obtain
E(S)S%y: = 87A5(S)Goi(S)y: — S7* 'Boy(S)Hoi(S)
= 87G.,(S) [ Ao(S)y: — SBo(S)us]
+ 871 B,(S) [Go(S)ur — Hy(S)y:], j=0,1,...,p+1 (33)

and

E(S)S’u; = S’Hoi(S) [ Aci(S)y: — SBo,(S)u:]
+87A6,(S) [Goi(S)u: — Hs(S)y:]l, j=0,1,....q (34)

Taking into account that A (S)y: — SBu(S)u = y: — 05Se:, by (33) we have
p+l ) p+1l g-=1 )
2 (8’8 <2(Gu9 | Z.;. ZEO [S/**E~H(S) (£ - 058917
5 e Y e

p+1

+2 2 (ETYS)RTS)S/* ' Bo(S) [Go(S) s — Hy(S)ys]}
Jj=0

pt+q

<2 Ga®|P(p+g+1) ZO [STE~1(S) (&Y — 0551 2
J:

p+1

+2 2, (ETY(S)RT(S)S7*'By(S) [Go(S)us — Hy(S)ys]} (35)
j=0
and similarly by (34) we obtain

q ] q q 3
2 (SEE 2| Ha(S) [P 2 2 [T ETI(S)(EY - 0559)]°
i=0 #=0.k=0

+2 fl {E"Y(S)R™US)S/ Ae,(S) [ Gai(S)us — Ho(S)ys1)2
ji=0

ptq

2| HaS) (P +q+1) 26 (SE7H(S)(E - 0580 °
=

+2 Jﬁ)ﬂ (E"Y(S)R™(S)S A0i(S) [Goi(S)uts — Ho(S)ys1}? (36)
By Lemma 1 and (32) we see that
- pi]; 5; (E"NS)R(S)S/* B, (S) [Go(S)us — Ho(S)ys]} P ds < oo a.s.
and

L Zq: 5' {E_I(S)R_I(S)SJAW(S)[Go,-(S)“s_Huj(S)ysllz dedad i
j ]

Therefore by (35), (36) and Lemma 1 we conclude that for some »; < oo, which is independent
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of t,

e k 2 - k uz)
t+150(2(s &) +k§0(8 &) ds

k=0

1 ptq 14 2
<2Ap+qg+1)[| G, (S)||2+||H.,(S)||2]m S (——E(S) (-0, ,)) ds + »;

2(P+Q’+]) He St y_eT 2dS+
S pe(p+g+ 1)es t+1 (&5 =0ags) N

< & % Fi((oi+ D +w» as., t=oi+1 37)

where (24), 0; < « and 7; = o a.s. have been used for the last inequality.
Set

1 A sp+1
v2=v1+ sup [m L(kz (Sk,;;y) +* Z (Skfs ) }

0gKh<oi+1

Then from (37) and (25) it follows that

su [# f(pf}l (S*E) + Z (S*E4) ) }<e
Og)\lif.r ok 1 s ko)

1 P;((Ji + 1)2) + vy

o\k=
\y/p+1 q
L en(0i+Di+vm2+6, sup [L S (E S ¥ + > (SkEs“)z) ds} a.s.
o<rgt (A1 Jo\k=o k=0
i.e.
1 p+1
, Sup. [m L(kZ (S*82)* + E (S*e¥) ) }s (1-€) [r2+eq(0i+ )] < as.
<Nt =

which implies (31). Q.E.D.

Corollary 1

Suppose d(C(S)) < p in addition to the conditions of Theorem 1. Then for any given stable
polynomial R(S) with d(R(S)) = p+ 1 the adaptive control (26) leads to both (31) and (14).

