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DISTRIBUTED OUTPUT FEEDBACK INDIRECT MRAC OF
CONTINUOUS-TIME MULTIAGENT LINEAR SYSTEMS\ast 

JIAN GUO\dagger , YANJUN ZHANG\ddagger , AND JI-FENG ZHANG\S 

Abstract. This paper studies the distributed leader-follower output consensus problem for
continuous-time uncertain multiagent linear systems with general input-output forms. Specifically,
we extend the well-known output feedback indirect model reference adaptive control (MRAC) and
develop a fully distributed output feedback indirect MRAC scheme to achieve closed-loop stability
and asymptotic leader-follower output consensus. Compared with the existing results, the proposed
distributed MRAC scheme has the following characteristics. First, the orders of each agent's pole/zero
polynomials, including the followers and the leader, can differ from others, and the parameters in each
follower's pole/zero polynomials are unknown. Second, the proposed adaptive control law of each
follower solely relies on the local input and output information without requiring the state observer
and the structural matching condition on the followers' dynamics, commonly used in the literature.
Third, for any given leader with a relative degree n\ast , the leader-follower output tracking error and its
derivatives up to the n\ast th order converge to zero asymptotically, which has never been reported in
the literature. Finally, a simulation example verifies the validity of the proposed distributed MRAC
scheme.

Key words. model reference adaptive control, distributed output feedback, multiagent systems,
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1. Introduction. Multiagent systems (MASs) focus on the joint behavior of au-
tonomous agents. In the past decades, researchers in various fields focused on how
agents cooperate with each other and revealed many interesting phenomena [3, 14]. A
fundamental problem in MASs is designing a control law for each agent that solely re-
lies on neighborhood information, such that the networked system can achieve specific
tasks such as formation, swarming, or consensus. Several prestigious papers [4, 11]
have further highlighted the important and fundamental problems the cooperative
control of MASs suffers from.

Many remarkable results have been reported to deal with various multiagent dis-
tributed control and coordination tasks, e.g., consensus/synchronization [20], forma-
tion control [8, 36], bipartite consensus [18, 39], and containment control [7, 19]. Since
cooperative control requires agents to reach agreement on their respective tasks, con-
sensus control has become a central topic in MAS research. Currently, there are
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DISTRIBUTED OUTPUT FEEDBACK INDIRECT MRAC 1617

mainly two consensus control strategies: the behavior-based (or leaderless) strategy
[17, 24] and the leader-follower strategy [9, 43]. The main task of a consensus control
problem is to design appropriate distributed consensus protocols to achieve consensus.
However, designing distributed protocols is challenging due to the interaction between
agents [16].

To date, the consensus problem has been extensively studied in the control com-
munity. For instance, in [24, 26], the consensus problems for some simple linear MASs
were investigated. Since then, the literature has addressed the consensus control for
the case with noises [51], for general linear homogeneous MASs [15, 34, 46], some non-
linear MASs, such as Lipschitz nonlinear systems [31], Euler--Lagrange systems [23],
rigid body systems [27], nonlinear MASs with compasses [22] and fractional MASs
[44]. Note that the well-known backstepping technique originally developed in [13] for
nonlinear adaptive control design is still effective and quite popular for cooperative
control design and analysis of MASs [40]. Furthermore, the output regulation tech-
nique is also a powerful tool for cooperative control design and analysis, and many
remarkable results have been published [35, 41].

Adaptive control methods are widely used in various fields [42], in which the model
reference adaptive control (MRAC) technique has attracted significant attention since
it can simultaneously realize online parameter estimation and asymptotic tracking
control for systems with large parametric/structural uncertainties [1, 10, 30, 37, 45,
48, 49]. Many key problems in cooperative control theory and applications have been
well handled using MRAC-based control methods [5, 6, 21, 47, 50]. Research on
distributed MRAC for open-loop reference models has been done in [25]. Moreover,
[30] studied the adaptive leader-follower consensus problem for MASs with general
linear dynamics and switching topologies. In [5], the authors considered that the
leader's external input is not shared with any follower agent and proposed a new
external input estimator in a hierarchical and cooperative manner. All these results
are developed under the distributed MRAC framework.

However, how to develop a fully distributed output feedback MRAC is still an
open research case. Actually, after reviewing the distributed MRAC literature, we
find that the existing distributed MRAC results mainly used state feedback to solve
the state consensus problems under the well-known matching condition. The latter
condition requires the dynamics of the followers and the leader to meet some structural
matching equations from which the ideal parameters of the nominal control laws can be
calculated. The matching condition with respect to most of the real control systems is
quite restrictive, and largely constrains the application range of such methods. Thus,
one key technical problem that must be concerned is how to relax the restrictive
matching conditions, especially for the distributed MRAC. Moreover, to the best of
our knowledge, a fully distributed output feedback MRAC has never been reported
yet, which faces several key technical problems to be concerned. Such problems are (i)
how to estimate the unknown parameters of all followers by only using their own input
and output? (ii) How to design a distributed MRAC law for each follower by only using
the local input and output information? (iii) How do all leader-follower tracking errors
converge to zero without persistent excitation? These technical problems have not
been addressed in the literature yet. Hence, this paper systematically addresses the
distributed output feedback MRAC problem and solves the above technical problems.
Specifically, we develop a fully distributed output feedback MRAC scheme without
requiring the restrictive matching condition. Particularly, the asymptotic convergence
of the leader-follower consensus is achieved.
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1618 JIAN GUO, YANJUN ZHANG, AND JI-FENG ZHANG

Overall, this work's main contributions and novelties are as follows.
(i) A linearly parameterized output feedback adaptive control framework is es-

tablished to address the distributed leader-follower output consensus problem
for linear MASs in general input-output forms. Each agent's dynamics have
different pole/zero polynomials and different orders, with all coefficients being
unknown.

(ii) A fully distributed output feedback adaptive control law is developed for
the considered MASs, where the adaptive control law of each follower solely
relies on the local input and output information without requiring the state
observer and the restrictive structural matching condition on the followers'
and leader's dynamics commonly used in the literature.

(iii) To establish the distributed output matching equation for each follower, some
auxiliary systems are introduced to generate filtered signals of individual sig-
nals and neighbors' outputs. Such filtered signals are crucial to constructing
the distributed matching equations from which the adaptive parameters used
in the adaptive control laws can always be derived.

(iv) The closed-loop stability and asymptotic output consensus analysis are con-
ducted by using a gradient-based framework independent of Lyapunov func-
tions. Particularly, the leader-follower output tracking error and its deriva-
tives up to the n\ast th order converge to zero asymptotically without persistent
excitation, which has not yet been reported in the literature.

The remainder of this paper is organized as follows. Section 2 provides the prob-
lem statement and the preliminaries. Section 3 introduces the distributed output
feedback MRC design and the corresponding theoretical results for providing the ba-
sic idea. Section 4 is the main part of this paper presenting the adaptive control details
where the coefficients are unknown, and section 5 presents two simulation examples
to illustrate our algorithm's performance. Finally, section 6 concludes this paper.

Notation. In this paper, \BbbR denotes the sets of real numbers. Let s denote the
differential operator, i.e., s[x](t) = \.x(t) with x(t) \in \BbbR n, t \geq t0. By L\infty , L2 and L1

we denote the three signal spaces defined as L\infty = \{ x(t) : \| x(\cdot )\| \infty < \infty \} , L2 =
\{ x(t) : \| x(\cdot )\| 2 <\infty \} and L1 = \{ x(t) : \| x(\cdot )\| 1 <\infty \} with \| x(\cdot )\| \infty = supt\geq t0 \| x(t)\| \infty ,

\| x(\cdot )\| 2 = (
\int \infty 
t0

\| x(t)\| 22dt)1/2 and \| x(\cdot )\| 1 =
\int \infty 
t0

\| x(t)\| 1dt, respectively.
2. Problem statement. This section formulates the system model, the control

objective, the design conditions, and the technical issues to be solved.

2.1. System model. The MAS considered in this paper is described by the
following input-output form:

Pi(s)[yi](t) = kpiZi(s)[ui](t), t\geq 0, i= 1, . . . ,N,(2.1)

where N is the number of followers, yi(t)\in \BbbR and ui(t)\in \BbbR are the output and input
of the i-th follower, respectively, kpi is a constant referred to as the high frequency
gain, and Pi(s) and Zi(s) are the pole and zero polynomials with unknown coefficients,
degree ni and mi, respectively, i.e.,

Pi(s) = sni + pi,ni - 1s
ni - 1 + \cdot \cdot \cdot + pi1s+ pi0,

Zi(s) = smi + zi,mi - 1s
mi - 1 + \cdot \cdot \cdot + zi1s+ zi0.

It should be noted that ni and nj , as well as mi and mj , can be different for i \not = j,
with i, j = 1, . . . ,N .

The leader's output and input dynamic is

Pm(s)[y0](t) = r(t),(2.2)
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DISTRIBUTED OUTPUT FEEDBACK INDIRECT MRAC 1619

where Pm(s) is a stable polynomial of degree n\ast , and r(t) is a bounded and piecewise
continuous reference input signal for the leader.

Actually, (2.2) can be chosen more general as follows: Pm(s)[y0](t) =Zm(s)[r](t),
with Zm(s) and Pm(s) being two given zero and pole polynomials. But, the design
and analysis for more general cases are similar to that for the case of (2.2). Therefore,
for simplicity of presentation, here we choose (2.2) to conduct the distributed MRAC
design and analysis. The reader can refer to [10] and [37] for more details.

Next, it is important to clarify the necessity of using the input-output form (2.1)
to establish a distributed MRAC framework. Some black-box systems may not afford
to build a state-space system model when no information about the internal state
variables is available. However, establishing a simple input-output model without
containing internal state variables is possible for such black-box systems. In this
case, the input-output information is adequate for the MRAC and distributed MRAC
control design and stability analysis. However, a potentially arising question is that as
long as an input-output model is established, one may derive its state-space realization
and still use state-space-based methods to conduct the control design and analysis.
Indeed, the state-space model can be derived from the input-output model. However,
from a practical viewpoint, the state-space model may sometimes be unsuitable for
designing the controller because the state variables generally do not have explicit
physical meanings. Therefore, addressing the cooperative control problems by using
the input-output models (2.1)--(2.2) is significant.

