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Abstract—This article studies the consensus problem of
high-order multiagent systems (MASs) with binary-valued
communications and switching topologies. To tackle the
challenge of unknown states caused by binary-valued com-
munications, this article constructs an estimation-based
consensus algorithm. First, a recursive projection identi-
fication algorithm is presented to estimate the neighbors’
states dynamically. Then, based on these estimates, a con-
sensus law is designed. By constructing and analyzing two
combined Lyapunov functions about estimation error and
state error, this article establishes their relation to over-
come the difficulty resulting from the coupling of the es-
timation and control and less information due to switch-
ing topologies. Under the condition of jointly connected
topologies, it is proven that by properly selecting the step
coefficient, the estimates of states can converge to the true
states with a convergence rate as the reciprocal of the re-
cursion times. Besides, the MAS is proved to achieve weak
consensus and the consensus rate is also established as
the reciprocal of the recursion times. Finally, a simulation
example is given to validate the algorithm.

Index Terms—Binary-valued communication, consen-
sus, high order, multiagent system (MAS), recursive projec-
tion identification algorithm, switching topology.
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I. INTRODUCTION

IN RECENT years, the consensus problem of multiagent sys-
tems (MASs) has attracted increasing attention from scholars

across various fields [1], [2], [3], [4], [5], [6], [7], [8], such as
swarm formation for autonomous aerial vehicles in engineering
fields [1], the reputation consensus of mobile nodes in commu-
nication fields [8], and so on. In swarm scenarios, all agents
dynamically adjust their positions and orientations relative to
neighboring agents to ensure a common heading direction.

At the start, the consensus problems are investigated with
accurate communications and fixed topologies, such as [9], [10],
and [11]. Furthermore, the necessary and sufficient conditions
of average-consensus in the noise-free case and asymptotic un-
biased mean-square average-consensus in the case of stochastic
noises were proposed in [12].

However, due to the limited capacity of the communication
channel, only limited data can be transmitted over the channel
per unit of time. Therefore, in each time interval, only limited bits
of data can be exchanged between agents, also called quantized
information [13], [14], [15]. Because of the wide application of
digital networks, the consensus problem over capacity-limited
networks has attracted a lot of interest. For example, the consen-
sus problems with quantized communication were considered
in [16], [17], [18], [19], and [20], which only need finite bits in
transmission.

Furthermore, binary-valued information is a specialized form
of quantized information, with the transmission of just one bit by
simplifying communication into only true or false states. Binary-
valued communication significantly cuts more communication
costs than others, contributing to its widespread and efficient
application. As a result, some works on the consensus problem
have appeared based on binary-valued communications [21],
[22]. Wang et al. [21] proposed a consensus algorithm based
on recursive projection and gave a mean-square consensus rate.
The system of [21] was expanded to high-order MASs in [22],
but with an orthogonal limitation on the coefficient matrices.

It is worth noticing that all the consensus works mentioned
above are for the fixed topology case. Actually, the topologies
of multiagent networks usually switch over time in practical
networks due to the interference of some external elements
and the changes in the current circumstances. There are some
works that investigate the consensus problem of MASs with
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switching topologies as well. For example, Jadbabaie et al. [5]
studied the case with accurate communications and switching
topologies that are jointly connected, simulating a simple mul-
tiagent collaboration model. Hu et al. [23] employed a recursive
projection identification algorithm to develop a control law and
proved that the first-order switching MAS with binary-valued
communications can achieve consensus with this control law.
Meng et al. [24] proposed a control law based on an adaptive
encoding–decoding scheme, demonstrating that the high-order
switching MAS without communication noises can exponen-
tially achieve consensus with finite bits of information.

Moreover, on the one hand, high-order systems play a critical
role in various practical applications, such as formation con-
trol [1], [2], social networks [25], and so on. On the other hand,
given the widespread use of digital communication, binary-
valued communication holds significant practical value due to
its ability to reduce communication costs compared with other
methods substantially. However, binary-valued communications
and switching topologies result in less transmitted information,
making theoretical analysis more complex, while the inclusion
of high-order systems leads to greater complexity in the dynam-
ics of MASs. Consequently, it is imperative and challenging
to address the consensus problem of high-order MASs under
binary-valued communications and switching topologies, which
is precisely the purpose of this article. The main contributions
of this article are as follows.

1) This article is the first to address the consensus problem
of MAS with a high-order system, binary-valued com-
munication, and switching topology simultaneously. In
contrast to the existing works [22] and [23], this article
has a more general model. To be specific, the states of
agents in high-order MASs are dynamic even if the control
input is absent, whereas the states of first-order MASs
in [23] are static. Therefore, each agent needs to estimate
its neighbors’ states dynamically in this article, which
makes state estimation more complicated. Besides, by
jointly analyzing the structure feature of the topology
graph and system model, this article relaxes the limitation
on coefficient matrices in [22] and only requires the system
to be marginally stable. On the other hand, this article
only requires binary-valued transmission and has a lower
communication cost than [24].

2) An estimation-based consensus algorithm, consisting of
estimation and control, is designed. First, to overcome
the challenge of unknown states caused by binary-valued
communications, a recursive projection identification al-
gorithm is presented to estimate the neighbors’ states.
Then, a consensus control law is designed based on the
estimates of neighbors’ states. It is worth mentioning that
this article introduces an adjustable coefficient into the
controller that removes the connectivity limitation on the
graph structure in [23].

3) Two combined Lyapunov functions are designed to an-
alyze the consensus of all agents and the convergence
of the estimates, respectively. Through the analysis of
these two Lyapunov functions, this article establishes the
relation between them to overcome the difficulty resulting

from the coupling of the estimation and control. At the
proper step coefficient, it is proven that the estimation
errors of neighbors’ states can converge to zero and the
MAS can achieve weak consensus. Furthermore, even
without connectivity constraint on the graph structure as
mentioned in [23], the convergence rate of the estimation
errors and the consensus rate can still reach the reciprocal
of the recursion times as [23].

The rest of this article is organized as follows. Section II
gives the preliminaries of basic concepts and graph theory and
describes the consensus problem. Section III introduces the
estimation-based consensus algorithm. The main results of this
article are presented in Section IV, which include the main
convergence and consensus results. In Section V, a simulation
example is given. Finally, Section VI concludes this article.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we first give some basic concepts in matrix
and graph theory, and subsequently formulate the system model
and the consensus problems investigated in this article.