Proof. Following the argument of Theorem 1 and noticing that d(C(S)) <p and

d(R(S))=p+ 1 imply
t C(S) 2 B
L (-—R(S) ws) ds=0() as.

we conclude that (31) is still true.
Rewrite R(S) as
p+l X
Ri8)= 2, w8’

Jj=0
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Then from (20) it follows that
1 t 1 t p+1 N
lim sup — S y2ds<||R(S) | lim sup — S > (88 ds< o as.
t—+o0 t+ ] 0 t—ow t+ 1 0 j=0
where (31) is invoked for the last inequality. Q.E.D.

Similarly from Theorem 1 we have the following corollaries.

Corollary 2

If 3(C(S)) < g — 1 and the conditions of Theorem 1 are satisfied, then for any given stable
polynomial R(S) with 3(R(S)) = g the adaptive control (26) leads to both (31) and (15).

Corollary 3

If 8(C(S)) < min{g — 1, p} and the conditions of Theorem | hold, then for any given stable
polynomial R(S) with a(R(S)) = min{p + 1, g} the adaptive control (26) leads to both (31) and
(16).

4. CONCLUSIONS

This paper deals with adaptive stabilization for SISO continuous time linear systems disturbed
by both purely random noise and a function %, which may characterize the deterministic
disturbance. The only requirement for 7, is the boundedness of its time average. Systems are
adaptively stabilized under the stabilizability assumption only.

The adaptive control is switched at stopping times either on the certainty equivalence control
or on an external excitation, which as is shown is used only for a finite period of time.

To conclude, we would like to point out that the behaviour of the adaptive control system
with the certainty equivalence control applied without external excitation is not clear even if
m= 0.
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APPENDIX I

Lemma 6

Suppose that the greatest common factor of 4(S) and SB(S) is a stable polynomial
F(S)=1+ 2, fi8' with f,#0.
i=1
If r =1 is known and Assumptions Al and A2 hold, then system (1) is equivalent to

A'(S)yi=yo+SB'(S)us+ C'(S)we + Sp/ vi=0 (38)
where A'(S), B'(S) and C'(S) are polynomials in S,

p-r a=r I=r
A@S)=1+ 2, a}§', B'(S)= 2, /5", C'(S)= 2, clS' (39)
i=1 i=1

i=0
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and A'(S), B'(S) and 7/ satisfy the following statements
(I) A’(S) and SB'(S) are coprime, by—, # 0, and p—r and g — r are known.

s
(1) sup L 5 i)Y ds<o as.
t=01+ 0
Proof. Let
A'(S) = F Y(S)A(S), B'(S)= F ' (S)SB(S) (40)

The first two equations of (39) and all assertions of Statement (I) immediately follow from the fact that
e #0, fr #0 and p, g and r are known.
We now find C'(S) of degree /— r and n¢ such that (38) and Statement II hold,
Let v, be the solution of the integral equation

F(S)ve=w, 20

and let
=fi e =fiir —fs Ur 1
Me=| 1 »  m=| % pe=| 94
T 51y, 0
Then we have
dVi=MpV:dt+Didw, and v, =DV, t>0 (41)

Since MF is stable, by Reference 17 we see that

1 L
? E Vipf dk —_—

oo

R--]
T
S MDD DTeMP 4\ ass.
0

which together with (41) implies that

; 1 :
vr=w:+S(DIMFV;) with sup —— S [ AP dA< o as. (42)
tz0t+1

Following the argument of (28), we see that if z, is the solution of F (8)z: = yo for all ¢ = 0, then

z=D{eM"'Dyyo = yo + S(DTeM™ MrD,yo)
I-r—1

Let C"(S)= 3, c!S'and L(S) be the the unique solution of
i=0

i
2 aST = F(S)C"(S) + L(S) with ALES) <r—1

i=1
and let
I=r X
C'(8)=SC"(S)+co=co+ Y, ci-1S’ (43)
i=1
Then from the first assertion of (42) and the fact that wo=0 and v, = F~1(S)w, it follows that

FH(8)C(S)w: = SC"(S) e+ SF Y (S)L(S)w: + coF~ (S) w;
= SC"(S)w: + SF~Y(S)L(S)w: + co[w: + S(DTMFV7)]
=C'(S)w: + SF"Y(S)L(S)w: + S(coDTM£V)