Communication graph. Let the MAS be described by (2.1)--(2.2). The com-
munications between these N +1 agents are modeled as a directed graph \scrG = \{ \scrV ,\scrE \} ,
where \scrV = \{ v0, . . . , vN\} is the set of nodes with v0 representing the leader, vi, i =
1, . . . ,N , representing the ith follower, and \scrE \subseteq \scrV \times \scrV being the set of edges of \scrG .
The directed edge (vj , vi) represents a unidirectional communication channel from
agent vj to agent vi, i.e., agent vi can obtain the output information from agent
vj , but not vice versa. The neighborhood of agent vi, i = 0, . . . ,N , is denoted by
\scrN i = \{ vj \in \scrV : (vj , vi)\in \scrE \} . A directed sequence of the edges (vi1, vi2) , (vi2, vi3) , . . . ,
(vi,k - 1, vik) is called a path from node vi1 to node vik. A directed tree is a directed
graph where each node except for the root node has a single neighbor, and the root
node is a source node. A spanning tree of \scrG is a directed tree whose node set is \scrV . Its
edge set is a subset of \scrE . Moreover, (vi, vi) is called a self-loop. This study assumes
a simple graph, i.e., the graph has no self-loops or multiple arcs.

2.2. Control objective and design conditions.
Control objective. For the MAS (2.1)--(2.2), the control objective is to design a

distributed output feedback MRAC law solely using local input and output informa-
tion so that the closed-loop system is stable and of the higher-order output consensus
properties:

lim
t\rightarrow \infty 

(yi(t) - y0(t))(j)=0, i= 1, . . . ,N, j = 0, . . . ,n\ast ,(2.3)

where y(j)(t) denotes the jth derivative of y(t).
Assumptions. To meet the control objective given by (2.3), we present the

following assumptions:
(A1) All Zi(s), i= 1, . . . ,N , are stable polynomials.
(A2) The relative degree of ith follower is ni  - mi = n\ast for i= 1, . . . ,N .
(A3) An upper bound on ni, denoted as \=n, is known.
(A4) The leader input r(t) satisfies \.r(t)\in L\infty .
(A5) The directed graph \scrG has at least one spanning tree with v0 being the parent.
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1620 JIAN GUO, YANJUN ZHANG, AND JI-FENG ZHANG

It is well known that the usual MRAC systems require the zeros of the control
system to be stable, which is a consequence of zero-pole cancellations occurring in
the MRAC systems. In this case, the MRAC law will cancel and replace the control
system's zeros with the reference model's. For stability, such cancellations must be
stable. In other words, the control system must be minimum-phase. Moreover, the
control system's relative degree must equal the reference system's degree to guar-
antee model matching, which is necessary for tracking target even when the system
parameters are known [37]. For a distributed MRAC design, assumptions (A1)--(A2)
are regarded as extensions of the minimum-phase condition and the model-matching
condition in the usual MRAC systems. Moreover, assumption (A3) is required for
constructing a parameterized system model for parameter adaptation. Besides, as-
sumptions (A1)--(A3) are the traditional design conditions in the usual MRAC sys-
tems, and assumption (A4) is a relaxed design condition on the reference system,
which is used to ensure higher-order output consensus. Finally, assumption (A5) is
a typical design condition for the output consensus control that is commonly used in
the literature.

2.3. Comparisons and technical issues to be solved.
Comparison to cooperative output regulation. The linear cooperative out-

put regulation problem was first formally formulated and solved using a distributed
observer approach on a static network in [32] and then on a jointly connected switched
network in [33]. In order to address the design condition where each follower possesses
knowledge of the leader's system matrix, the literature [2] investigates the linear co-
operative output regulation problem on static networks using an adaptive distributed
observer approach. The output regulation based cooperative control has been system-
atically studied in the control community. Generally speaking, the standard output
regulation based cooperative control method typically relies on the existence of a
solution for the regulator equations, which fundamentally distinguishes it from the
well-known MRAC technique. This is the reason why the establishment of a fully
distributed output feedback MRAC framework for cooperative control remains an
imperative, necessitating our attention and focus.

Comparison to distributed MRAC. As mentioned in the introduction, dis-
tributed MRAC methods are now applied to multiagent linear time-invariant systems.
However, the existing literatures [5, 21, 30, 47, 50] mainly focus on the MASs described
by the state feedback for state tracking. The followers' models are of the basic form:
\.xi = Aixi + Biui, i = 1, . . . ,N, where xi \in \BbbR ni and ui \in \BbbR mi , i = 1, . . . ,N, are the
state vectors and input vectors of the followers, Ai and Bi, i= 1, . . . ,N, are unknown
constant matrices of appropriate dimensions. The leader model is of the basic form:
\.x0 =A0x0+B0u0, where x0 \in \BbbR n is the state vector, u0 \in \BbbR m is the bounded reference
input, and A0 and B0 are constant matrices, with A0 being stable.

The control objective is to find a distributed MRAC law that ensures closed-loop
stability and asymptotic state consensus limt\rightarrow \infty (xi(t) - x0(t)) = 0. To achieve the
control objective, an essential condition, known as the structural matching condition,
is as follows. (i) For each follower vi, there exists a constant matrix K\ast 

1ij and a
nonsingular constant matrix K\ast 

4i of appropriate dimensions such that

Aei =Ai +BiK
\ast T
1ij , Bei =BiK

\ast 
4i,(2.4)

where Aei is a stable and known matrix, and Bei is a known matrix for i= 1, . . . ,N. (ii)
For each pair of (vi, vj)\in \scrE , there exist constant matricesK\ast 

2ij andK
\ast 
3ij of appropriate

dimensions such that for i= 1, . . . ,N,
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DISTRIBUTED OUTPUT FEEDBACK INDIRECT MRAC 1621

Aj =Ai +BiK
\ast T
3ij , Bj =BiK

\ast 
2ij .(2.5)

The readers can refer to [30] for further details on the matching condition (2.4)--
(2.5). Note that state consensus is a strong control objective. When state consensus is
achieved, the followers can track the arbitrary behaviors of the leader, which requires
structural similarities among all agents. Such structural similarities are modeled as the
matching condition (2.4)--(2.5). However, the latter condition is restrictive for many
applications, and largely restricts the application range of the consensus methods.

Technical issues to be solved. Considering that it is sufficient to achieve output
consensus for more applications, this paper focuses on addressing how to develop a
fully distributed output feedback MRAC scheme to ensure asymptotic output con-
sensus for the MAS (2.1)--(2.2) without requiring the restrictive matching conditions
just like (2.4)--(2.5). The basic idea of MRAC is to design an adaptive control law
that ensures the closed-loop system matches any given reference system. Inspired by
this, for the distributed output feedback MRAC, the agents that are connected to the
leader follow the reference system (i.e., the leader model). However, the agents that
are not connected to the leader do not have an available reference system. Thus, the
first technical problem is designing virtual reference systems for the agents, especially
for those not connected to the leader. Then, a potentially arising question is how to
guarantee that the agents with virtual reference systems can achieve leader-follower
output consensus. Moreover, the third technical problem is accomplishing the higher-
order tracking properties (2.3). In a word, to establish a fully distributed output
feedback MRAC framework, the following technical problems must be solved:

(i) How to design the virtual reference models for all followers and construct the
plant-model matching equations, especially those that are not connected to
the leader, by solely using the local input and output information?

(ii) Given that the agents could follow the virtual reference systems asymptoti-
cally, how to eventually realize leader-follower output consensus for the whole
MAS (2.1)--(2.2)? Especially, asymptotic output consensus is required, which
leads to more difficulties for adaptive control design and analysis.

(iii) The current results of the distributed leader-follower control indicate that
the asymptotic state/output consensus property can be ensured. However,
under the usual design conditions, how to ensure some higher-order output
consensus as shown in (2.3)? To the best of our knowledge, this problem has
never been addressed in the literature.

3. Distributed output feedback MRC design. This section provides the
basic idea of the distributed output feedback MRAC framework through a distributed
model reference control (MRC) design, assuming all system parameters are known.
The design contains four steps: (i) deriving the distributed MRC law structure, (ii)
constructing virtual reference inputs, (iii) calculating the control law parameters, and
(iv) conducting system performance analysis.

Step 1: Distributed MRC law structure. Given that all system parameters
are known, we design the distributed MRC law for the ith agent, i= 1, . . . ,N , as

ui(t) = \theta \ast T1i \omega 1i(t) + \theta \ast T2i \omega 2i(t) + \theta \ast 3i\omega 3i(t) + \theta \ast 20iyi(t),(3.1)

where \theta \ast 1i \in \BbbR \=n - 1, \theta \ast 2i \in \BbbR \=n - 1, \theta \ast 3i \in \BbbR , and \theta \ast 20i \in \BbbR are constant parameters to be
specified, and

\omega 1i(t) =
a(s)

\Lambda ci(s)
[ui](t)\in \BbbR \=n - 1, \omega 2i(t) =

a(s)

\Lambda ci(s)
[yi](t)\in \BbbR \=n - 1,(3.2)
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1622 JIAN GUO, YANJUN ZHANG, AND JI-FENG ZHANG

with a(s) =
\bigl[ 
1, s, . . . , s\=n - 2

\bigr] T \in \BbbR \=n - 1 and \Lambda ci(s) = s\=n - 1 +\lambda ci,\=n - 2s
\=n - 2 + \cdot \cdot \cdot +\lambda ci1s+\lambda ci0

representing an arbitrary monic Hurwitz polynomial. The signals \omega 1i(t) and \omega 2i(t)

are obtained through filtering ui(t) and yi(t) by the stable filter a(s)
\Lambda ci(s)

, respectively.

