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Abstract This paper studies the leader-following adaptive tracking control problem for multi-agent

systems comprising a leader agent and N follower agents with uncertain nonlinear dynamics. Specifi-

cally, a novel event-triggered communication based adaptive distributed observer is developed to enable

each follower agent to estimate the leader’s information. Then, new forms of adaptive control law and

parameter update law are designed with the estimated leader’s signals. The developed distributed

adaptive control strategy has several characteristics: (i) With the introduced time-varying observer

gain, the designed adaptive distributed observer eliminates the need for global graph information but

ensures convergence of the estimates; (ii) By appropriately designing the event-triggered mechanism,

the communication frequency among follower agents is reduced in the sense that the communication

rate decays over time; (iii) The newly designed adaptive control law ensures a linear estimation er-

ror equation, facilitating the development of a stable parameter update law without requiring prior

knowledge of uncertain system parameters. The stability of closed-loop system and leader-following

asymptotical tracking are achieved. Simulation study demonstrates the theoretical results.

Keywords Adaptive control, event-triggered communication, heterogeneous nonlinear agent, leader-

following tracking.
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1 Introduction

In recent decades, the cooperative control of multi-agent system (MAS) has emerged as

a key area of interest within the control community, driven by its wide-ranging engineering

demands such as mobile robotics and satellite coordination. Significant research efforts have

been devoted to this domain, leading to remarkable advancements and a wealth of impactful

studies[1–3].

The goal of cooperative control of MAS is to realize desired collective behaviors through

distributed control strategies that utilize communication among neighboring agents. From the

perspective of task objectives, this field encompasses a variety of specific research areas, includ-

ing consensus, formation control, sensor network coverage, distributed estimation, distributed

optimization, and so on. Among these, the consensus problem serves as a foundational aspect.

The consensus problem of MAS primarily manifests in two paradigms: Leaderless consensus

and leader-following tracking. Initial research on consensus problems primarily focused on con-

vergence analysis under certain graph conditions[4–6] and later has been extended to consensus

algorithm design from various perspectives, such as MAS with specific agent dynamics[7–9] and

MAS consensus under constrained network communication[10–12].

In real applications, the control system may suffer from various uncertainties. Taking

possible uncertainties of agent dynamics into account, adaptive control techniques are incor-

porated to the study of consensus control of MAS by many researchers to achieve desired

performance[13–18]. For example, the leader-following consensus was considered in [13] for a

class of first-order uncertain MAS with Lyapunov function based analysis. In [14], output

consensus was achieved for a class of high-order nonlinear uncertain MAS by integrating adap-

tive distributed observer method and adaptive control technique. For strict-feedback nonlinear

MAS with parameter uncertainty, [15] solved the adaptive consensus control problem by using

the fusion least-square algorithm and the backstepping technique. Notably, the backstepping

technique, which was initially developed in [19] for single-agent system, has become a power-

ful tool for the consensus algorithm design of uncertain high-order MAS. The aforementioned

adaptive consensus control methods require the uncertainty associated with agent control gain

is nonexist[13–16] or the sign of uncertain control gain is prior known[17, 18]. However, the sign

of control gain in system dynamics, which is also referred as the control direction, maybe un-

known in practical engineering. For single-agent systems, some classical approaches have been

proposed to handle unknown control direction issue, including Nussbaum function methods[20]

and multi-model switching methods[21]. Nevertheless, relatively few studies have considered the

control direction issue of cooperative adaptive control in MAS. Towards this challenge, some

achievements have been made in the recent decade[22–29]. For example, [22, 25, 26] developed

multiple Nussbaum gain functions to combat unknown control directions by assuming control di-

rections of all agents are identical. Afterwards, by constructing a compensator network, [27, 28]

tackled output regulation problem under unknown control directions with Nussbaum gain based

schemes, where the agents are not required to have identical control directions. It is worth men-

tioning that all these methods focus on MAS with continuous-time dynamics, where the design
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of Nussbuam gain functions and backstepping technique are critical for their effectiveness.