A. Basic Concepts

We use x ∈ Rn and A ∈ Rn×m to denote n-dimensional
column vector andn×m-dimensional real matrix, respectively.
Denote �0m = [0, . . . , 0]T ∈ Rm and �1m = [1, . . . , 1]T ∈ Rm,
where the notation T denotes the transpose operator. Moreover,
we denote ‖x‖ = ‖x‖2 and ‖A‖ =

√
λmax(AAT ) as the Eu-

clidean norm of vector and matrix, respectively, where λmax(·)
denotes the largest eigenvalue of the matrix. Correspondingly,
λmin(·) denotes the smallest eigenvalue of the matrix. For sym-
metric matricesA ∈ Rm×m andB ∈ Rm×m,A � B represents
that A−B is a positive semidefinite matrix. diag{·} denotes
the block-diagonal matrix. For arbitrary matrices A = [aij ] ∈
Rm×n and B ∈ Rp×q , the Kronecker product of A and B is
defined as

A⊗B �

⎡
⎢⎢⎢⎢⎣
a11B a12B · · · a1nB

a21B a22B · · · a2nB
...

...
...

am1B am2B · · · amnB

⎤
⎥⎥⎥⎥⎦ ∈ Rmp×nq.

Besides, the mathematical expectation is denoted as E[·].

B. Graph Theory

In order to describe the relation between agents, we introduce
a time-varying topology Gm(t) = (N0, Em(t)), where m(t) ∈
{1, 2, . . . , h} is a time-varying function, N0 = {1, . . . , N}
is the set of agents, and Em(t) ⊆ N0 ×N0 is the ordered
edges set of the topology Gm(t). Moreover, assume that
Gm(t) ∈ {G1, G2, . . . , Gh} and Em(t) ∈ {E1, E2, . . . , Eh}.

Denote Nm(t)
i as the neighbor set of the agent i in the topology

Gm(t). Denote the adjacency matrix of the N agents at time
t as Am(t), where each element of the matrix Am(t) satisfies

a
m(t)
ij = 1 if (i, j) ∈ Em(t), else a

m(t)
ij = 0. Denote the degree

matrix of the N agents at time t as Dm(t), where Dm(t) =
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diag{dm(t)
1 , d

m(t)
2 , . . . , d

m(t)
N } and d

m(t)
i is the degree of agent

i at time t. Then, the Laplace matrix of Gm(t) is defined as
Lm(t) = Dm(t) −Am(t).

C. Problem Formulation

Consider the following MAS with N agents at time t:

xi(t+ 1) = Axi(t) +Bui(t), i = 1, . . . , N (1)

whereA ∈ Rn×n andB ∈ Rn×m are constant matrices,xi(t) ∈
Rn is the state of the agent i at time t, and ui(t) ∈ Rm is the
control input of the agent i at time t.

Remark 1: As mentioned earlier, the consensus problem
of high-order MASs has wide applications, such as formation
control issues on a plane or in space, where agent states xi(t)
are typically represented as 2-D or 3-D vectors [1], [2]. Besides,
high-order system models are frequently encountered in social
networks [25], such as when people simultaneously participate
in discussions on multiple topics with state xi(t) in (1). Conse-
quently, compared with first-order systems, high-order systems
are more general and more commonly used in the real world. In
addition, the system model of the form (1) is a typical high-order
MAS, widely employed in [22], [24], [26], and [27].

The agent i receives the following binary-valued information
with communication noise from its neighbor j:{

yij(t) = xj(t) + dij(t)

sij(t) = 1{yij(t)≤cij}
(2)

where the agent j is the neighbor of the agent i at time t,
dij(t) ∈ Rn is the communicating noise, yij(t) ∈ Rn is the
virtual output, cij ∈ Rn is the threshold value, sij(t) ∈ Rn is
the binary-valued information that the agent i collects from its
neighbor j, and 1{a≤c} is the indicative function defined as

1{a≤c} =
[
1{a(1)≤c(1)}, 1{a(2)≤c(2)}, . . . , 1{a(n)≤c(n)}

]T
with a = [a(1), a(2), . . . , a(n)]T , c = [c(1), c(2), . . . , c(n)]T ,
and for k = 1, 2, . . . , n

1{a(k)≤c(k)} =

{
1, a(k) ≤ c(k)

0, a(k) > c(k).

Remark 2: The communication form of 1{a≤c} is commonly
used in the communication field, such as [28], [29], [30], and
[31]. In order to provide a clear understanding of the definition of
1{a≤c}, an example is given as follows: if a = [−1, 2, 5,−3, 0]T

and c = [0, 0, 0, 0, 0]T , then 1{a≤c} = [1, 0, 0, 1, 1]T .
In order to proceed with our analysis, we introduce some

assumptions about the graph, the noise, and the system coeffi-
cients.

Assumption 1: {G1, G2, . . . , Gh} are jointly connected
and Gi emerges at time t with a probability pi(> 0), for i =
1, 2, . . . , h, where

∑h
i=1 pi = 1.

Assumption 2: The noise dij(t) is independent identically
normally distributed as N(0, δ2In) for i, j, t, which implies that
each element of dij(t) has the same distribution function F (·)
and the associated density function f(·), respectively.

Assumption 3: Lm(t) and dij(t) are independent. Besides,
Lm(t) and Lm(l) are independent for t �= l.

Assumption 4: The system matrixA is an orthogonal matrix,
and B is of full row rank.

Remark 3: Actually, by [32, Remark 2.3], we know that
Assumption 4 can be relaxed to the case where the matrix A
is neutrally stable, which is common in the model assumptions
and practical applications, such as [24], [32], [33], [34], and
[35]. If the matrix A is neutrally stable but not orthogonal, there
is a nonsingular matrix O such that Ã = O−1AO is orthogo-
nal. Let x̃i(t) = O−1xi(t) and B̃ = O−1B. Then, x̃i(t+ 1) =
Ãx̃i(t) + B̃ui(t), where Ã is orthogonal and B̃ is of full row
rank.

Moreover, Assumption 4 can be relaxed to the case that the
matrix A is marginally stable. In detail, by [32, Remark 2.2], we
know that if the matrix A is marginally stable but not neutrally
stable, then there is a nonsingular matrix T such that TAT−1 =[
As 0

0 Au

]
, where As is stable and Au is neutrally stable. As

You and Xie [36] said, since the MAS with a stable coefficient
matrix As can achieve consensus even if the control input is
zero, we just need to focus on the neutrally stable part Au. In
contrast to [22, Assumption 2], Assumption 4 in this article is
more general, which relaxes the restrictions on the coefficient
matrices.