Remark 3.1. Since \Lambda ci(s) in (3.2) is monic and of degree \=n - 1 and the maximum

degree of the vector a(s) is \=n - 2, each element of the vector a(s)
\Lambda ci(s)

is strictly proper,

i.e., the degree of the numerator a(s) is strictly less than that of the denominator
\Lambda ci(s). Thus, there does not exist any algebraic loop in the control law (3.1).

In traditional MRAC, \omega 3i(t) corresponds to the reference system input. Since
each agent receives signals from its neighbors, and the number of neighbors Ni is
known, we design \omega 3i(t) as

\omega 3i(t) =

\left\{     
1

Ni

\sum 
vj\in \scrN i

rj(t), v0 /\in \scrN i,

r(t), v0 \in \scrN i,

(3.3)

where rj(t), j = 1, . . . ,Ni, are auxiliary signals to be designed.
From (3.3), for agents connected to the leader, the leader's input r(t) is directly

used as \omega 3i(t), enabling them to follow the leader as in traditional MRAC. For agents
not connected to the leader, r(t) is unavailable. To solve this, we design the auxiliary
signal 1

Ni

\sum 
vj\in \scrN i

rj(t) as \omega 3i(t), which acts as a virtual reference. Designing this
virtual reference and ensuring all agents can follow the leader are key challenges
addressed in this paper. Next, we explain how to obtain rj(t) to construct \omega 3i(t).

Step 2: Virtual reference input construction. As mentioned in Appen-
dix A, traditional model reference control requires an additional reference signal
r(t) = Pm(s)[ym](t), which is the sum of some derivative information of the tracked

signal. Inspired by this, if the derivatives y
(k)
j (t), k=1,. . ., n\ast , with respect to the jth

agent are known, we design rj(t) as

rj(t) =\Psi (s)[yj ](t)(3.4)

with \Psi (s) = sn
\ast 
+ \psi n\ast  - 1s

n\ast  - 1 + \cdot \cdot \cdot + \psi 1s + \psi 0 being some chosen monic Hurwitz

polynomials of degree n\ast . However, y
(k)
j (t) is generally difficult to be obtained. Hence,

using (3.4) to obtain rj(t) is inappropriate. Thus, we present a construction method
to obtain rj(t) using only uj and yj . For simplicity, we change the subscript from j
to i, and define two vectors:

\theta \ast pi = [kpizi0, kpizi1, . . . , kpizi,mi - 1, kpi, - pi0, - pi1,(3.5)

. . . , - pi,ni - 2, - pi,ni - 1]
T \in \BbbR ni+mi+1,

\phi i(t) =

\biggl[ 
1

\Lambda ei(s)
[ui](t),

s

\Lambda ei(s)
[ui](t), . . . ,

smi - 1

\Lambda ei(s)
[ui](t),(3.6)

smi

\Lambda ei(s)
[ui](t),

1

\Lambda ei(s)
[yi](t),

s

\Lambda ei(s)
[yi](t),

. . . ,
sni - 2

\Lambda ei(s)
[yi](t),

sni - 1

\Lambda ei(s)
[yi](t)

\biggr] T
\in \BbbR ni+mi - 1,
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DISTRIBUTED OUTPUT FEEDBACK INDIRECT MRAC 1623

where \Lambda ei(s) = sni + \lambda ei,ni - 1s
ni - 1 + \cdot \cdot \cdot + \lambda ei1s+ \lambda ei0 representing an arbitrary monic

Hurwitz polynomial. Then, ignoring the exponentially decaying signal, the system
(2.1) can be expressed as

yi(t) - 
\Lambda i,ni - 1(s)

\Lambda ei(s)
[yi](t) = \theta \ast Tpi \phi i(t)(3.7)

with \Lambda i,ni - 1(s) = \lambda ei,ni - 1s
ni - 1 + \cdot \cdot \cdot + \lambda ei1s + \lambda ei0. To design rj(t), we first give the

following lemma demonstrating a key property of y
(j)
i (t), i= 1, . . . ,N, j = 1, . . . , n\ast .

Lemma 3.2. For y
(j)
i (t), j = 1, . . . , n\ast , it can be expressed by y

(k)
i (t), k=0, . . . , j - 1,

sk

\Lambda ei(s)
[ui](t), k= 1+mi, . . . , j +mi, \theta 

\ast 
pi, \phi i(t), and yi(t).

Proof. The proof is given in Appendix B.

Based on Lemma 3.2, we recursively obtain that y
(j)
i (t), j = 1, . . . , n\ast , can be

expressed by sk

\Lambda ei(s)
[ui](t) for k = 1 +mi, . . . , j +mi, \theta 

\ast 
pi, \phi i(t), and yi(t). Thus, we

express y
(j)
i (t), j = 1,2, . . . , n\ast , as

yi
(j) =Hij

\biggl( 
yi,

s1+mi

\Lambda ei(s)
[ui], . . . ,

sj+mi

\Lambda ei(s)
[ui], \theta 

\ast 
pi, \phi i

\biggr) 
.(3.8)

As demonstrated in the proof of Lemma 3.2, Hij is obtained by applying a filter
related to \Lambda ei(s) to the original input-output system. Its form depends solely on
\Lambda ei(s). If \Lambda ei(s) is predetermined, then Hij is a known mapping. Consequently,
Hij , i = 1, . . . ,N, j = 1, . . . , n\ast , are known and smooth mappings with respect to its
variables. It should be noted that from (3.4), we derive an analytical expression for
ri(t) as

ri =

n\ast \sum 
j=0

\psi jHij

\biggl( 
yi,

s1+mi

\Lambda ei(s)
[ui], . . . ,

sj+mi

\Lambda ei(s)
[ui], \theta 

\ast 
pi, \phi i

\biggr) 
,(3.9)

where \psi k, k = 1, . . . , n\ast , are constant parameters with \psi n\ast = 1 such that sn
\ast 
+

\psi n\ast  - 1s
n\ast  - 1 + \cdot \cdot \cdot +\psi 1s+\psi 0 is a Hurwitz polynomial.

Remark 3.3. From (3.9), we see that ri(t) depends on the unknown vector \theta \ast pi
.

For the adaptive control case, we construct an estimate of ri(t) that will no longer
depend on any unknown information (see section 4). Besides, to estimate the higher-
order derivatives of yi(t), one may employ a standard high-gain differential observer
[12]. Even though the high-gain observer design is simple and easy to implement,
using this observer is difficult to realize asymptotic output consensus, and involves
the high-gain issue. We propose a linear parametrization-based estimation method
based on this consideration to derive the ri(t)'s estimate and achieve the asymptotic
output consensus. Finally, it is worth noting that by (3.1), (3.3), and (3.9), it is known
that each agent's controller makes use of only its own and its neighbors' information
and does not need the global information of the leader.

From (3.1), it is evident that the nominal control law for each follower solely
relies on local input and output information, and does not depend on global leader
information.

Step 3: Calculation of \bfittheta \ast 
1i, \bfittheta 

\ast 
2i, \bfittheta 

\ast 
3i, and \bfittheta \ast 

20i. Now, we construct some plant-
model output matching equations from which \theta \ast 1i, \theta 

\ast 
2i, \theta 

\ast 
3i, and \theta 

\ast 
20i can be calculated.

Motivated by the usual output feedback MRC in [37], we derive the distributed
version of the plant-model output matching equations as follows.
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1624 JIAN GUO, YANJUN ZHANG, AND JI-FENG ZHANG

Lemma 3.4. For the ith agent connected to the leader, there exist constants
\theta \ast 1i, \theta 

\ast 
2i, \theta 

\ast 
20i, \theta 

\ast 
3i such that

\theta \ast T1i a(s)Pi(s) +
\bigl( 
\theta \ast T2i a(s) + \theta \ast 20i\Lambda ci(s)

\bigr) 
kpiZi(s)

= \Lambda ci(s) (Pi(s) - kpi\theta 
\ast 
3iZi(s)Pm(s)) ;

(3.10)

and for the ith agent not connected to the leader, there exist constants \theta \ast 1i, \theta 
\ast 
2i, \theta 

\ast 
20i, \theta 

\ast 
3i

such that

\theta \ast T1i a(s)Pi(s) +
\bigl( 
\theta \ast T2i a(s) + \theta \ast 20i\Lambda ci(s)

\bigr) 
kpiZi(s)

= \Lambda ci(s) (Pi(s) - kpi\theta 
\ast 
3iZi(s)\Psi (s)) ,

(3.11)

where a(s) and \Psi (s) are defined below (3.2) and (3.4), respectively.

Proof. The proof is similar to that of Lemma A.2 in Appendix A, and thus,
omitted here. For details, one may refer to [37].

Remark 3.5. These matching equations always have nontrivial analytical solu-
tions, and one can choose the solution \{ \theta \ast 1i, \theta \ast 2i, \theta \ast 20i, \theta \ast 3i\} to (3.10)--(3.11) from

\theta \ast T1i a(s) = \Lambda ci(s) - Q(s)Zi(s), \theta 
\ast T
2i a(s) + \theta \ast 20i\Lambda ci(s) = - \theta \ast 3iRi(s),(3.12)

and \theta \ast 3i =
1

kpi
, where Q(s) is the quotient of \Lambda ci(s)Pm(s)

Pi(s)
and Ri(s) = \Lambda ci(s)Pm(s)  - 

Q(s)Pi(s) for (3.10), and Q(s) is the quotient of \Lambda ci(s)\Psi (s)
Pi(s)

and Ri(s) = \Lambda ci(s)\Psi (s) - 
Q(s)Pi(s) for (3.11).

The parameters \theta \ast 1i, \theta 
\ast 
2i, \theta 

\ast 
20i, \theta 

\ast 
3i in Lemma 3.4 can be called distributed matching

parameters, as with these parameters, the distributed MRC law (3.1) matches all
followers to the leader, as shown subsequently.

Step 4: System performance analysis. To proceed, we first define the local
output tracking error as

ei(t) = yi(t) - 
1

Ni

\sum 
vj\in \scrN i

yj(t), i= 1, . . . ,N,(3.13)

where Ni is the number of the neighbors of agent vi. Such a local output tracking error
measures the disagreement between the follower i and the average of its neighbors on
the output because it is essential to characterize the consensus level of the follower
and the leader. The motivation of defining such a local state tracking error is shown
as follows.