In addition to system uncertainties, consumption of communication resources is another

problem worth considering since the design of consensus control law should be distributed,

which relies on the communication between neighboring agents. As an effective tool to address

the challenges associated with resource constraints, event-triggered control has emerged as a

significant research area in MAS. In traditional time-triggered control, agents exchange informa-

tion and update their control inputs at fixed time intervals, which can lead to unnecessary com-

munication and computation. Event-triggered control, in contrast, allows agents to exchange

information or update control actions only when specific events or conditions are met. This re-

duces communication overhead, making event-triggered control especially valuable in scenarios

with limited bandwidth, energy constraints, or high communication costs. Specifically, sem-

inal works[30, 31] established foundational event-triggered protocols for single-integrator MAS

consensus attainment. The literature [32] systematically addressed both homogeneous and

heterogeneous linear agent dynamics through adaptive event-based cooperative strategies. Re-

cent advancements have been extended to nonlinear MAS domains, with [33, 34] developing

stability-guaranteed triggering mechanisms for high-order and Euler-Lagrange nonlinearities,

respectively. In [35], a distributed event-triggered observer architecture was introduced to re-

solve cooperative output regulation challenges in heterogeneous linear continuous-time MAS.

As mentioned above, the reported literature about cooperative adaptive control of MAS

with unknown control directions focus on continuous-time system dynamics with discrete-time

systems being omitted. And, most works relied on the Nussbaum gain function to combat

control gain uncertainty. As indicated in [36], the Nussbaum gain method is easy to cause poor

transient performance due to the oscillation nature of Nussbaum function. Thus, how to develop

a distributed adaptive control strategy for discrete-time MAS possessing unknown control direc-

tions without relying Nussbaum gain method is still unclear. Recently, [37] and [38] developed

novel model reference adaptive control methods for single-agent systems in continuous-time

with relative degree one and in discrete-time with arbitrary relative degree, respectively, which

remove the need on control direction information without resorting to Nussbaum gain method.

Considering unknown control directions issue in cooperative adaptive control, the novel method

in [37] and [38] inspires us to develop a distributed adaptive control scheme for discrete-time

MAS to overcome the control gains uncertainty constraint. Motivated by above observations,

this work establishes a distributed adaptive control scheme that resolves leader-following track-

ing problem in discrete-time MAS. Specifically, we consider the follower agents dynamics are

nonlinear, heterogeneous, and with parameter uncertainties. Particularly, the control directions

related parameters, i.e., the control gains of agents, are totally unknown except for non-zero

conditions. In addition, considering communication resource consumption, an event-triggered

mechanism is developed to reduce the frequency of communication among neighboring follower

agents. In summary, this work makes the following contributions:

(i) We propose a novel distributed leader-following adaptive tracking control scheme for a

class of MAS with heterogeneous nonlinear agent dynamics. Specifically, a new adaptive
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distributed observer is designed for each follower to estimate leader signal under event-

triggered communication among neighboring agents. Then, new forms of control law and

parameter update law are developed to achieve closed-loop stability and leader-following

tracking control objective under system parameter uncertainties.

(ii) With time-varying observer gain, the proposed distributed adaptive observer does not

need global graph information to achieve estimation convergence, which is distinct from

some existing works (see [39]). Moreover, the well-designed event-triggered mechanism

with time-varying threshold can reduce the communication frequency of neighboring

agents with a decaying communication rate index, which implies that little communi-

cation is required when the MAS tends to a steady state.

(iii) Unlike some existing results (see [17, 18]), the proposed adaptive control law induces a

linear estimation error equation, which motivates a parameter update law without needing

any prior sign information or bound knowledge of unknown parameters covering uncertain

control gains of agents. This is essentially different from some Nussbaum gain based

methods (see [22, 25, 26]). Moreover, no singularity problem and casuality contradiction

issue are involved by designing a time-varying gain and introducing some filter operators.

The rest of this paper is structured as follows. Section 2 presents the problem formulation

and outlines the key technical challenges to be addressed. In Section 3, we detail the design of

the proposed leader-following adaptive control strategy. A novel event-triggered communication

based distributed adaptive observer is first developed for every follower agent, followed by the

development of control law and parameter update mechanism. The stability of the system and

the leader-following tracking performance are then analyzed. Section 4 provides simulation

study to validate the theoretical results. Finally, Section 5 concludes the paper.