Now, we introduce the concept of weak consensus and the
problem to be studied.

Definition 1 ([37, Def. 2] Weak Consensus): Denote xi(t)
as the state of agent i at time t, where i = 1, . . . , N . For all
agents, if xi(t), i = 1, . . . , N, satisfy the following:

1) E[‖xi(t)‖2] < ∞, i = 1, . . . , N ;
2) limt→∞ E[‖xi(t)− xj(t)‖2] = 0, i, j ∈ {1, . . . , N}.

Then, the agents are said to achieve weak consensus.
Problem: The goal of this article is to design a controller ui(t)

based on binary-valued communications sij(t) and switching
topologies Gm(t) to achieve weak consensus.

III. ALGORITHM DESIGN

This section focuses on the design of a consensus control
algorithm. In general, the consensus control is designed by using
the accurate states of the neighbors, as mentioned in [5], [9],
[10], [11], and [12]. However, in this article, the agent can only
obtain binary-valued communications from its neighbors. A
straightforward idea is to replace the accurate states of neighbors
with their estimates, so each agent should estimate its neighbors’
states first by the binary-valued communications, and then,
design the consensus control based on these estimates.

Based on the above idea, we propose an estimation-based con-
sensus algorithm involving both estimation and control, named
as Algorithm 1.

Remark 4: At the first step of Algorithm 1, the initial value
of the estimate can be chosen arbitrarily, i.e., can be any given
real number. The boundary M is then selected according to the
initial values of states and estimates, which is a piece of global
information of the MAS. By using the projection operator with
boundary M , both the estimates and values of agents’ states are
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Algorithm 1: Estimation-Based Consensus Algorithm.

i) Initiation: Denote the integer t0(> 0) as the initial time.
xi(t0 + 1) = x0

i is the initial state of the agent i,
x̂ij(t0) = x0

ij is the initial estimate of the agent j
estimated by the agent i. And, denote M as the upper
boundary for the norm of these initial values, i.e.,
M ≥ ‖x0

i ‖, M ≥ ‖x0
ij‖. For t ≥ t0 + 1, the algorithm is

as follows.
ii) Observation: each agent i gets the binary-valued
observations from its neighbors{

yij(t) = xj(t) + dij(t),

sij(t) = 1{yij(t)≤cij},

where j ∈ N
m(t)
i , i = 1, . . . , N , m(t) ∈ {1, . . . , h}.

iii) Estimation: each agent i estimates the state of its
neighbor agent j at time t by

x̂ij(t) = ΠM

{
Ax̂ij(t− 1) +

β

t
(F(cij

−Ax̂ij(t− 1))− sij(t))

}
, (3)

where j ∈ N
m(t)
i , β is the step coefficient for estimation

updating, F(z) = [F (z1), . . . , F (zn)]
T for any

z = [z1, z2, . . . , zn]
T ∈ Rn, ΠM (·) is a projection

mapping defined as

ΠM (ζ) = argmin
‖ξ‖≤M

‖ζ − ξ‖, ∀ζ ∈ Rn. (4)

iv) Controller: based on these estimates, each agent i
designs its control by

ui(t) =
γ

(t+ 1)dmax
BTA

∑
j∈Nm(t)

i

(x̂ij(t)− xi(t)) , (5)

where dmax = max1≤i≤N,1≤m(t)≤h{dm(t)
i },0 < γ < ∞.

v) Repeat: Let t = t+ 1, go back to Step ii).

constrained within the bound of M as outlined in Algorithm 1.
In other words, for any given system, the estimation-based con-
sensus algorithm designed here can make the system consensus
in the range determined by the initial values.

Remark 5: The projection mapping ΠM is used to guarantee
the boundness of the estimates and good convergence effect in
the initial iterative process of the algorithm, which is common
in binary-valued identification, such as [21], [22], and [23]. It
is used to construct the damping compression coefficients in
the convergence analysis of the algorithm designed by the noise
distribution function under binary-valued data.

Besides, as [22, Remark 4] says, the projection mapping given
by (4) has the following property:

‖ΠM (x1)−ΠM (x2)‖ ≤ ‖x1 − x2‖ ∀x1, x2 ∈ Rn.

Remark 6: By (1) and (5), the state of the agent i is updated
as xi(t+ 1) = Axi(t) +

γBBTA
(t+1)dmax

∑
j∈Nm(t)

i

(x̂ij(t)− xi(t)).

For the convenience of the subsequent analysis, we rewrite
the above estimation and update in vector form.

First, define x(t) = [xT
1 (t), x

T
2 (t), . . . , x

T
N (t)]T ∈ RnN .

Then, denote the jointly connected topology formed by
G1, G2, . . . ,Gh as G = (N0, E), where E = E1 ∪ · · · ∪ Eh is
the set of all the edges. Next, we consider the agent i in the
jointly connected graph G, denote di as its degree and Ni as the
set of its neighbors and d =

∑N
i=1 di. Based on these, denote

x̂(t) = [x̂T
1r1

(t), x̂T
1r2

(t), . . . , x̂T
1rd1

(t), . . . , x̂T
ird1+···+di−1+1

(t),

. . . , x̂T
ird1+···+di

(t), . . . , x̂T
Nrd1+···+dN

(t)]T ∈ Rnd

where rd1+d2+···+di−1+1, . . . , rd1+···+di
∈ Ni for i = 1, 2,

. . . , N .
Similarly, denote

S(t) = [sT1r1(t), s
T
1r2

(t), . . . , sT1rd1
(t), . . . , sTird1+···+di−1+1

(t),

. . . , sTird1+···+di
(t), . . . , sTNrd1+···+dN

(t)]T ∈ Rnd

and

C = [cT1r1 , c
T
1r2

, . . . , cT1rd1
, . . . , cTird1+···+di−1+1

, . . . ,

cTird1+···+di
, . . . , cTNrd1+···+dN

]T ∈ Rnd.