Therefore by Lemma 1, stability of M and the second assertion of (42) we have

l £
sup —— j‘ i)Y ds< o as. (44)
tz20f+1 Jo
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where
i = F~Y(S)n:+ F ' (S)L(S)w: + coD MgV, + D{e™"MrD1yo
Finally, multiplying F ~1(S) on both sides of (1) leads to
A'(S)y:= yo+ SB'(S)u: + C'(S)w, + Sy/

which combined with (43) and (44) tells us that (38), the last equation of (39) and Statement (II) are true.
Thus Lemma 6 holds. Q.E.D.

APPENDIX II

Proof of Lemma 2
Let §, = 6, — 0. Then from (1), (2), (6) and (8) it follows that
dy; =0T, dt + co dw, + ZIJ ¢S 'w, dt 4+, dt
Substituting this into the first equation of (7) yields =
40, = — Repreol 0; dt + R;tp;(Co dw, + i} i8S w, df + e da‘) (45)
By this and the second equation of (7) we obtain i
d@FR7'9) = — (0T @:)* dt + chpl Repr dt + 20/ ¢ (co dw; + Zl]l ¢S we dt + e dt)
which implies that )

¢ 8
0<07R '8 < G3RG 6o — S @F0s)* ds+ c§ S eIRps ds
0 1]

t I
+2 S 05 es (co dws+ 2, ¢S 'ws dt + 15 ds) (46)
0 i=1
By Lemma 4 of Reference 25 we see that
t t 3/4
2 S b5 esco dw,=0(1)+o((§ 65 es) ds) ) a.s. 47
V] 0
Noticing that by induction for any integer > 1 and any integrable function f
t i-1
~ ()
Sfi=\ ——— fsds
=
we have
t toah oy 20i-D A
5 (S'w:)?* ds < 5 S ) P S w? ds dN
0 odo [(E—D1 0
S‘ £ wi ds € xi(t -+ 12+ (48)
= s S
0 2iQ2i— [ (i — T ‘

where i=0,1,2,... and x, is random but independent of time f.
From (48) and Assumption A2 it follows that
!

-3 ; 1 L t ! . 2
2 S 6.;1-‘495( 2 C:S"‘ws+ns) ds<7 S (B 0s)* ds+2 S (E ciS' lws+1rs) ds
0 i=1 0 o\i=1

r
s% S @) ds+ x2(t + D2 ass. (49)
0

where %, is random but independent of time f.
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Let tr(X) and det(X') denote the trace and determinant of a matrix X respectively. It is easy to see that

t ¢ i
S 0T Rps ds=tr(§ Rypspd ds) =tr(5 R, dR;’)
0 0 0

_ [ ddet(R; ")
_tr(SD det(R. 1) < (p+gq)log r;

Substituting this, (47) and (49) into (46) results in the desired result of Lemma 2. Q.E.D.

APPENDIX III

Proof of Lemma 3

Let
B B2 Bp+q
A= VR e B e B (50)
% " A N
0 10 Pea-1

and for any 1 > 0
Ui = [ul,Suf,..., 87 'y T
Then from definition (18) it follows that for any 7> 0
dU/
dr
We first show that there exist constants p; > 0, v¥>1and T, > 0 such that

=AU/ with Ui=H (51)

I3
)\min(S uiuir ds) =0y Vi T (52)

0

where here and hereafter Amin(X) denotes the minimum eigenvalue of a matrix X.