Notations In this work, R represents the set of real numbers. Symbols R
n and R

m×n

denote the sets of real vectors of dimension n and real matrices of size m×n, respectively. The

symbol z is used to denote the time shift operator. To be specific, for any signal x(t) , x(tT )

for a sampling period T > 0, z[x](t) = x(t + 1) and z−1[x](t) = x(t − 1). L∞ and L2 denote

signal spaces defined as L∞ = {x(t) : ‖x(·)‖∞ < ∞} and L2 = {x(t) : ‖x(·)‖2 < ∞} with

‖x(·)‖∞ = supt≥0 max1≤i≤n |xi(t)| and ‖x(·)‖2 = (
∑∞

t=0 |x1(t)|2 + · · ·+ |xn(t)|2)
1
2 , where x(t) =

[x1(t), · · · , xn(t)]T denotes any signal on R
n. We use c to denote a generic signal bound and τ(t)

to denote a generic L2∩L∞ function which converge to zero as t ∈ ∞. ‖·‖ denotes the Euclidean

norm for vectors or induced 2-norm for matrices. Define vec(Y ) = [Y T
1 , · · · , Y T

m ]T as the vector

from matrix Y ∈ R
n×m, where Yi is the ith column of matrix Y . The Kronecker product

is denoted by ⊗. The symbol I represents the general identity matrix. We use λmin(A) and

λmax(A) to denote the minimal magnitude of eigenvalue and maximal magnitude of eigenvalue

of matrix A, respectively. For a sequence of real-valued matrices or vector {a(t)} and a real

number sequence {b(t)}, the notation a(t) = O(b(t)) indicates that there exists a constant c ≥ 0

such that limt→∞ ‖a(t)/b(t)‖ ≤ c.
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2 Problem Statement

In this section, we present the system model, the control objective, and design conditions.

Additionally, it claims the technical issues to be resolved in this paper.

2.1 System Model

We consider an MAS including a leader agent and N follower agents. The dynamics of each

follower agent i, i = 1, · · · , N , is described as follows:

xi,j(t + 1) = xi,j+1(t), j = 1, · · · , ri − 1,

xi,ri
(t + 1) = θ∗Ti fi(xi(t)) + b∗i ui(t), (1)

yi(t) = xi,1(t),

where xi(t) = [yi(t), yi(t + 1), · · · , yi(t + ri − 1)]T ∈ R
ri , ui(t) ∈ R, yi(t) ∈ R are the state

vector, control input and system output of agent i, respectively. The vector function fi(xi(t))

is a known smooth nonlinear Lipschitz mapping. The parameters θ∗i and b∗i 6= 0 are entirely

unknown systems parameters, and ri ≥ 1 represents the known system relative degree and is

allowed to be different among agents. Notably, there are some practical systems can be modeled

as (1), such as rigid robots and motors, ships, and jet engines and aircraft. The state vector

xi(t) is measurable by each agent i, i = 1, · · · , N .

The leader agent follows the following dynamics

v0(t + 1) = Sv0(t), y0(t) = Fv0(t), (2)

where v0(t) ∈ R
n and y0(t) ∈ R denote the leader’s state variable and output variable, respec-

tively. The matrices S ∈ R
n×n and F ∈ R

1×n represent the leader’s dynamics matrix and

measure matrix, respectively, and the pair (S, F ) is assumed to be detectable. In this paper,

the dynamics matrix S and the state variable v0(t) are not acquired by all follower agents. Only

a subset of agents directly connected to the leader have access to the actual values of S and

v0(t). Moreover, the matrix F is considered known, as it specifies the reference output signal

that each follower agent is required to track (see [14]).

Remark 2.1 The follower agents with the dynamics (1) are heterogeneous as their system

properties are not necessarily uniform. Specifically, each follower i may have a distinct relative

degree ri and unique nonlinear dynamics fi(xi(t)), which can differ from those of other agents.

Moreover, the control gains bi, i = 1, · · · , N , may have different unknown signs, i.e., the

control directions are allowed to be non-identical, which is different from some existing works

(see [22, 25, 26]).

2.2 Graph Theory

In this work, the agents’ communication network is represented by a directed graph G =

(V , E). Here, the set of notes is defined as N = {0, 1, · · · , N}, and E ⊂ N × N denotes the

edge set. An edge from node j to node i (with j 6= i) is denoted by (j, i), which indicates
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that node i is a child of node j. In this framework, node 0 corresponds to the leader agent

while node i, i = 1, · · · , N , represent the follower agents. The network’s connectivity is further

characterized by the weighted adjacency matrix of A = [aij ] ∈ R
(N+1)×(N+1), i, j ∈ N . For

every node i, the diagonal entry is zero (aii = 0), and for i 6= j, aij is positive if and only if

there exists an edge from j to i in E , that is, node i can receive the information from node j.