Without loss of generality, assume that the subscript rs
in vector x̂(t) represents the neighbor j of agent i, i.e.,
x̂irs(t) = x̂ij(t), where rs ∈ Ni, s ∈ {d1 + d2 + · · ·+ di−1 +
1, . . . , d1 + · · ·+ di}. Based on the above notations, we con-
struct three matrices to establish the relation of the states of
agents and their estimates.
Pm(t) is designed to select each neighbor of each agent at

time t. Define Pm(t) = diag{p11m(t), p
22
m(t), . . . , p

dd
m(t)} ∈ Rd×d,

where pssm(t) = 1 when (i, rs) ∈ Em(t), else pssm(t) = 0.
Q is designed to select the true state of the

agent that correlates with its estimate. Define Q =
[Q1r1 , . . . , Q1rd1

,. . . , QNrd1+···+dN−1+1
, . . . , QNrd1+···+dN

]T ∈
Rd×N , where Qirs = Qij = [�0Tj−1, 1,�0

T
N−j ]

T ∈ RN for

(i, rs) ∈ E, else Qirs = �0N .
Wm(t) is designed to select the neighbor set of each agent

at time t. Define Wm(t) = [W 1
m(t), . . . ,W

N
m(t)]

T ∈ RN×d,

where W i
m(t) = [�0d1+···+di−1

, b1, . . . , bdi
,�0di+1+···+dN

]T ∈ Rd

for i ∈ {1, . . . , N} ∀ki ∈ {1, . . . , di}, bki
= 1 when

(i, rki+d1+···+di−1
) ∈ Em(t), else bki

= 0.
Based on the above matrices, the vector forms of estimation

and update are given as follows.
1) Estimation:

x̂(t) = ΠM

{
(Id ⊗A)x̂(t− 1) +

β

t
(Pm(t) ⊗ In)

× (ΦF (C − (Id ⊗A)x̂(t− 1))− s(t))

}
(6)

where ΠM (z) = [ΠT
M (z1), . . . ,Π

T
M (zd)]

T and ΦF (z) =
[FT (z1),. . . ,FT (zd)]

T , for any z = [zT1 , z
T
2 , . . . , z

T
d ]

T ∈ Rnd,
zk ∈ Rn for k = 1, . . . , d.
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2) Update:

x(t+ 1) =

(
IN ⊗A− γ

(t+ 1)dmax
Lm(t) ⊗BBTA

)
x(t)

+
γ

(t+ 1)dmax
(Wm(t) ⊗BBTA)ε(t) (7)

where ε(t) = x̂(t)− (Q⊗ In)x(t) is the estimation error.

IV. MAIN RESULT

In this section, we will show that all agents can achieve weak
consensus and give the corresponding consensus rate.

To prove each agent can achieve weak consensus, we give the
following lemmas first.

Lemma 1: (See [23]). Denote Ľ =
∑h

i=1 piLi. If Assump-
tion 1 holds, then matrix Ľ has the following properties.

1) Ľ is a nonnegative definite matrix with rank n− 1.

2) Ľ2 � λ2
2

λN
Ľ, where λ2 and λN are the smallest positive

eigenvalue and the largest eigenvalue of Ľ, respectively.
Lemma 2: The agent states xi(t) and the estimates x̂ij(t)

are all bounded, i.e., ‖xi(t)‖ ≤ M and ‖x̂ij(t)‖ ≤ M , where
M is the upper boundary for the norm of initial values, i =
1, 2, . . . , N , j ∈ N

m(t)
i , t ≥ t0 + 1.

Proof: First, due to the definition of M , we can get ‖x0
i ‖ ≤

M, ‖x0
ij‖ ≤ M . By the estimation (3) and the definition of

ΠM (·) (4), we have ‖x̂ij(t)‖ ≤ M for t ≥ t0 + 1.
Then, assume that ‖xi(k)‖ ≤ M for k = t0 + 1, t0 +

2, . . . , t, we have the following.
1) When there is no neighbor of the agent i at time t, by

Remark 6, we can get xi(t+ 1) = Axi(t). Since A is an
orthogonal matrix, we have ‖xi(t+ 1)‖ ≤ ‖A‖‖xi(t)‖ ≤
‖xi(t)‖ ≤ M.

2) When there exists neighbor of the agent i at time t, by
Remark 6, we can get

‖xi(t+ 1)‖

=
∥∥∥Axi(t) +

γBBTA

(t+ 1)dmax

∑
j∈Nm(t)

i

(x̂ij(t)− xi(t))
∥∥∥

=
∥∥∥Axi(t)− d

m(t)
i γBBT

(t+ 1)dmax
Axi(t) +

d
m(t)
i γBBTA

(t+ 1)dmax

·
∑

j∈Nm(t)
i

1

d
m(t)
i

x̂ij(t)
∥∥∥

=
∥∥∥
(
In − d

m(t)
i γBBT

(t+ 1)dmax

)
Axi(t) +

d
m(t)
i γBBT

(t+ 1)dmax

·A
∑

j∈Nm(t)
i

1

d
m(t)
i

x̂ij(t)
∥∥∥.

Since d
m(t)
i > 0 and

∑
j∈Nm(t)

i

1

d
m(t)
i

= d
m(t)
i

1

d
m(t)
i

= 1,

we have
∥∥A∑

j∈Nm(t)
i

1

d
m(t)
i

x̂ij(t)
∥∥ ≤ ‖A‖∥∥∑

j∈Nm(t)
i

1

d
m(t)
i

x̂ij(t)
∥∥ ≤ M .

Moreover, for arbitrary γ, we can choose an initial

time t0 that satisfies 0 <
d
m(t)
i γBBT

(t+1)dmax
< In when t ≥ t0 +

1. Since ‖(In − d
m(t)
i γBBT

(t+1)dmax
) +

d
m(t)
i γBBT

(t+1)dmax
‖ = ‖In‖ = 1

and ‖Axi(t)‖ ≤ M , we can get

‖xi(t+ 1)‖ ≤
∥∥∥
(
In − d

m(t)
i γBBT

(t+ 1)dmax

)
M

+
d
m(t)
i γBBT

(t+ 1)dmax
M

∥∥∥
≤ M.

Thus, by induction, we have ‖xi(t)‖ ≤ M for all t ≥ t0 +
1. The lemma is proved. �

Then, to jointly analyze the structure of the topology graph
and system model, we provide the following lemma.

Lemma 3: For positive semidefinite matricesAi ∈ Rn×n and
Bi ∈ Rm×m(i = 1, 2), if A1 � A2 and B1 � B2, then

A1 ⊗B1 � A2 ⊗B2.