Lemma 3.6. Under assumption (A5), if ei(t) is bounded, then yi(t) is bounded

for all i = 1, . . . ,N . Further, if for any j = 1, . . . , n\ast , limt\rightarrow \infty e
(j)
i (t) = 0 holds (or

exponentially) for all i = 1, . . . ,N , then limt\rightarrow \infty (yi(t) - y0(t))
(j)

= 0 holds (or expo-
nentially) for all i= 1, . . . ,N .

Proof. Performing a proof similar to that for Lemma 4.1 in [29], one can verify
this lemma.

From Lemma 3.6, global higher-order leader-follower consensus properties can
be achieved as long as the higher-order derivatives of all local tracking errors (3.13)
converge to zero as time tends to infinity. According to this lemma, the following
theorem clarifies the closed-loop stability and output consensus performance.
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DISTRIBUTED OUTPUT FEEDBACK INDIRECT MRAC 1625

Theorem 3.7. Under Assumptions (A1), (A2), and (A5), the distributed MRC
law (3.1) configured with \theta \ast 1i, \theta 

\ast 
2i, \theta 

\ast 
20i, \theta 

\ast 
3i in Lemma 3.4 ensures that all closed-loop sig-

nals are bounded and the tracking errors yi(t) - y0(t), i= 1,. . . ,N, and their derivatives
up to the n\ast th order converge to zero exponentially as t\rightarrow \infty .

Proof. For all agents vi \in \{ vi : v0 \in \scrN i\} , the leader v0 can be regarded as the
reference output. Thus, based on Theorem A.3 in Appendix A, one can verify that
the input ui(t) = \theta \ast T1i \omega 1i(t)+ \theta \ast T2i \omega 2i(t)+ \theta \ast 20iyi(t)+ \theta \ast 3ir(t) ensures that the signals of
the agent vi are bounded, and yi(t) - y0(t), i = 1,. . . ,N, and their derivatives up to
the n\ast th order converge to zero exponentially.

For the agent vi /\in \{ vi : v0 \in \scrN i\} , by Lemma 3.4, we first prove that ei(t) converges
to zero exponentially. Operating both sides of (3.11) on yi(t), we have

\theta T1ia(s)Pi(s)[yi](t) +
\bigl( 
\theta T2ia(s) + \theta 20i\Lambda ci(s)

\bigr) 
kpi\cdot 

Zi(s)[yi](t) = \Lambda ci(s) (Pi(s) - kpi\theta 3iZi(s)\Psi (s)) [yi](t).(3.14)

Moreover, with some manipulations on (3.1), we have

\Lambda ci(s)[ui](t) = \theta T1ia(s)[ui](t) + \theta T2ia(s)[yi](t) + \theta 3i\Lambda ci(s)\Psi (s)

\left[  1

Ni

\sum 
vj\in \scrN i

yj

\right]  (t)
+ \Lambda ci(s)\theta 20i[yi](t) + \Lambda ci(s) [\epsilon \Lambda ci ] (t),(3.15)

where \epsilon \Lambda ci(t) is an exponentially decaying signal associated with the initial conditions.
Then, we have

kpiZi(s)\Lambda ci(s) [ui] (t) = Pi(s)\Lambda ci(s) [yi] (t)

= kpiZi(s)\Lambda ci(s)\theta 20i [yi] (t) + kpiZi(s)\Lambda ci(s) [\epsilon \Lambda ci
] (t)

+ kpiZi(s)\theta 3i\Lambda ci(s)\Psi i(s)

\left[  1

Ni

\sum 
vj\in \scrN i

yj

\right]  (t)
+ kpiZi(s)

\bigl( 
\theta T1ia(s) [ui] (t) + \theta T2ia(s) [yi] (t)

\bigr) 
.(3.16)

Combining (3.16) and (3.14), together with Pi(s)[yi](t) = kpiZi(s)[ui](t), indicates
that

\Lambda ci(s)\Psi (s)Zi(s)[yi  - 
1

Ni

\sum 
vj\in \scrN i

yj ](t) = - kpiZi(s)\Lambda ci(s) [\epsilon \Lambda ci ] (t).(3.17)

Since \Lambda ci(s),\Psi (s), and Zi(s) are all stable polynomials and the degree of \Psi (s) is n\ast ,
we conclude that for l= 0,1, . . . , n\ast ,\biggl( 

yi(t) - 
1

Ni

\sum 
vj\in \scrN i

yj(t)

\biggr) (l)

\rightarrow 0, exponentially.(3.18)

According to Lemma 3.6, (3.18) suggests that the higher order exponential leader-
follower consensus (2.3) is achieved. This also implies that yi(t) \in L\infty due to the
boundedness of y0(t).

Now, we prove ui(t), i = 1, . . . ,N , are also bounded. Using (2.1) and (3.17),
we have kpiZi(s)

2\Lambda ci(s)\Psi (s)[ui(t)] = Pi(s)\Lambda ci(s)Zi(s)[
1
ni

\sum 
vj\in \scrN i

rj ](t) + \epsilon 1i(t) with
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1626 JIAN GUO, YANJUN ZHANG, AND JI-FENG ZHANG

\epsilon 1i(t) = - kpiZi(s)\Lambda ci(s) [\epsilon \Lambda ci ] (t). Since \Lambda ci(s), \Psi (s), and Zi(s) are all stable, we can
derive

ui(t) =
Pi(s)

kpiZi(s)\Psi i(s)

\left[  1

Ni

\sum 
vj\in \scrN i

rj

\right]  (t) + \epsilon 2i(t),

where \epsilon 2i(t) is an exponentially decaying signal associated with initial conditions.

Note that Pi(s)
kpiZi(s)\Psi (s) is stable and proper, i.e., the degree of the numerator Pi(s) is

not greater than that of the denominator kpiZi(s)\Psi (s). Thus, if
\sum 

vi\in \scrN i
rj \in L\infty ,

then ui(t)\in L\infty .
Let li denote the length of the longest directed path for the leader v0 to the

node vi. Suppose that there exists a follower vk such that rk is unbounded. Then,
there exists a neighbor vkj

of vk such that rkj
is unbounded and lkj

< lk. From
assumption (A5), and by repeating this analysis for up to lk steps, we conclude that the
reference signal of the leader r(t) is unbounded, which is a contradiction. Therefore,
ri(t)\in L\infty , i= 1, . . . ,N , and so are the control ui(t). This completes the proof.

Remark 3.8. Equation (3.17) shows that the convergence rate is influenced by the
roots of a certain polynomial, with larger roots leading to faster convergence speed.
However, large roots can cause initial output fluctuations. Therefore, the choice of \Lambda ei

and \Lambda ci should consider both the convergence speed and the transient performance of
the system.

So far, we have provided a basic distributed MRC framework for the MAS (2.1)--
(2.2) which is fundamental for the distributed MRAC design addressed next.

4. Distributed output feedback MRAC design. This section develops a
distributed output feedback indirect MRAC scheme for the MAS (2.1)--(2.2), where
the parameters pij , zij , and kpi are unknown. Specifically, we construct the distributed
output feedback MRAC law, with the distributed indirect MRAC design procedure
comprising five steps: (i) distributed MARC law construction, (ii) plant parameter
estimation, (iii) controller parameter calculation, (iv) virtual reference input signal
estimation, and (v) stability performance analysis.

Step 1: Distributed MARC law structure. The distributed MRAC law is
designed as

ui(t) = \theta T1i(t)\omega 1i(t) + \theta T2i(t)\omega 2i(t) + \theta 3i(t)\^\omega 3i(t) + \theta 20i(t)yi(t),(4.1)

where \theta 1i(t) and \theta 2i(t) are estimates of \theta \ast 1i and \theta 
\ast 
2i in Lemma 3.4, respectively, \theta 3i(t)

is an estimate of 1
kpi

, \omega 1i(t) and \omega 2i(t) are defined in (3.2), and \^\omega 3i(t) is an estimate

of \omega 3i(t) in (3.3).
Step 2: Plant parameter estimation. Consider the ith follower in (2.1). The

signal \phi i(t) in (3.6) can be obtained through filtering ui(t) and yi(t) by the stable filter
ai(s)
\Lambda ei(s)

with ai(s) =
\bigl[ 
1, s, . . . , sni - 2

\bigr] T
and \Lambda ei(s) below (3.6). Similarly,

\Lambda i,ni - 1(s)

\Lambda ei(s)
[yi](t)

in (3.7) can be obtained through filtering yi(t) by the stable filter
\Lambda i,ni - 1(s)

\Lambda ei(s)
.

Let \theta pi(t) be an estimate of \theta \ast pi and define the estimation error as

\epsilon i(t)=\theta 
T
pi(t)\phi i(t) - yi(t) +

\Lambda i,ni - 1(s)

\Lambda ei(s)
[yi](t), t\geq t0.(4.2)

To update \theta pi(t), we use the following gradient algorithm:

\.\theta pi(t) = - \Gamma i\phi i(t)\epsilon i(t)

m2
i (t)

, \theta pi (t0) = \theta 0i, t\geq t0,(4.3)
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DISTRIBUTED OUTPUT FEEDBACK INDIRECT MRAC 1627

where \Gamma i = diag \{ \Gamma 1i, \gamma mi+1,\Gamma 2i\} with \Gamma 1i \in \BbbR mi\times mi , \Gamma 1i = \Gamma T
1i > 0, \gamma mi+1 > 0, and

\Gamma 2i \in \BbbR ni\times ni ,\Gamma 2i =\Gamma T
2i > 0, \theta 0i is an initial estimate of \theta \ast pi \in \BbbR ni+mi+1, and

mi(t) =
\sqrt{} 

1 + \kappa \phi Ti (t)\phi i(t), \kappa > 0.(4.4)

From (3.5), we denote \theta pi(t) as

\theta pi(t) =
\Bigl[ 
\widehat kpizi0(t),. . .,\widehat kpizim,i - 1(t),

\^kpi(t), - \^pi0(t),. . ., - \^pi,ni - 1(t)
\Bigr] T
.