From (17) and (50) it is easy to see that the characteristic polynomial det(x/ —-A)=(x—a)’*?of a
matrix A coincides with the minimal polynomial of A. Thus there is a non-singular (p +¢) X (p+ q)
matrix P such that

A& piAp= I (53)
1w (P+a)x(p+q)
Let U= P™'U/ and H= P~'H. Then (51) is equivalent to
— =AU, with Uy=H vi>0 (54)

Noticing that Amin(PPT) > 0 and
1

r —, -
)\min(§ viust ds) = )\min(PPT))\mi“(g UUsf ds) vi=0
0 0

we see that in order to show (52) it suffices to prove that there exist constants p{ >0, y>1and 7; = 0
such that

t
xm(g 0,07 ds)>p;«,f . (55)
0

From (54) it follows that
U=eMH vi>0
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which implies that for any constant § > 0 and any time instant ¢ > §

I T - i T - s
S 0,07 ds:S NS TAs ds;S NF . GRS g
i] 0 -6

— [ - i
. eA(r—b)(S A FTATs ds)eAT('“‘”
0

0
Notice that (A, H) is controllable and hence (A, H) is controllable. Therefore

o - % - 5
= )\min( S eﬁsﬁ. HTeATS ds) eA(‘! = a)eAT(f— 5)

b L =
Amin ( S M. HA'S d.s) >0
0
Set
1
21—6= t“;ﬁ
(t—8)"" " Y(p+g—1! ... t-5 1

Then from (53) we have -
M-8 _ alt=d)yp
It is easy to see that
prg-1

det( By i) =1 w00 de( By Thg) <00 3 -0

where Amax(X) denotes the maximum eigenvalue of X.
Thus from the fact that
pP+q
det(X)= [[ N(X)

i=1

for any (p + g) X (p + g) matrix with eigenvalues );(X) (i=1,...,p+ gq) it follows that

—(p+g-1) p+g-1 \—(p+g-1)
}\min(zl_a Z;r_&) ? I:)\max(zr_a Zf_a)j| 2 ((p_Q) Z{) ('r_a)zl)

2(p+q)—2(.0+fl“ l)(t_B)AZ(P‘HI—l)l Vi>146
From this and (58) we obtain

)\min(efk(r—é)eﬂT(r—é)) > eZa(I—ﬁ)(p+q)72(p+q7 1)(1_6)72(p+q71)2 Vi 146

which together with a > 0, (57) and (56) implies the desired result (55). Therefore (52) is true.
We are now in a position to prove (19).

Let U; = [uy, Suy,, ...,S‘”“’_lur] s viz=0
Wi= yo+ C(S)w: + Sns, M= My, M]"
with
p+q
r ™ N\
O B vas eee e v By B s 0
MTA 00 3 . L. 0 ’
0 0 0 b bq
pra
—
1 a .. ap 0 R
mpa (91 - ' 5 lta
0 0 1 ax

ap,

(56)

(57)

(58)
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Then from (1) it follows that
A(S)pe= MU, + [W,, SW,, ..., P W, 0, ...,0]T
S

which implies that

xmin(S' (A(S)es) (A(S)es)T ds) ;—)\mi.,(MSr UUT dsMT)
0

£ P t p-1
—p2 2, § (S'wsY ds—p2 2, g (Sms)? ds—p2 2, 2% (59)
[ 0 i=0 Jo

i=0

where p; is a positive constant.
By an argument similar to (48) we have

§ (S'ne)? ds < ]
0

s {2 —52
0 B@-DIG-DE "

ds < pi(t+1)**! as. (60)

where i=0,1,2,... and p3 is a positive constant.

Similarly
t P . 2
)mmin(j (A(S)es)(A(S)eps)T ds)— min S E ai8'xTp ds
Ix||=1 Jo| i=0
t
< min p; Z A E (xTs)? ds=ps E Iz'“)\mm(S @sps ds) (61)
[[xll=1 i=0 i=0 0

where p; is a positive constant.
From (48) and (59)—(61) we have

t P - r
)\min( S (05{0}- dS) =2 2— )\mm(MMT (E ZH 1) ?\min( § USU.;T ds)
=0 0

(1]
2 -1 p+!
pZ(xl +P2 4 1 (E 2;+l) E (I+ 1)2i+l a.s. (62)
i= i=0
Noticing that for any ¢ > 7, u, = u/, by induction we derive
: & ; L .ab I
S (S'us— S'ul) ds < (5 tz) 5 (s—ui)ds vtz i=0,1,... (63)
0 0
Thus for any x € R?*9 with Hx|| =1 we have