Proof: For arbitrary positive semidefinite matrices
A ∈ Rn×n and B ∈ Rm×m, denote λ1, λ2, . . . , λn and
μ1, μ2, . . . , μm as the eigenvalues of A and B, respectively.
Then, by [38, Thm. 4.2.12], λiμj are the eigenvalues of A⊗B,
where i = 1, . . . , n and j = 1, . . . ,m. Since A � 0 and B � 0,
we have λi ≥ 0 and μj ≥ 0, thus λiμj ≥ 0.

Then, by the definition of the Kronecker product, we have
(A⊗B)T = AT ⊗BT = A⊗B, i.e., A⊗B is symmetric as
well. This, together with λiμj ≥ 0, yields A⊗B � 0.

From the above conclusion and the distributive property of
the Kronecker product, we have

A1 ⊗B1 −A2 ⊗B1 = (A1 −A2)⊗B1 � 0

A2 ⊗B1 −A2 ⊗B2 = A2 ⊗ (B1 −B2) � 0.

Thus, we have A1 ⊗B1 � A2 ⊗B1 � A2 ⊗B2. �
Next, we introduce two Lyapunov functions, V (t) and R(t),

to analyze the weak consensus of all agents and the convergence
properties of estimates, respectively. These functions are defined
as follows:

V (t) = E[xT (t)(Lm(t) ⊗ In)x(t)] (8)

R(t) = E[εT (t)ε(t)]. (9)

Then, the following two lemmas show the coupling relations
of the two Lyapunov functions.

Lemma 4: Under Assumptions 1–4, V (t) satisfies

V (t) ≤
(
1− 3γλ2

2λab

2tλNdmax

)
V (t− 1) +

2γλWλNλ2
AB

tdmaxλ
2
2λab

·R(t− 1) +
B̂

t2

where λab = λmin(A
TBBTA), λAB = λmax(A

TBBTA),
λW = max1≤i≤h{λmax{WT

i ĽWi}}, and B̂ is a constant.
Proof: See proof in Appendix A. �

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on June 21,2025 at 15:03:44 UTC from IEEE Xplore.  Restrictions apply. 



1374 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 12, NO. 2, JUNE 2025

Lemma 5: Under Assumptions 1–4, R(t) satisfies

R(t) ≤
(
1− 1

tdmax
(2βpminfMdmax − γα)

)
R(t− 1)

+
2γλWλNλ2

AB

tdmaxλ
2
2λab

V (t− 1) +
B̃

t2

where pmin = min1≤i≤h{pi}, fM = mini,j,k f(|cijk|+M),
cijk is the kth element of cij , λQL = max1≤i≤h{λmax

{QLiQ
T }}, λQ = λmax{QQT }, λW̌ = max1≤i≤h{λmax

{WT
i Wi}}, α =

λ2
2λQLλab

2λNλW
+ 2λAB

√
λQλW̌ , and B̃ is a

constant.
Proof: See proof in Appendix B. �
By Lemmas 4 and 5, we establish the relation between

these two Lyapunov functions. Then, a new function Z(t) =
(V (t), R(t))T is constructed to jointly analyze their properties,
to overcome the difficulty resulting from the coupling of the
estimation and control.

Lemma 6: (See [23]). If Assumptions 1–4 hold, then

‖Z(t)‖ ≤ ‖
(
I − 1

t
U

)
Z(t− 1)‖+ 1

t2
‖H‖

‖Z(t)‖ =

⎧⎪⎪⎨
⎪⎪⎩
O

(
1

tλmin(U)

)
, λmin(U) < 1

O
(
ln t
t

)
, λmin(U) = 1

O
(
1
t

)
, λmin(U) > 1

where U =

[
u1 u2

u2 u4

]
, H =

[
B̂, B̃

]T
, u1 =

3γλ2
2λab

2λNdmax
,

u2 =
−2γλW λNλ2

AB

dmaxλ2
2λab

, u4 = 1
dmax

(2βpminfMdmax − γα), and
α is the same as in Lemma 5.

Remark 7: Noticing that 0 ≤ V (t) ≤ ‖Z(t)‖ and 0 ≤
R(t) ≤ ‖Z(t)‖, we can transform the analysis of weak con-
sensus and estimate convergence property into analyzing the
convergence of Z(t).

Theorem 1: Under Assumptions 1–4, the switching MASs
(1) and (2) achieve weak consensus and the estimates of states
converge to the real states, i.e.,

lim
t→∞E[‖xi(t)− xj(t)‖2] = 0

lim
t→∞E[‖x̂ij(t)− xj(t)‖2] = 0

when β > 1
2pminfM

(
u2
2

u1
+ γα

dmax
) with u1, u2, and α being given

in Lemmas 5 and 6.
Proof: Let |λI − U | = (λ − u1)(λ − u4)− u2

2 = 0. Then

λmin(U) =
1

2

(
u1 + u4 −

√
(u1 + u4)2 − 4(u1u4 − u2

2)

)
.

If β > 1
2pminfM

(
u2
2

u1
+ γα

dmax
), then we have u1u4 > u2

2. Since
u1 > 0 and u1u4 > u2

2, λmin(U) > 0.
By Lemma 6, we have

‖Z(t)‖ =

⎧⎪⎪⎨
⎪⎪⎩
O

(
1

tλmin(U)

)
, λmin(U) < 1

O
(
ln t
t

)
, λmin(U) = 1

O
(
1
t

)
, λmin(U) > 1.

Fig. 1. Switching topologies.

Since λmin(U) > 0, there is limt→∞ ‖Z(t)‖ = 0.
By Remark 7, we have

lim
t→∞V (t) = 0, lim

t→∞R(t) = 0. (10)

Denote the Laplacian matrix of G as LG and
∑h

i=1 Li −
LG � L∑−G. By the relation between {G1, G2, . . . , Gh}
and G, we know that L∑−G is a Laplacian matrix of a

weighted graph. Then, we have
∑h

i=1 Li − LG = L∑−G � 0,

i.e.,
∑h

i=1 Li � LG. Since pi > 0 and
∑h

i=1 pi = 1, we have

LG �
h∑

i=1

Li �
h∑

i=1

pi
pmin

Li.