Thus, we construct the estimates of Pi(s) and Zi(s) for the ith follower as

\^Pi(s, \^pi) = sni + \^pi,ni - 1s
ni - 1 + \cdot \cdot \cdot + \^pi1s+ \^pi0,

\^Zi(s, \^zi) = smi + \^zi,mi - 1s
mi - 1 + \cdot \cdot \cdot + \^zi1s+ \^zi0,(4.5)

where \^zi = [\^zi0, . . . , \^zi,mi - 1]
T with \^zij =

\widehat kpizij(t)
\^kpi(t)

and \^pi = [\^pi0, . . . , \^pi,ni - 1]
T are the

estimates of z\ast i = [zi0, . . . , zi,mi - 1)]
T and p\ast i = [pi0, . . . , pi,ni - 1]

T , respectively. To
ensure \^kpi(t) \not = 0 during parameter adaptation, the parameter update law (4.3) needs
to be modified by introducing some robust term, such as parameter projection, dead-
zone modification, \sigma -modification, and so on. We omit the details due to the paper
length constraints.

For the parameter \theta pi(t), the following lemma clarifies some properties crucial for
stability analysis.

Lemma 4.1. The adaptive algorithm (4.3) guarantees (i) \theta pi(t), \.\theta pi(t),
\epsilon i(t)
mi(t)

are

bounded and (ii) \epsilon i(t)
mi(t)

and \.\theta pi(t) belong to L2.

Proof. The proof is similar to Lemma 3.1 in [37], and so, it is omitted here.

Note that the regressor vector \phi i(t) is not required to be persistently exciting, and
thus, we cannot ensure that the estimation errors \epsilon i(t) converge to zero. Nevertheless,
this paper shows that the proposed distributed MRAC law (4.1) still ensures closed-
loop stability and the tracking properties shown in (2.3).

Step 3: Controller parameter calculation. For the ith agent connected to
the leader, the controller parameters \{ \theta 1i(t), \theta 2i(t), \theta 20i(t), \theta 3i(t)\} are obtained from

\theta T1ia(s)
\^Pi(s, \^pi) +

\bigl( 
\theta T2ia(s) + \theta 20i\Lambda ci(s)

\bigr) 
kpi \^Zi(s, \^zi)

= \Lambda ci(s)
\Bigl( 
\^Pi(s, \^pi) - \^kpi\theta 3i \^Zi(s, \^zi)Pm(s)

\Bigr) 
,(4.6)

and for the ith agent not connected to the leader, the controller parameters are
obtained from

\theta T1ia(s) \^Pi(s, \^pi) +
\bigl( 
\theta T2ia(s) + \theta 20i\Lambda ci(s)

\bigr) 
kpi \^Zi(s, \^zi)

= \Lambda ci(s)
\Bigl( 
\^Pi(s, \^pi) - \^kpi\theta 3i \^Zi(s, \^zi)\Psi (s)

\Bigr) 
.(4.7)

Regarding how to specifically derive \theta 1i(t), \theta 2i(t), \theta 20i(t), \theta 3i(t), the reader can refer
to (3.12).

Step 4: Virtual reference input signal estimation. The signal \^\omega 3i(t) in
(4.1) is designed by

\^\omega 3i(t) =

\left\{     
1

Ni

\sum 
vj\in \scrN i

\^rj(t), v0 /\in \scrN i,

r(t), v0 \in \scrN i,

(4.8)
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1628 JIAN GUO, YANJUN ZHANG, AND JI-FENG ZHANG

where \^rj(t) is an estimate of the signal rj(t). For simplicity, we change the subscript
of \^rj(t) from j to i, and design \^ri(t) as

\^ri=

n\ast \sum 
j=0

\psi jHij

\biggl( 
yi,

s1+mi

\Lambda ei(s)
[ui], . . .,

sj+mi

\Lambda ei(s)
[ui], \theta pi, \phi i

\biggr) 
.(4.9)

Now, we derive the following lemma to demonstrate a convergent property of the error
\^ri(t) - ri(t) under some particular conditions.

Lemma 4.2. For the gradient algorithm (4.3), if mi(t) \in L\infty , \.ui(t) \in L\infty , and
\.yi(t)\in L\infty , then we have \.\^ri(t)\in L\infty and

lim
t\rightarrow \infty 

(\^ri(t) - ri(t)) = 0.(4.10)

Proof. The proof of this lemma is long. Thus, we present it in Appendix B to
avoid disrupting the reading flow.

Step 5: System performance analysis. Based on the above derivations, we
provide the main result of this paper, which demonstrates that the closed-loop stability
and asymptotic higher-order output consensus are achieved by using the distributed
MRAC law (4.1).

Theorem 4.3. Under assumptions (A1)--(A5), the distributed output feedback
MRAC law (4.1) ensures that all signals in the adaptive control system comprising
(2.1), (2.2), (4.1), and (4.3) are bounded, and for i= 1, . . . ,N ,

lim
t\rightarrow \infty 

(yi(t) - y0(t))
(k)

= 0, k= 0, . . . , n\ast .(4.11)

Proof. First, we prove that the agents connected to the leader can track the leader
and generate a virtual signal \^r(t) satisfying limt\rightarrow \infty (\^r(t) - r(t))\rightarrow 0 and \.\^r(t)\in L\infty . For
the ith agent connected to the leader, the control law becomes ui(t) = \theta T1i(t)\omega 1i(t) +
\theta T2i(t)\omega 2i(t) + \theta 3i(t)r(t) + \theta 20i(t)yi(t). Hence, from Theorem A.4 in Appendix A, we
have the closed-loop stability and limt\rightarrow \infty (yi(t) - y0(t)) = 0. Under assumption (A4),
we have \.ui(t) \in L\infty and \.yi(t) \in L\infty . Following Lemma 4.2, and combined with the
closed loop stability yields limt\rightarrow \infty (\^ri(t) - r(t)) = 0 and \.\^ri(t)\in L\infty .

Second, we prove that for the ith agent, if the conditions limt\rightarrow \infty (\^rj(t) - rj(t)) = 0
and \.\^rj(t)\in L\infty are satisfied for any vj \in \scrN i, then the following properties hold:

lim
t\rightarrow \infty 

\left(  yi(t) - 1

Ni

\sum 
vj\in \scrN i

yj(t)

\right)  (k)

= 0,(4.12)

for any k = 0, . . . , n\ast , i = 1, . . . ,N , and \.\^ri(t) \in L\infty . In view of the control (4.1), for
any vj \in \scrN i, define

\^yj(t) =
1

\Psi (s)
[\^rj ](t).(4.13)

Then, ignoring the exponentially decaying signal, it follows from (4.13) that \^rj(t) =
\Psi (s)[\^yj ](t). Substituting it into (4.8) yields \^\omega 3i(t) = \Psi (s)[ 1

Ni

\sum 
vj\in \scrN i

\^yj ](t). Based on

Theorem A.4 in Appendix A with ui(t) = \theta T1i(t)\omega 1i(t) + \theta T2i(t)\omega 2i(t) + \theta 3i(t)\^\omega 3i(t) +
\theta 20i(t)yi(t), all signals with respect to the ith agent system are bounded and
limt\rightarrow \infty (yi(t) - 1

Ni

\sum 
vj\in \scrN i

\^yj(t)) = 0. Moreover, we further verify that
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DISTRIBUTED OUTPUT FEEDBACK INDIRECT MRAC 1629

lim
t\rightarrow \infty 

\left(  yi(t) - 1

Ni

\sum 
vj\in \scrN i

\^yj

\right)  (k)

= 0, k= 0, . . . , n\ast .(4.14)

Proving (4.14) is quite similar to that of Theorem 3.1 in [38], and thus, omitted here.
Since

lim
t\rightarrow \infty 

\left(  yi(t) - 1

Ni

\sum 
vj\in \scrN i

yj(t)

\right)  (k)

(4.15)

= lim
t\rightarrow \infty 

\left(  yi(t) - 1

Ni

\sum 
vj\in \scrN i

\^yj(t)

\right)  (k)

+ lim
t\rightarrow \infty 

\left(  1

Ni

\sum 
vj\in \scrN i

\biggl( 
1

\Psi (s)
[\^rj  - rj ](t)

\biggr) (k)
\right)  ,

it is sufficient to prove that for any vj \in \scrN i, the following equation holds:

lim
t\rightarrow \infty 

\biggl( 
1

\Psi (s)
[\^rj  - rj ] (t)

\biggr) (k)

= 0.(4.16)

Let \varepsilon j(t) = \^rj(t) - rj(t) and the kth order time derivative of 1
\Psi (s) [\varepsilon j ](t) is

sk

\Psi (s) [\varepsilon j ](t).

Thus, with sk

\Psi (s) being stable and proper, if limt\rightarrow \infty (\^rj(t)  - rj(t)) = 0 for vj \in \scrN i,

the property (4.16) holds. Moreover, if \.\^rj(t) \in L\infty for vj \in \scrN i, then \.ui(t) \in L\infty and
\.yi(t)\in L\infty . From Lemma 4.2, it follows that \.\^ri(t)\in L\infty .

Third, we prove that limt\rightarrow \infty (\^ri(t) - ri(t)) = 0 and \.\^ri(t) \in L\infty for i = 1, . . . ,N .
We demonstrate that each agent satisfies \.\^ri(t) \in L\infty . Let li denote the length of the
longest directed path for the leader v0 to the node vi. Suppose there exists at least
one agent vk such that \.\^rk(t) is unbounded. Then, there exists a neighbor vkj

of vk
such that \.\^rkj

is unbounded and lkj
< lk. Repeating this analysis for up to lk steps, it

concludes that the reference signal of the leader \.r(t) is unbounded, which contradicts
assumption (A5). Therefore, \.\^ri(t) \in L\infty , i = 1, . . . ,N . Then, we get mi(t) \in L\infty ,
\.ui(t) \in L\infty , and \.yi(t) \in L\infty and Lemma 4.2 indicates limt\rightarrow \infty (\^ri(t) - ri(t)) = 0 and
\.\^ri(t)\in L\infty .