Otherwise, aij = 0 for i 6= j. In particular, for i = 1, · · · , N , a positive value of ai0 signifies that

agent i has access to the leader agent. Meanwhile, a0i is set as 0 by assuming that no follower

transmit information to the leader. Additionally, one can define a subgraph G = (N , E) of G

consisting solely of the follower nodes. The edge set E is formed by removing all connections

that involve node 0 from the original set E . Within this subgraph, the neighbor set for any node

i is given by Ni = {j ∈ N|(j, i) ∈ E}. Finally, the graph matrix H = [hij ] ∈ R
N×N , i, j ∈ N is

introduced, where hii =
∑N

j=0 aij , and for i 6= j, hij = −aij .

2.3 Control Objective and Assumptions

Control objective For the MAS comprising of N follower agents with the dynamics (1)

and a leader agent with the dynamics (2), interconnected through a directed communication

graph G, the goal is to design a distributed adaptive control law ui(t) for each follower agent i

that operates under event-triggered communication. This design should ensure the stability of

closed-loop system and guarantee that the output of each follower yi(t) asymptotically tracks

the leader’s output y0(t), i.e., limt→∞(yi(t) − y0(t)) = 0, i = 1, · · · , N .

Assumption 2.2 To achieve the control objective, the following conditions are assumed.

(A1) The communication network G possesses at least one directed spanning tree with the

leader node 0 serving as the root.

(A2) The modulus of all eigenvalues of S are not exceeding to 1.

Remark 2.3 Assumption (A1) is the connectivity condition of the graph G. This condi-

tion ensures that there is a directed path from the leader to every follower and is a standard

requirement for fixed directed graph (see [7, 8]). Assumption (A2) is widely adopted in the lit-

erature (see [39, 40]) and is satisfied by a broad range of signals (e.g., step, ramp, and sinusoidal

functions). Under Assumption (A2), the leader’s state v0(t) and output y0(t) remain bounded.

In practical applications, Assumption (A2) is reasonable because its violation would imply that

the leader produces exponentially growing signals, a scenario that is unlikely to occur.

2.4 Technical Issues

For the leader-following tracking control of the considered MAS, we will solve the following

technical issues in this work: (i) How to design an adaptive distributed observer for agent i

to estimate the information of the leader without relying on global graph information? (ii)

How to develop an event-triggered mechanism such that the communication frequency can be

reduced among follower agents? (iii) How to devise adaptive control law and parameter update

law without any prior system parameter knowledge? These concerns will be resolved in the

following.
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3 Distributed Leader-Following Adaptive Tracking Control Design

In this section, we propose a distributed adaptive control scheme to ensure that each fol-

lower’s output yi(t) converges to the leader’s output y0(t). The strategy begins with the de-

velopment of a novel event-triggered communication based adaptive distributed observer. This

observer leverages local available information from neighboring agents to estimate the leader’s

signals. Next, we introduce a new adaptive controller for each follower agent. This controller in-

duces a stable parameter update law without relying on prior knowledge of system parameters.

Finally, we analyze the stability of the closed-loop system and assess the tracking performance

based on the proposed controller and parameter update law.

3.1 Event-Triggered Communication Based on Adaptive Distributed Observer

Since agents in the MAS interact with each other by the communication graph G, not every

follower could directly receive the leader’s signals. To overcome this, we design an adaptive

distributed observer for each follower agent that estimates both the leader’s dynamics matrix

S and state v0(t). An event-triggered mechanism is embedded in the observer to reduce com-

munication frequency. Specifically, for every follower agent i, i = 1, · · · , N , the event-triggered

communication based adaptive distributed observer is designed as follows:

Si(t + 1) = Si(t) + µ(t)

N∑

j=0

aij(Ŝj(t) − Ŝi(t)),

vi(t + 1) = Si(t)vi(t) + µ(t)Si(t)

N∑

j=0

aij(v̂j(t) − v̂i(t)), (3)

where the observer gain is µ(t) = (t+ t0)
−µ∗

with t0 ≥ 0 and µ∗ ∈ (0, 1), Si(t) and vi(t) denote

the estimates of the leader’s dynamics matrix S and state v0(t), respectively. For i, j = 1, · · · , N ,

the values Ŝi(t) and Ŝj(t) are the triggered versions of Si(t) and Sj(t), and similarly, v̂i(t) and

v̂j(t) are the triggered estimates of vi(t) and vj(t). Particularly, Ŝ0(t) = S and v̂0(t) = v0(t).