By Assumption 1, {G1, G2, . . . , Gh} are jointly connected,
then there exists a road between any different agents i and j in
the network G. Suppose the road is as follows:

i = r0 → r1 → r2 → · · · → rp−1 → rp = j, p ≤ N

which implies ri+1 ∈ Nri . Then, the mean-square error of any
two different agents satisfies

E[‖xi(t)− xj(t)‖2]
= E[‖ (xr0(t)− xr1(t)) + (xr1(t)− xr2(t))

+ · · ·+ (
xrp−1

(t)− xrp(t)
) ‖2]

≤ N

N∑
i=1

∑
j∈Ni

E[‖xi(t)− xj(t)‖2]

≤ 2NE[xT (t)(LG ⊗ In)x(t)]

≤ 2NE

[
xT (t)

(
h∑

i=1

pi
pmin

Li ⊗ In

)
x(t)

]
=

2N

pmin
V (t).

(11)

Meanwhile

E[‖x̂ij(t)− xj(t)‖2]

≤
N∑
i=1

∑
j∈Ni

E[‖x̂ij(t)− xj(t)‖2] = R(t). (12)

Substituting (10) into (11) and (12) gives the theorem. �
Theorem 2: Under Assumptions 1–4, the switching MASs

(1) and (2) achieve weak consensus at the rate of O( 1t ), and the
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Fig. 2. Estimates of neighbors’ states.

convergence rate of the estimation error reach O( 1t ), i.e.,

E[‖xi(t)− xj(t)‖2] = O

(
1

t

)

E[‖x̂ij(t)− xj(t)‖2] = O

(
1

t

)

when β > 1
2pminfM

(
u2
2

u1−1 + γα
dmax

+ 1) and γ > 2λNdmax

3λ2
2λab

, with
u1, u2, and α being given in Lemmas 5 and 6.

Proof: Similar to the proof of Theorem 1, if β >
1

2pminfM
(

u2
2

u1−1 + γα
dmax

+ 1), we have

u4 >
u2
2

u1 − 1
+ 1.

If γ > 2λNdmax

3λ2
2λab

, then u1 − 1 > 0 and u4(u1 − 1) > u2
2 +

u1 − 1. Therefore

(u1 + u4)
2 − 4(u1u4 − u2

2) < (u1 + u4 − 2)2

and hence, we have λmin(U) > 1. By Lemma 6, we have

‖Z(t)‖ = O

(
1

t

)
.

Then, by Remark 7, we have

V (t) = O

(
1

t

)
, R(t) = O

(
1

t

)
.

By (11) and (12), we can obtain the theorem. �
Remark 8: Theorems 1 and 2 demonstrate that the consensus

properties of MASs and the convergence properties of the esti-
mation algorithm (3) depend on the step coefficients β and γ. To
be specific, Theorem 1 shows that the estimation algorithm can
converge and the MASs can achieve consensus for the case of

β > 1
2pminfM

(
u2
2

u1
+ γα

dmax
) and γ > 0. Theorem 2 shows that if

β > 1
2pminfM

(
u2
2

u1−1 + γα
dmax

+ 1) and γ > 2λNdmax

3λ2
2λab

are satisfied,
then the convergence rate of the estimation algorithm and the
consensus rate among the MASs can achieve O( 1t ), which is the
fastest convergence order of the proposed algorithm with the
decay step size in this article according to Lemma 6, Remark 7,
(11), and (12).

Remark 9: Different from [21] and [23], this article in-
troduces the coefficient γ into the controller, which removes
the previous constraint for the graph structure, such as λ2

2

λN
> 1

in [21] and 3λ2
2

2λNdmax
> 1 in [23]. This implies that by selecting

appropriate γ and β, the system can attain consensus and con-
vergence rates of O( 1t ), as long as the graphs are connected or
jointly connected.

V. NUMERICAL SIMULATION

This section will illustrate the theoretical results with a sim-
ulation example.

Consider a third-order MAS that has six agents, the state of
the agent i is as follows:

xi(t+ 1) = Axi(t) +Bui(t), i = 1, 2, 3, 4, 5, 6

where A =

⎡
⎢⎣ 1 0 −1

−1 0 0

1 1 0

⎤
⎥⎦ and B =

⎡
⎢⎣−1.55 −0.55 0

1 −0.45 1.2

−0.5 −1.1 −1.15

⎤
⎥⎦. A is not orthogonal but neutrally

stable, as indicated in Remark 3, since its eigenvalues are
{1, i,−i}. On the other hand, B is of full row rank, satisfying
Assumption 4. Therefore, both A and B are satisfying the
underlying conditions of this article.

The switching topologies are shown in Fig. 1, withp1 = 7/24,
p2 = 1/3, and p3 = 3/8. These topologies are jointly connected
and satisfy Assumption 1.

Besides, we assume that the communication noises between
agents are distributed as N(0, 64 · I3), which satisfies Assump-
tions 2 and 3. Take the initial state as x0

1 = �13, x0
2 = 1.5 ·�13,

x0
3 = 3 ·�13, x0

4 = 2 ·�13, x0
5 = −2 ·�13, and x0

6 = −�13, and the
initial estimate as x̂0 = �090, and set the boundary M = 6. Then,
by Theorem 2 and Remark 8, we set γ = 2 and β = 2682 be-

cause of 2λNdmax

3λ2
2λab

= 0.9642 and 1
2pminfM

(
u2
2

u1−1 + γα
dmax

+ 1) =

2681. Using the estimation-based consensus algorithm, one can
get the following simulation results.
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Fig. 3. States of agents.

Fig. 4. Trajectory of the logarithm of mse.

As shown in Figs. 2 and 3, the states of all agents achieve con-
sensus, and the estimates of the neighbors’ states also approach
their real states. Besides, Fig. 4 illustrates that the estimation
errors can converge to 0 at the rate of O( 1t ) and each agent can
achieve weak consensus at the same rate.

VI. CONCLUSION

This article addresses the consensus problem of high-
order MASs with binary-valued communications and switching
topologies. An estimation-based consensus algorithm, consist-
ing of an estimation term and a control term, is proposed.
Through the construction and analysis of two combined Lya-
punov functions, corresponding to the estimation error and con-
sensus error, this article overcomes the challenges resulting from
the coupling between estimation and control. It is demonstrated
that the estimation error can converge to zero and all agents
can achieve weak consensus under jointly connected topologies.
Furthermore, it is also shown that both the rate of convergence
and consensus can reach the reciprocal of the recursion times
with appropriate coefficients.

Future research on the consensus problem in high-order
MASs under binary-valued communications presents several
intriguing challenges. For instance, if the coefficient matrix A
is unstable, does the proposed algorithm remain effective? If

not, what modifications can be made to enhance the algorithm’s
performance?