Finally, we demonstrate the tracking convergence and the higher-order properties.
From the second and third steps, we get limt\rightarrow \infty (yi(t)  - 1

Ni

\sum 
vj\in \scrN i

yj(t))
(k) = 0,

for any k = 0, . . . , n\ast , i = 1, . . . ,N . This, together with Lemma 3.6, indicates that
limt\rightarrow \infty (yi(t) - y0(t))

(k)
= 0 for all k = 0, . . . , n\ast and i = 1, . . . ,N. The proof is

completed.

Remark 4.4. Theorem 4.3 addresses the tracking performance in the presence of
unknown parameters. If the reference signal r0(t) meets certain additional conditions,
such as being sufficiently rich of order 2\=n, then the tracking error can further converge
to zero exponentially. For more details, please refer to reference [10].

So far, we have established a fully distributed output feedback MRAC scheme,
where the adaptive control law for each follower only relies on its local input and
output information, and the asymptotic leader-follower output consensus is achieved.
Particularly, the proposed adaptive control scheme overcomes the restrictive structural
matching conditions, e.g., (2.4) and (2.5), commonly used in the existing distributed
MRAC literature. Moreover, the higher-order leader-follower output consensus is
achieved without using the persistent excitation condition as shown in Theorem 4.3.
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1630 JIAN GUO, YANJUN ZHANG, AND JI-FENG ZHANG

Fig. 1. Communication graph for nominal control design.

5. Simulation examples. This section presents an example to demonstrate the
design procedure and verify Theorem 3.7, Lemma 4.2, and Theorem 4.3. We study the
consensus performance of four followers and a virtual leader for the nominal control
case and adaptive control case, and their associated communication graph is shown
in Figure 1.

Simulation system. Consider the following MAS containing four followers mod-
eled as

Pi(s)[yi](t)=kpiZi(s)[ui](t), t\geq 0, i= 1,2,3,4,(5.1)

where P1(s) = (s + 1)(s  - 1
2 ),Z1(s) = s + 1

2 , P2(s) = (s + 3
2 )(s  - 

1
2 )(s +

1
2 ),Z2(s) =

(s + 1
2 )(s + 1), P3(s) = (s  - 1)(s + 2),Z3(s) = s + 1

3 , P4(s) = (s  - 1)(s  - 1
2 )(s + 2),

Z4(s) = (s + 1
3 )(s +

1
4 ), and kp1 =  - 1/3, kp2 = 2, kp3 =  - 3, kp4 = 4. Note that the

followers' models considered in this simulation are unstable and heterogeneous. The
leader model is chosen as

y0(t) =Wm(s) [r0] (t)(5.2)

with Wm(s) = 1/Pm(s) = 1
s+1 and y0(t) = 5sin(2t). Thus, we calculate that r(t) =

10cos(2t) + 5sin(2t).
Nominal control case. When the parameters are known, we utilize distributed

MRC law to achieve convergence.
Distributed MRC law specification. Based on (3.1), the distributed MRC law for

the MAS (5.1)--(5.2) is designed as

ui(t) = \theta \ast T1i \omega 1i(t) + \theta \ast T2i \omega 2i(t) + \theta \ast 20iyi(t) + \theta \ast 3i\omega 3i(t),(5.3)

where \omega ji(t), j = 1,2,3, can be derived from (3.2) and (3.3) with \Lambda c1(s) = s +
1,\Lambda c2(s) = s2 +1.5s+0.5,\Lambda c3(s) = s+1, \Lambda c4(s) = s2 +1.5s+0.5, and \Psi (s) = s+1.5.
Moreover, by Lemma 3.4, the matching parameters in (5.3) are calculated as

\theta \ast 11 = 0.5, \theta \ast 21 = 0, \theta \ast 201 = 4.5, \theta \ast 31 = - 3, \theta \ast 12 = [ - 53.5, - 53.5]T ,

\theta \ast 22 = [ - 33.625, - 13.75]T , \theta \ast 202 = 26.25, \theta \ast 32 = 0.5,

\theta \ast 13 = 0.6667, \theta \ast 23 = 0.6667, \theta \ast 203 = 0.5, \theta \ast 33 = - 0.3333,

\theta \ast 14 = [0.4167,0.9167]T , \theta \ast 24 = [0.3750, - 0.3750]T , \theta \ast 204 = - 0.6250, \theta \ast 34 = 0.25.

System responses. The initial outputs of the followers are chosen as [y1(0), y2(0),
y3(0), y4(0)]

T = [3.5,6,0,8.3]T . Figure 2 shows the response of the outputs yi(t), i =
1, . . . ,4, of the followers and the trajectories of the derivatives of the leader and
followers' output. Figure 2 highlights that the desired output higher order consensus
performance is ensured. The simulation results verify the theoretical results.

Adaptive control case. To verify Lemma 4.2 and Theorem 4.3, consider the
system (5.1)--(5.2) where the parameters are unknown.
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Fig. 2. Trajectories of the five agents' outputs and derivatives.

Distributed MRAC law specification. Based on (4.1), the distributed MRAC law
for the MAS (5.1)--(5.2) is designed as

ui(t) =\theta 
T
1i(t)\omega 1i(t) + \theta T2i(t)\omega 2i(t) + \theta 20i(t)yi(t) + \theta 3i(t)\^\omega 3i(t),(5.4)

where \omega ji(t), j = 1,2, can be derived from (3.2) with \Lambda c1(s) = s + 4,\Lambda c2(s) = s2 +
5s + 6,\Lambda c3(s) = s + 5, \Lambda c4(s) = s2 + 7s + 12, and \Psi (s) = s + 1.5. Moreover, to
obtain the adaptive parameters \theta 1i(t), \theta 2i(t), \theta 20i(t), \theta 3i(t) in (5.4), first by (4.3), we
obtain the estimates of \theta \ast pi defined in (3.5) with \Gamma 1 = \Gamma 3 = 10I4\times 4,\Gamma 2 = \Gamma 4 = 10I6\times 6,
and \Lambda e1(s) = s2 + 3s + 2,\Lambda e2(s) = s3 + 1.833s2 + s+ 0.167,\Lambda e3(s) = s2 + 1.333s+
0.333,\Lambda e4(s) = s3 + 1.833s2 + s + 0.167, where \phi i(t), \epsilon i(t), and mi(t) can be derived
from (3.6), (4.2), and (4.4), respectively. Then, \theta 1i(t), \theta 2i(t), \theta 20i(t), \theta 3i(t) can be
calculated by (4.6) and (4.7). Next, we specify the signal (4.8) as

\^\omega 31(t) = \^\omega 32(t) = r(t), \^\omega 33(t) = 1/2(\^r1(t) + \^r2(t)), \^\omega 34(t) = 1/2(\^r2(t) + \^r3(t)),

where

\^rj(t) =\theta 
T
pj(t)s[\phi j ](t) +

s\Lambda j,n - 1(s)

\Lambda ej(s)
[yj ](t) + 1.5yj(t), j = 1,2,3,4,

with \phi j(t) defined in (3.6) and \Lambda j(n - 1)(s) defined below (3.7).
System responses. The initial outputs of the followers are chosen as [y1(0), y2(0)

, y3(0), y4(0)]
T = [ - 1,2,3,1]T . Figure 3 displays the first element of the adaptive

parameters \{ \theta 1i(t), \theta 2i(t), \theta 20i(t), \theta 3i(t)\} in (5.4) and Figure 4 presents the responses
of the outputs yi(t), i = 1, . . . ,4, of the followers. Figure 4 reveals that the desired
output consensus performance is ensured. Besides, Figure 5 shows the trajectories of
the followers' inputs, and Figure 6 displays the consistency of the estimated virtual
reference signal. From Figure 6, Lemma 4.2 is well verified. Figure 7 illustrates the
trajectories of the first derivative of the leader and followers' output, highlighting
that the higher-order properties in Theorem 4.3 are well supported by the numerical
example. Overall, the simulation results have verified the theoretical results for the
adaptive control case. Here we provide only numerical examples, while how to apply
the proposed method in a real application is currently under investigation.

6. Conclusion. This paper proposes a fully distributed output feedback MRAC
method for a general class of linear time-invariant systems with unknown parameters.
The developed architecture overcomes the restrictive matching condition commonly
used in the existing distributed MRAC methods. Our adaptive control law solely relies
on local input and output information and ensures global higher-order leader-follower
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Fig. 3. Trajectories of the parameter adaptation.
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Fig. 4. Trajectories of the agents' outputs.
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Fig. 5. Trajectories of the followers' inputs.

output consensus. Several simulation results verify the validity of the proposed adap-
tive control method. Nevertheless, how to solve the issues when the MAS (1)--(2)
with uncertain switching topologies by using a distributed output feedback MRAC
framework should be further studied.

Appendix A. Some useful lemmas and theorems. The following lemma
establishes a crucial link between the square integrability property of a function and
the asymptotic convergence of an associated error signal. Specifically, it states that
if a function f(t) has a bounded derivative and the integral

\int \infty 
0
f2(t)dt is finite, then

f(t) asymptotically approaches zero as t\rightarrow \infty . This lemma is a specific application of
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Fig. 6. Trajectories of the followers' virtual signals.
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Fig. 7. Trajectories of the agents' output derivatives.

a more general result known as Barb\u alat's lemma, which guarantees the convergence
of certain types of functions under the given conditions [10].

Lemma A.1. (See [37].) If \.f(t)\in L\infty and f(t)\in L2, then limt\rightarrow \infty f(t) = 0.

Now we present some well-known results of traditional indirect MRAC of LTI
systems, which are fundamentals in our distributed output feedback MRAC design.