t t
S xTU) ds > S e ds—§ | Us— Ui |? ds

N I

p+g-1 t . )
> S(xTus) ds—(p+q) j(S‘u,—S'u;)z ds
0

i=0

bJIhﬂ N | —

t pPt+g-1 1 i p7
S x"U ds—(p+q) D, (5 zz) S (us —ul)? ds
i=0 0
which implies that

1 t pPtg-1 1 i pr
)\min(j. USU.!' dS) 3 Amln(s Us ;T dS) —-(p+q) E (— fz) S (U;—H;’)z ds
0 i=0 o

2

Substituting this into (62) and recalling (52), we obtain the first assertion of Lemma 3.
We now prove the second assertion of the lemma.
From U, = PU,, (54) and (63) it is easy to see that there exist ps = 0 and 4, > 1 such that

| Uil < pavh w20 (64)
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From (1) it follows that

—-ay ... —d4p-1 —Aap
Yr= 1 i SYr+ [SB(S)H(““ Wg,O,...,O}T
E L
1 p-1
This together with (64) and Assumption A2 implies the second assertion of Lemma 3. Q.E.D.

APPENDIX IV

Proof of Lemma 5

We first show that it is impossible that r; < oo and ¢;,; = e on a set & of positive probability for an
integer-valued random variable i > 0. In fact, if there were a set @ with positive probability, ie.
P(@) > 0, and for every sample w € @ there were an i(w) 2 0 (for simplicity we drop w below) such that
7i < o and o;4, = o, then u,=u/ for all { > 7;. Thus by Lemmas 2 and 3 we would have

21+1
||9,—9||2=0(%) as. on @ (65)

From Lemma 3 of Reference 17 and the fact that d(R(S)) = a(C(S)) + 1 it follows that
t C(S) 2
ws| ds=0(f) a.s.

o \R(S)
while from (1), (6), (8), (20) and (21) it follows that
E{_Btl-fs:(ﬂ_gr)Tfs"’C(S) W + 3 1 I, 520

s+
RS) TR RS
Therefore by Assumption A2, Lemma 1 and (25) we find that

; i ¥y _ T2
1_‘,(“+l)2) So (Es 0; g's) ds

4 t B 5 5 Sr C(S) 2 t S )2 t( 1 )2 }
SP;«HI)Z)HOHB e}l e O(R(S) W’) d”So (R(S)"’ d”go s ) &

- _opPe— Yo
—O(||Gr 6| +(t+1)2) O((H—l)z) a.s. on @ (66)

where (65) is invoked for the last inequality.
From (66), by (22) we conclude that there exists a random integer #, > 0 such that for any ¢ > #,

1 s
e Yo0fe)P ds<e? as. on@ 67
e+ SD(& i §s) i (67)
From (67), (65) and Lemma 3 we conclude that .1 <  a.s. on %. This contradicts that ¢;+1 = on
@ and P(D) > 0.

We now prove that 7; = o a.s. for some integer-valued random variable / > 1.

From Lemma 2 it follows that

: 2i+1
16— 02 =0 G __tlog ) o
MR
which, incorporating ¢ = d(R(S)) = d(C(S)) + 1 =/+ 1 and the definition of ¢;, implies that
2
60— 82 = o(fi‘:') a.s. (68)
a;
Similarly to (66) we have
1 - 1
. — 0Tt ds=0| || 6, — 0> + <€ a.s. 69
1",((0; T l)z) So(& f ) (” i: ” (a‘_ 2 1)2 a.s ( )

where the last inequality is valid for some large enough i and any ¢ > ¢; because of (68) and (22).
Hence there must be a 7; = © a.s. for some i > 1 possibly depending upon w. Q.E.D
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