Specifically, the signals Ŝj(t), Ŝi(t), v̂i(t), v̂i(t) are determined by the following equations:

Ŝi(t) = Si(t
i
k), v̂i(t) = Si(t

i
k)(t−ti

k)vi(t
i
k),

Ŝj(t) = Sj(t
j
k′ ), v̂j(t) = Sj(t

j
k′ )

(t−t
j

k′
)vj(t

j
k′ ), (4)

where tik denotes the kth triggering instant of agent i, and tjk′ is the latest triggering instant of

agent j before time instant t, which can be expressed as tjk′ = maxm∈N{tjm|tjm < t}.

For the proposed event-triggered communication based adaptive distributed observer (3),

we need to introduce a event-triggered mechanism to determine when to trigger communication

for agent i. For i = 1, · · · , N , we first define

si(t) = vec(Si(t)), s = vec(S),

s̃i(t) = si(t) − s, s̃(t) = [s̃T
1 (t), · · · , s̃T

N (t)]T,
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ṽi(t) = vi(t) − v0(t), ṽ(t) = [ṽT
1 (t), · · · , ṽT

N (t)]T,

esi
(t) = si(t

i
k) − si(t), evi

(t) = v̂i(t) − vi(t),

es(t) = [eT
s1

(t), · · · , eT
sN

(t)]T, ev(t) = [eT
v1

(t), · · · , eT
vN

(t)]T. (5)

Then, the event-triggered mechanism for agent i, i = 1, · · · , N , is designed as

tik+1 = inf{tik > t|‖esi
(t)‖ + ‖evi

(t)‖ ≥ gi(t)}, (6)

where gi(t) > 0 is a bounded triggering threshold signal to be chosen such that gi(t) = O(µdi(t))

with di > 0 satisfying µ∗(1 + di) > 1. Since µ(t) = (t + t0)
−µ∗

with t0 ≥ 0 and µ∗ ∈ (0, 1), one

could easily get limt→∞ gi(t) = 0, i = 1, · · · , N .

Remark 3.1 The event-triggered communication based adaptive distributed observer (3)

is designed to simultaneously estimate the leader’s system matrix S and state v0(t). In contrast

to some existing work (see [39]), the observer gain here is time-varying, which eliminates the

need for global graph information (i.e., spectral radius of H) to ensure convergence. It will

be demonstrated that this time-varying observer gain guarantees that the estimates Si(t) and

vi(t), i = 1, · · · , N , convergent to the actual leader’s matrix S and state v0(t).

Remark 3.2 In the adaptive distributed observer (3), the estimates Si(t) and vi(t) are

updated using Ŝi(t) and v̂i(t), which are specified in (4). Here, Ŝi(t) and Ŝj(t) are selected as

the latest triggering values, namely Si(t
i
k) and Sj(t

j
k′), respectively. In contrast, v̂i(t) and v̂j(t)

are refreshed constantly according to (4) at each time instant, which is reasonable by noting

the leader dynamics (2).

Remark 3.3 It is both intuitive and effective for the event-triggered mechanism designed

in (6). The signals esi
(t) and evi

(t) quantify the errors introduced by event-triggered com-

munication. Thus, we denote the errors esi
(t) and evi

(t) as event-triggered errors. With the

event-triggered mechanism (6), the event-triggered errors esi
(t) and evi

(t) are ensured to be

not too large at all times. Indeed, since the triggering threshold gi(t) is positive and decays to

zero, it could reduce the communication frequency and ensure the event-triggered errors decay

to zero as time goes to infinity. Furthermore, to facilitate the convergence analysis, we design

the triggering threshold gi(t) related to the time-varying observer gain µ(t). With this choice,

we could derive the asymptotical convergence of the estimates Si(t) and vi(t) in the following.