Consider a traditional indirect MRAC system. The control system is

P (s)[y](t) = kpZ(s)[u](t),(A.1)

where y is the output, u is the input, P (s) is the pole polynomial with unknown
coefficients, Z(s) is the stable zero polynomial with unknown coefficients, and kp is
the unknown high-frequency gain. The reference model is

Pm(s) [ym] (t) = r(t).(A.2)

The indirect MRAC law is

u(t) = \theta T1 \omega 1(t) + \theta T2 \omega 2(t) + \theta 20y(t) + \theta 3r(t),(A.3)

where \theta i, i = 1,2,20,3, are designed parameters, \omega 1(t) =
a(s)
\Lambda c(s)

[u](t) \in \BbbR n - 1, \omega 2(t) =
a(s)
\Lambda c(s)

[y](t) \in \BbbR n - 1 with a(s) =
\bigl[ 
1, s, . . . , sn - 2

\bigr] 
, and \Lambda c(s) being a monic stable poly-

nomial of degree n - 1.
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Lemma A.2. (See [37].) There exist constant parameters \theta \ast 1 , \theta 
\ast 
2 , \theta 

\ast 
20, \theta 

\ast 
3 such that

\theta \ast T1 a(s)P (s) +
\bigl( 
\theta \ast T2 a(s) + \theta \ast 20\Lambda c(s)

\bigr) 
Z(s) = \Lambda c(s) (P (s) - \theta \ast 3Z(s)Pm(s)) .(A.4)

Theorem A.3. (See [37].) If the parameters \theta i in (A.3) are replaced by \theta \ast i ,
i = 1,2,20,3, satisfying (A.4), then the control law (A.3) ensures that all signals in
the closed-loop system are bounded and y(t) - ym(t) = \epsilon 0(t) for some initial condition-
related exponentially decaying \epsilon 0(t).

For the adaptive case, there are two steps to design \theta i, i= 1,2,20,3: (i) estimation
of the system parameters by an adaptive law like (4.3), and (ii) calculation of the
controller parameters using some linear equations like (31). Under some standard
assumptions, the indirect MRAC system (A.1)--(A.3) has the following properties.
All these properties can be seen in [37].

Theorem A.4. (See [37].) The adaptive control law (A.3) ensures that all signals
are bounded and y(t) - ym(t)\in L2, limt\rightarrow \infty (y(t) - ym(t)) = 0.

Appendix B. Proofs of Lemmas 3.2 and 4.2.

B.1. Proof of Lemma 3.2. Using \Lambda ei(s) defined below (3.6), we can express
the agent model (1) of the following form:

yi(t) - 
\Lambda i(ni - 1)(s)

\Lambda ei(s)
[yi](t) = \theta \ast Tpi \phi i(t).(B.1)

Then, we have

s[yi](t) = \theta \ast Tpi s[\phi i](t) +
s\Lambda i(ni - 1)(s)

\Lambda ei(s)
[yi](t)(B.2)

= \theta \ast Tpi

\biggl[ 
s

\Lambda ei(s)
[ui](t), . . . ,

smi+1

\Lambda ei(s)
[ui](t),

s

\Lambda ei(s)
[yi](t), . . . ,

sni

\Lambda ei(s)
[yi](t)

\biggr] T
+
s\Lambda i(ni - 1)(s)

\Lambda ei(s)
[yi](t).

Since the degree of \Lambda ei(s) is ni, then
s

\Lambda ei(s)
[ui](t), . . . ,

smi+1

\Lambda ei(s)
[ui](t) and s

\Lambda ei(s)
[yi](t),

. . . , sni - 1

\Lambda ei(s)
[yi](t) can be expressed by \phi i(t).

Moreover, we calculate

sni

\Lambda ei(s)
[yi](t) = yi(t) +

sni  - \Lambda ei(s)

\Lambda ei(s)
[yi](t),

s\Lambda i(ni - 1)(s)

\Lambda ei(s)
[yi](t) = \Lambda e

i(ni - 1)yi(t) +
s\Lambda i(ni - 1)(s) - \Lambda e

i(ni - 1)\Lambda ei(s)

\Lambda ei(s)
[yi](t),

where sni - \Lambda ei(s)
\Lambda ei(s)

, and
s\Lambda i(ni - 1)(s) - \Lambda ei(s)

\Lambda ei(s)
are strictly proper. This indicates that

Lemma 3.2 holds for j = 1.
When 1< j < n\ast , we have

sj [yi](t) = \theta \ast Tpi s
j [\phi i](t) +

sj\Lambda i(ni - 1)(s)

\Lambda ei(s)
[yi](t)

= \theta \ast Tpi

\biggl[ 
sj

\Lambda ei(s)
[ui](t), . . . ,

smi+j

\Lambda ei(s)
[ui](t)

sj

\Lambda ei(s)
[yi](t), . . . ,

sni - 1+j

\Lambda ei(s)
[yi](t)

\biggr] T
+
sj\Lambda i(ni - 1)(s)

\Lambda ei(s)
[yi](t).(B.3)
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Noting that j < n\ast , ni = mi + n\ast , the signals sj

\Lambda ei(s)
[ui](t), . . . ,

smi+j

\Lambda ei(s)
[ui](t), and

sj

\Lambda ei(s)
[yi](t), . . . ,

sj+(ni - 1 - j)

\Lambda ei(s)
[yi](t) can be directly obtained. Moreover, through de-

composition, one can obtain

sni+q

\Lambda ei(s)
=

q\sum 
k=0

\=hqks
q - k +

ni - 1\sum 
k=1

\=lqk
sk

\Lambda ei(s)
, q= 0, . . . , j  - 1,

sj\Lambda i(ni - 1)(s)

\Lambda ei(s)
=

j - 1\sum 
k=0

\u hks
j - 1 - k +

ni - 1\sum 
k=1

\u lk
sk

\Lambda ei(s)
.(B.4)

Thereby, sj [yi](t), j = 1,2, . . . , n\ast  - 1, can be expressed by s[yi](t), . . . , s
j - 1[yi](t), \theta 

\ast 
pi

in (3.5), sk

\Lambda ei(s)
[ui](t), k= 1+mi, . . . , j +mi, \phi i(t), and yi(t).

When j = n\ast , only the signal smi+j

\Lambda ei(s)
[ui](t) needs to be considered. Concretely,

smi+j

\Lambda ei(s)
[ui](t) =

sni

\Lambda ei(s)
[ui](t) = ui(t) +

sni - \Lambda ei(s)
\Lambda ei(s)

[ui](t) with sni - \Lambda ei(s)
\Lambda ei(s)

being strictly
proper, which indicates the conclusion also holds for j = n\ast . Thus, the lemma follows.

B.2. Proof of Lemma 4.2. We first demonstrate that di1(t) converges to s[yi](t)
by showing that the error term involving \~\theta pi(t) approaches zero as t \rightarrow \infty . Using
mathematical induction, we extend this result to dik(t), showing that it converges
to sk[yi](t) for higher orders. Combining these results, we then establish that the
tracking error \^ri(t) - ri(t) converges to zero. The detailed proof process is as follows.
With (3.8), we define

dij(t) =Hij

\biggl( 
yi,

s1+mi

\Lambda ei(s)
[ui], . . . ,

sj+mi

\Lambda ei(s)
[ui], \theta pi, \phi i

\biggr) 
,(B.5)

for i = 1, . . . ,N and j = 0, . . . , n\ast . Comparing (3.8) and (B.5), we see that dij(t),
j = 0, . . . , n\ast , are the estimates of yi(t), s[yi](t), . . . ,,s

n\ast 
[yi](t), respectively. Since

\.\theta pi(t) \in L\infty , \.\omega e
1i(t) \in L\infty , \.\omega e

2i(t) \in L\infty , \.ui(t) \in L\infty , and \.yi(t) \in L\infty , it follows that
\.\^ri(t)\in L\infty . Next, we will prove a stronger conclusion that

dij(t) - sj [yi](t)\rightarrow 0, j = 0, . . . , n\ast .(B.6)

We now use mathematical induction to prove (B.6). The proving technique refers
to the proof of the higher-order tracking property of MRAC in [38].

Let \~\theta pi(t) = \theta pi(t) - \theta \ast pi. When j = 1, from (B.1), the signal di1 defined in (B.5)
can be expressed by

di1(t) = \theta Tpi(t)s[\phi i](t) +
s\Lambda i(ni - 1)(s)

\Lambda ei(s)
[yi](t).(B.7)

Then, by (B.2) and (B.7), we have di1(t) - s[yi](t) = \~\theta Tpi(t)s[\phi i](t) =
\~\theta Tpi(t)

\.\phi i(t). Noting

(4.2) and (B.1), \epsilon i(t) can be expressed by \epsilon i(t) = \theta Tpi(t)\phi i(t) - \theta \ast Tpi \phi i(t) =
\~\theta Tpi(t)\phi i(t).

Then, the derivative of \epsilon i(t) is \.\epsilon i(t) = \.\theta Tpi(t)\phi (t) +
\~\theta Tpi(t)

\.\phi i(t). Noting (4.3), we have
\.\theta pi(t) \in L\infty and thus \.\epsilon i(t) \in L\infty . Hence, by (4.3), we have \"\theta pi(t) \in L\infty . Since
\.\theta pi(t) \in L2 by Lemma 4.1, then Lemma A.1 indicates that limt\rightarrow \infty \.\theta pi(t) = 0. Thus,
to prove that di1(t) - s[yi](t) = \~\theta Tpi(t)

\.\phi i(t) converges to zero, it is sufficient to prove
limt\rightarrow \infty \.\epsilon i(t) = 0. Next, we will prove this property by using the definition of limits,
i.e., for any given \eta , there exists a T = T (\eta )> 0 such that | \.\epsilon i(t)| < \eta .
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We decompose the signal \.\epsilon i(t) into two fictitious parts: one being small enough
and one converging to zero asymptotically with time going to infinity. First, two
fictitious K(s) and H(s) are introduced and defined by

K(s) =
ak

(s+ a)k
, sH(s) = 1 - K(s),(B.8)

where a > 0 is an adjustable parameter. Thus, given K(s), the filter H(s) is strictly
proper (with relative degree one) and stable, and is specified as

H(s) =
1

s
(1 - K(s)) =

1

s

(s+ a)k  - ak

(s+ a)k
.(B.9)

Moreover, from [28], it is known that the impulse response function of H(s) is h(t) =