APPENDIX A
PROOF OF LEMMA 4

Let

V1=E

[
xT (t−1)

(
IN⊗AT − γLm(t−1)

tdmax
⊗ATBBT

)(
Lm(t)

⊗ In)

(
IN ⊗A− γLm(t−1)

tdmax
⊗BBTA

)
x(t− 1)

]

V2=
2γ

tdmax
E

[
xT (t−1)

(
IN⊗AT − γLm(t−1)

tdmax
⊗ATBBT

)

· (Lm(t) ⊗ In
) (

Wm(t−1) ⊗BBTA
)
ε(t− 1)

]

V3=
γ2

t2d2max
E

[
εT (t−1)

(
WT

m(t−1)⊗ATBBT
)(

Lm(t)⊗In
)

· (Wm(t−1) ⊗BBTA
)
ε(t− 1)

]
.

Then, from (7) and (8), it follows that:

V (t) = E[xT (t)(Lm(t) ⊗ In)x(t)] = V1 + V2 + V3. (A1)
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First, by the property of conditional expectation, we get
E[xT (t)(Lm(t) ⊗ In)x(t)] = E[E[xT (t)(Lm(t) ⊗ In)x(t)

∣∣
x(t)]] = E[xT (t)(Ľ⊗ In)x(t)]. Similarly, by Assumptions 2
and 3, we have

V1 = E

[
E

[
xT (t− 1)

(
IN ⊗AT − γLm(t−1)

tdmax
⊗ATBBT

)

· (Ľ⊗ In
)(

IN ⊗A− γLm(t−1)

tdmax
⊗BBTA

)

× x(t− 1)
∣∣x(t− 1)

]]

= E

[
xT (t− 1)

(
Ľ⊗ In − 2γĽ2 ⊗ATBBTA

tdmax
+

γ2

t2d2max

· E [
(Lm(t−1)ĽLm(t−1))⊗ATBBTBBTA

])
x(t− 1)

]
.

Moreover, by Lemmas 1–3, we have Ľ2 ⊗ATBBTA �
(

λ2
2

λN
Ľ)⊗ (λabIn) =

λ2
2λab

λN
Ľ⊗ In, and

E

[
xT (t− 1)

(
Ľ⊗ In − 2γĽ2 ⊗ATBBTA

tdmax

)
x(t− 1)

]

≤
(
1− 2γλ2

2λab

tλNdmax

)
E[xT (t− 1)(Ľ⊗ In)x(t− 1)].

Then, by Lemma 2, we have

V1 ≤
(
1− 2γλ2

2λab

tλNdmax

)
V (t− 1) +

B1

t2
(A2)

where 0 < B1 < ∞.
Similarly, by Assumptions 2 and 3, we obtain

V2=
2γ

tdmax
E

[
E

[
xT (t− 1)

(
IN ⊗AT − γLm(t−1)

tdmax
⊗ATB

·BT

)(
Lm(t) ⊗ In

) (
Wm(t−1) ⊗BBTA

)
ε(t− 1)

∣∣x(t− 1), x̂(t− 1), Lm(t−1)

]]

=
2γ

tdmax
E

[
xT (t−1)

(
IN⊗AT − γLm(t−1)

tdmax
⊗ATBBT

)

· (Ľ⊗ In)(Wm(t−1) ⊗BBTA
)
ε(t− 1)

]
.

Since Ľ is a positive semidefinite matrix, there exists a matrix
L̃ such that Ľ = L̃T L̃. Then, substituting this decomposition
into the above equation and using the Schwarz inequality give

V2≤ 2γ

tdmax

(
E

[
xT (t−1)

(
IN⊗AT − γLm(t−1)

tdmax
⊗ATBBT

)

·
(
L̃T ⊗ In

)(
L̃⊗ In

)(
IN ⊗A− γLm(t−1)

tdmax
⊗BBTA

)

x(t− 1)])
1
2 ·

(
E

[
εT (t− 1)

(
WT

m(t−1) ⊗ATBBT
)

(
L̃T L̃⊗ In

)
· (Wm(t−1) ⊗BBTA

)
ε(t− 1)

]) 1
2

.

By Assumption 4, we have AAT = In, λ(B) �= 0, and then,
λ(ATBBTBBTA) = λ(ATBBTAATBBTA) = λ2(ATB
BTA). By λ(WT

m(t−1)ĽWm(t−1)) ≤ λW , λ(ATBBTBBT

A)≤ λ2
AB , and Lemma 3, we have

V2≤ 2γ

tdmax

√[(
1− 2γλ2

2λab

tλNdmax

)
V (t−1)

]
·[λWλ2

ABR(t−1)]

+
B2

t2

≤ 2γ

tdmax

√
V (t− 1)λWλ2

ABR(t− 1) +
B2

t2

≤ γ

tdmax

(
λ2
2λab

2λN
V (t− 1) +

2λWλ2
ABλN

λ2
2λab

R(t− 1)

)

+
B2

t2
(A3)

when t > max{ 2γλ2
2λab

λNdmax
, t0}, where 0 < B2 < ∞.

Since Q is a constant matrix, ε(t) is bounded. Moreover, A is
a constant matrix and Wm(t) is finite, thus

V3 ≤ B3

t2
(A4)

where 0 < B3 < ∞.
By (A1)–(A4), we can obtain the lemma.

APPENDIX B
PROOF OF LEMMA 5

Let

R2 =
2β

t
E

[
εT (t− 1)(Id ⊗AT )(Pm(t) ⊗ In)

· (ΦF (C − (Id ⊗A)x̂(t− 1))− s(t))]

R3 =
2γ

tdmax
E

[
εT (t− 1)

(
(QLm(t−1) ⊗ATBBTA)

·x(t− 1)− (QWm(t−1) ⊗ATBBTA)ε(t− 1)
)]

.