\scrL  - 1[H(s)] = e - at
\sum k

i=1
ak - i

(k - i)! t
k - i and the L1 signal norm of h(t) is

\| h(\cdot )\| 1 =
\int \infty 

0

| h(t)| dt= k

a
.(B.10)

We choose the filters K(s) and H(s) with k= 2. Using (B.8) that 1 = sH(s) +K(s),
we divide \.\epsilon i(t) into two terms:

\.\epsilon i(t) = s[\~\theta Tpi\phi i](t) =H(s)s2[\~\theta Tpi\phi i](t) + sK(s)[\~\theta Tpi\phi i](t)

=H(s)s2[\~\theta Tpi\phi i](t) + sK(s)[\epsilon i](t).(B.11)

By the assumption mi(t)\in L\infty and (B.3) and (B.4), we have \phi i(t), \.\phi i(t), \"\phi i(t)\in L\infty .
By Lemma 4.1, we have \.\theta pi(t), \~\theta pi(t) \in L\infty . Therefore, noting \"\theta pi(t) \in L\infty , it follows
that

s2[\~\theta Tpi\phi i](t) = [\"\theta Tpi\phi i + 2 \.\theta Tpi
\.\phi i + \~\theta Tpi

\"\phi i](t)\in L\infty .(B.12)

Then, from the above L1 signal norm expression of H(s), \| h(\cdot )\| 1 = 2
a , we have\bigm| \bigm| \bigm| H(s)s2[\~\theta Tpi\phi i](t)

\bigm| \bigm| \bigm| \leq c1
a

(B.13)

for any t \geq 0 and some constant c1 > 0 independent of a > 0. We now con-
sider sK(s)[\epsilon i](t). Since \.\phi i(t) \in L\infty and mi(t) \in L\infty , then \.\epsilon i(t) = \.\theta Tpi(t)\phi i(t)+\bigl( 
\theta pi(t) - \theta \ast pi

\bigr) T \.\phi i(t)\in L\infty . By Lemma 4.1 and mi(t)\in L\infty , we have \epsilon i(t)\in L2. Using
Lemma A.1, it follows that limt\rightarrow \infty \epsilon i(t) = 0. Therefore, since sK(s) is stable and
strictly proper, then, for any finite a> 0 in K(s),

lim
t\rightarrow \infty 

sK(s)[\epsilon i](t) = 0.(B.14)

For any \eta > 0, set a = a(\eta ) \geq 2c1
\eta for the filter H(s). Then, it follows that for any

t > 0, \bigm| \bigm| \bigm| H(s)s2[\~\theta Tpi\phi i](t)
\bigm| \bigm| \bigm| \leq c1

a
\leq \eta 

2
.(B.15)

Moreover, by limt\rightarrow \infty sK(s)[\epsilon i](t) = 0, there exists T = T (a(\eta ), \eta ) > 0, such that for
any t > T ,

| sK(s)[\epsilon i](t)| <
\eta 

2
.(B.16)
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Therefore, due to (B.15) and (B.16), for any t > T ,

| \.\epsilon i(t)| \leq 
\bigm| \bigm| \bigm| H(s)s2[\~\theta Tpi\phi i](t)

\bigm| \bigm| \bigm| + | sK(s)[\epsilon i](t)| <
\eta 

2
+
\eta 

2
= \eta ,(B.17)

which implies limt\rightarrow \infty \.\epsilon i(t) = 0. So far we have proved that

lim
t\rightarrow \infty 

(di1(t) - s[yi](t)) = 0.

Given that for all j = 1, . . . , k - 1, k\leq n\ast , the following properties hold:

lim
t\rightarrow \infty 

\epsilon i(k - 1)(t)=0, lim
t\rightarrow \infty 

\bigl( 
dij(t) - sj [yi](t)

\bigr) 
=0,(B.18)

where \epsilon i(k - 1)(t) = \~\theta Tpi(t)
\bigl( 
sk - 1[\phi i](t)

\bigr) 
. We have the following analysis.

When j = k, by (B.1), we have sk[yi](t) = \theta \ast Tpi s
k[\phi i](t)+

sk\Lambda i(ni - 1)(s)

\Lambda ei(s)
[yi](t). Define

P (t) = sk[\phi i](t), Q(t) =
sk\Lambda i(ni - 1)(s)

\Lambda ei(s)
[yi](t).(B.19)

Then,

sk[yi](t) = \theta \ast Tpi P (t) +Q(t).(B.20)

For simplicity of presentation, we denote

dik(t) = \theta Tpi(t) \widehat P (t) + \widehat Q(t),(B.21)

where \widehat P (t) and \widehat Q(t) are the estimates of P (t) and Q(t), respectively. Using (B.4),
Q(t) and \widehat Q(t) can be expressed by

Q(t) =

k - 1\sum 
l=0

\u hls
l[yi](t) +

ni - 1\sum 
l=1

\u ll
sl

\Lambda ei(s)
[yi](t),(B.22)

\widehat Q(t) =

k - 1\sum 
l=0

\u hldil(t) +

ni - 1\sum 
l=1

\u ll
sl

\Lambda ei(s)
[yi](t).(B.23)

Then, by (B.22), (B.23), and the properties given in (B.18), we have

lim
t\rightarrow \infty 

( \widehat Q(t) - Q(t)) = lim
t\rightarrow \infty 

\Biggl( 
k - 1\sum 
l=1

\u hl
\bigl( 
dil  - sl[yi](t)

\bigr) \Biggr) 
= 0.(B.24)

Similarly, noting that each element of the vector sk[\phi i](t) contains sj - 1[yi](t), j =
1, . . . , k, and some filtered signals on yi(t) and ui(t), then by (B.4), (B.18), and similar
analysis for the convergence of \widehat Q(t) - Q(t), it follows that limt\rightarrow \infty ( \widehat P (t) - P (t)) = 0.
Therefore, by (B.20) and (B.21), we have

lim
t\rightarrow \infty 

(dik(t) - sk[yi](t)) = lim
t\rightarrow \infty 

\~\theta Tpi(t)P (t) + lim
t\rightarrow \infty 

\theta Tpi(t)( \widehat P (t) - P (t))

+ lim
t\rightarrow \infty 

( \widehat Q(t) - Q(t)) = lim
t\rightarrow \infty 

\~\theta Tpi(t)P (t).(B.25)

We next prove that limt\rightarrow \infty \~\theta Tpi(t)P (t) = limt\rightarrow \infty \~\theta Tpi(t)
\bigl( 
sk[\phi i](t)

\bigr) 
= 0. Consider the

signal \epsilon i(k - 1)(t) = \~\theta Tpi(t)
\bigl( 
sk - 1[\phi i](t)

\bigr) 
. Its derivative is

\.\epsilon i(k - 1)(t) = \.\theta Tpi(t)s
k - 1[\phi i](t) + \~\theta Tpi(t)s

k[\phi i](t).(B.26)
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Since mi(t) \in L\infty and limt\rightarrow \infty \.\theta pi(t) = 0, it follows that limt\rightarrow \infty \.\theta Tpi(t)s
k - 1[\phi i](t) =

0. Hence, by (B.26), to prove limt\rightarrow \infty \~\theta Tpi(t)
\bigl( 
sk[\phi i](t)

\bigr) 
= 0, it is sufficient to prove

limt\rightarrow \infty \.\epsilon i(k - 1)(t) = 0. Similar to (B.11), we express \.\epsilon i(k - 1)(t) as

\.\epsilon i(k - 1)(t) = s[\~\theta Tpi
\bigl( 
sk - 1[\phi i]

\bigr) 
](t)

=H(s)s2[\~\theta Tpi
\bigl( 
sk - 1[\phi i]

\bigr) 
](t) + sK(s)[\epsilon i(k - 1)](t).(B.27)

By the assumptionmi(t)\in L\infty and (B.3) and (B.4), we have, for k\leq n\ast , sk\phi i(t)\in L\infty .
When k= n\ast , by the additional assumption \.ui(t), \.yi(t)\in L\infty , we have sk+1\phi i(t)\in L\infty .
Moreover, by Lemma 4.1, we have \.\theta pi(t), \~\theta pi(t) \in L\infty . Therefore, noting \"\theta pi(t) \in L\infty ,
it follows that

s2[\~\theta Tpi(t)
\bigl( 
sk - 1[\phi i]

\bigr) 
](t) =

\Bigl[ 
\"\theta Tpis

k - 1[\phi i] + 2 \.\theta Tpis
k[\phi i] + \~\theta Tpis

k+1[\phi i]
\Bigr] 
(t)\in L\infty .

Then, for j = k, similar to (B.13), we have | H(s)s2[\~\theta Tpis
k - 1[\phi i]](t)| \leq ck

a , for some
ck > 0 independent of a. Since sK(s) is stable and strictly proper, so that, with
limt\rightarrow \infty \epsilon i(k - 1)(t) = 0, we have limt\rightarrow \infty sK(s)[\epsilon i(k - 1)](t) = 0. Hence, similar to (B.17),
by choosing suitable parameter a> 0 in H(s) and K(s), it can be shown that for any
\eta > 0, there exists T = T (\eta , a)> 0, such that for any t > T , it holds that | \.\epsilon i(k - 1)(t)| < \eta .
Therefore, limt\rightarrow \infty \.\epsilon i(k - 1)(t) = 0. Then, by limt\rightarrow \infty 

\.\~\theta Tpi(t)s
k - 1[\phi i](t) = 0 as established

above (B.27), and (B.25), we have

lim
t\rightarrow \infty 

\epsilon ik(t) = lim
t\rightarrow \infty 

\~\theta Tpi(t)
\bigl( 
sk[\phi i](t)

\bigr) 
= 0, lim

t\rightarrow \infty 

\bigl( 
dik(t) - sk[yi](t)

\bigr) 
= 0.(B.28)

Therefore, by (3.8), (3.9), (4.9), and (B.5), it follows that

\^ri(t) - ri(t) =

n\ast \sum 
j=0

\psi j

\bigl( 
dij(t) - sj [yi](t)

\bigr) 
\rightarrow 0,

with \psi j defined below (3.9). The proof is completed.
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