Then, from (6), (9), Remark 5, and the definition of ε(t), we
have

R(t) = E[εT (t)ε(t)]

≤ E

[(
(Id ⊗A)x̂(t− 1) +

β

t
(Pm(t)⊗In) (ΦF (C−(Id⊗A)

·x̂(t− 1))− s(t)

)
− (Q⊗ In)x(t)

)T

·
(
(Id ⊗A)x̂(t− 1) +

β

t
(Pm(t) ⊗ In) (ΦF (C − (Id ⊗A)

·x̂(t− 1))− s(t))− (Q⊗ In)x(t)

)]

= E

[(
εT (t− 1)(Id⊗AT )+

β

t

(
(Pm(t)⊗In) (ΦF (C−(Id⊗
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A)x̂(t− 1))− s(t)))T +
γ

tdmax

[
xT (t− 1)(Lm(t−1)Q

T⊗

ATBBT )− εT (t− 1)(WT
m(t−1)Q

T ⊗ATBBT )
])

·
(
(Id ⊗A)ε(t− 1) +

β

t
(Pm(t) ⊗ In) (ΦF (C − (Id ⊗A)

·x̂(t− 1))− s(t)) +
γ

tdmax

[
(QLm(t−1) ⊗BBTA)

·x(t− 1)− (QWm(t−1) ⊗BBTA)ε(t− 1)
])]

≤ R(t− 1) +R2 +R3 +
B4

t2
(B1)

where 0 < B4 < ∞.
By the definition of s(t), we can obtain that E[s(t)] =

ΦF (C − (Q⊗ In)x(t)). Then, using the property of conditional
expectation, we get

R2 =
2β

t
E

[
εT (t− 1)(Id ⊗AT )

(
Pm(t) ⊗ In

)
(ΦF (C

− (Id ⊗A)x̂(t− 1))− ΦF (C − (Q⊗ In)x(t)))]

=
2β

t
E

[
εT (t−1)(Id⊗AT )

((
h∑

i=1

piPi

)
⊗In

)
(ΦF (C

− (Id ⊗A)x̂(t− 1))− ΦF (C − (Q⊗ In)x(t))

)]
.

And, denoting �f = dF
dx , by Lagrange’s mean value theorem,

we have

F (cij −Ax̂ij(t− 1))−F (cij − xj(t))

= − �f(ξij(t)) (Ax̂ij(t− 1)− xj(t))

where ξij(t) is between cij −Ax̂ij(t− 1) and cij − xj(t).
Then, let ξ(t) = (ξT1r1(t), . . . , ξ

T
irs

(t), . . . , ξTNrd1+···+dN
(t))T ,

with rs representing the neighbor j of agent i, i.e., ξirs(t) =
ξij(t). Denote diag(Φf (ξ(t))) as a diagonal matrix generated
by each dimension of Φf (ξ(t)), with Φf = dΦF

dx . By Lemma 2,
ξij(t) is bounded. Since the function Φf is continuous, we have
diag(Φf (ξ(t))) � fM · Ind and

ΦF (C − (Id ⊗A)x̂(t− 1))− ΦF (C − (Q⊗ In)x(t))

= −diag (Φf (ξ(t))) ((Id ⊗A)x̂(t− 1)− (Q⊗ In)x(t))

=−diag (Φf (ξ(t)))

(
(Id⊗A)ε(t−1) +

γ

tdmax

[(
QLm(t−1)

⊗BBTA
)
x(t−1)− (

QWm(t−1) ⊗BBTA
)
ε(t− 1)

])
.

Then, we have

R2 = − 2β

t
E[εT (t− 1)(Id ⊗AT )

((
h∑

i=1

piPi

)
⊗ In

)

·diag (Φf (ξ(t)))

(
(Id⊗A)ε(t−1)+

γ

tdmax

[(
QLm(t−1)

⊗BBTA
)
x(t−1)−(

QWm(t−1)⊗BBTA
)
ε(t−1)

])
= − 2β

t
E

[
εT (t− 1)(Id ⊗AT )

((
h∑

i=1

piPi

)
⊗ In

)

· diag (Φf (ξ(t))) (Id ⊗A)ε(t− 1)

]
+

B5

t2

where 0 < B5 < ∞.
Subsequently, by Assumption 1 and the definition of Pm(t),

we can get
∑h

i=1 Pi � Id, and then

R2 = − 2β

t
E

[
εT (t− 1)(Id ⊗AT )

((
h∑

i=1

piPi

)
⊗ In

)

· diag (Φf (ξ(t))) (Id ⊗A)ε(t− 1)

]
+

B5

t2

≤ − 2βfM
t

E

[
εT (t− 1)(Id ⊗AT )

((
h∑

i=1

piPi

)
⊗ In

)

· (Id ⊗A)ε(t− 1)

]
+

B5

t2

≤ − 2βpminfM
t

R(t− 1) +
B5

t2
. (B2)

In a similar way to V2, let Lm(t−1) = L̃T
m(t−1)L̃m(t−1) and

use the Schwarz inequality again. Then, we have

2γ

tdmax
E[εT (t− 1)(QLm(t−1) ⊗ATBBTA)x(t− 1)]

=E[εT (t−1)(QL̃T
m(t−1)⊗ATBBT )(L̃m(t−1)⊗A)x(t−1)]

≤ 2γ

tdmax

(
E[εT (t− 1)

(
(QL̃T

m(t−1)L̃m(t−1)Q
T )⊗ATBBT

·BBTA
)
ε(t− 1)]E[xT (t− 1)(L̃T

m(t−1)L̃m(t−1) ⊗ In)

·x(t− 1)])1/2

≤ 2γ

tdmax

√
λQLλ2

ABR(t− 1)V (t− 1)

≤ γ

tdmax

(
λQLλ2

2λab

2λNλW
R(t− 1) +

2λNλWλ2
AB

λ2
2λab

V (t− 1)

)
.

Since λW̌ and λQ are finite, we have

− 2γ

tdmax
E[εT (t− 1)(QWm(t−1) ⊗ATBBTA)ε(t− 1)]

≤ 2γ

tdmax

(
E[εT (t− 1)(QQT ⊗ATBBTBBTA)ε(t− 1)]

) 1
2

·
(
E[εT (t− 1)(WT

m(t−1)Wm(t−1) ⊗ In)ε(t− 1)]
) 1

2

≤ 2γλAB

√
λQλW̌

tdmax
R(t− 1).
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Then, we can obtain

R3 ≤ γ

tdmax

(
λQLλ2

2λab

2λNλW
R(t− 1) +

2λNλWλ2
AB

λ2
2λab

V (t− 1)

)

+
2γλAB

√
λQλW̌

tdmax
R(t− 1)

=
γα

tdmax
R(t− 1) +

2γλNλWλ2
AB

tdmaxλ
2
2λab

V (t− 1).

This together with (B1) and (B2) gives the lemma.
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