According to (3) and (5), we have

s̃i(t + 1) = s̃i(t) + µ(t)

N∑

j=0

aij(sj(t) − si(t)) + µ(t)

N∑

j=0

aij(esj
(t) − esi

(t)), i = 1, · · · , N,

ṽi(t + 1) = Si(t)vi(t) − Sv0(t) + µ(t)Si(t)

N∑

j=0

aij(v̂i(t) − v̂i(t))

= Sṽi(t) + µ(t)S

N∑

j=0

aij(ṽj(t) − ṽi(t)) + S̃i(t)v0(t) + S̃i(t)ṽi(t)
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+µ(t)S̃i(t)
N∑

j=0

aij(ṽj(t) − ṽi(t)) + µ(t)Si(t)
N∑

j=0

aij(evj
(t) − evi

(t)), i = 1, · · · , N,

where s0(t) = s, es0
(t) = 0, ṽ0(t) = 0, and ev0

(t) = 0. Note that the graph matrix H =

[hij ] ∈ R
N×N , i, j ∈ N , with hii =

∑N

j=0 aij , and for i 6= j, hij = −aij . Then, it follows from

definitions in (5) that the adaptive distributed observer (3) can be transformed into a compact

form as follows:

s̃(t + 1) = (INn2 − µ(t)(H ⊗ In2))s̃(t) − µ(t)(H ⊗ In2)es(t), (7)

ṽ(t + 1) = ((IN ⊗ S) − µ(t)(H ⊗ S))ṽ(t) − (S̃d(t) − µ(t)A(t))ṽ(t)

+S̃d(t)(IN ⊗ v0(t)) − µ(t)B(t)ev(t), (8)

where S̃d(t) = block diag{S̃1(t), · · · , S̃N (t)} with S̃i(t) , Si(t) − S, i = 1, · · · , N , and

A(t) =




H1 ⊗ S̃1(t)
...

HN ⊗ S̃N (t)


 , B(t) =




H1 ⊗ S1(t)
...

HN ⊗ SN (t)


 , (9)

with Hi being the ith row of H . The compact form (7) and (8) is beneficial for the following

convergence analysis of estimates Si(t) and vi(t), i = 1, · · · , N .

Next, we proceed to analyse the convergence of the proposed adaptive distributed ob-

server (3). First, we introduce the following lemma, which describes the algebra property

of the graph matrix H .

Lemma 3.4 Under Assumption (A1), every eigenvalue of the matrix H has a positive

real part.

The proof of Lemma 3.4 can be seen in the literature (see [41]). Lemma 3.4 shows that

the matrix H is nonsingular and the minimal magnitude of eigenvalue of H is positive, i.e.,

λmin(H) > 0, which is crucial for the convergence analysis.

It follows from the form of adaptive distributed observer (3) that the convergence of estimate

vi(t) relies on the convergence of estimate Si(t). Thus, we fist need to obtain the convergence

of Si(t). To this end, the following lemma is needed.

Lemma 3.5 For µ(t) = (t + t0)
−µ∗

with t0 ≥ 0, µ∗ ∈ (0, 1), and constants b > 0 and

d > 0 such that µ∗(1 + d) > 1, the following assertions hold as t → ∞.

t∏

i=1

(1 − bµ(i)) = O

(
exp

(
b

µ∗ − 1
(t + t0)

1−µ∗

))
, (10)

t∑

i=1

k∏

l=i+1

(1 − bµ(l))µd+1(i) = O((t + t0)
−µ∗(1+d)). (11)
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The proof of this lemma can be seen in the literature (see [42]). This lemma demonstrates

that the chosen time-varying observer gain µ(t) has some desirable properties. We now present

the convergence result for the estimate Si(t) of each agent i, i = 1, · · · , N .

Lemma 3.6 Under Assumption (A1), the estimated leader dynamics matrix Si(t), i =

1, · · · , N , asymptotically converges to the true matrix S via the proposed adaptive distributed

observer (3), i.e., limt→∞ Si(t) = S, i = 1, · · · , N .

Proof See the Appendix.

Lemma 3.6 establishes the convergence result of Si(t). Building on this result, the conver-

gence of estimate vi(t), i = 1, · · · , N , could be obtained, which is specified as follows.

Lemma 3.7 Under Assumptions (A1) and (A2), the observer states vi(t), i = 1, · · · , N ,

asymptotically converges to the leader’s state v0(t) via the proposed adaptive distributed ob-

server (3), i.e., limt→∞ vi(t) = v0(t), i = 1, · · · , N .

Proof See the Appendix.

Remark 3.8 Lemma 3.6 and Lemma 3.7 collectively demonstrate that the developed

adaptive distributed observer (3) is cable of simultaneously estimate the leader’s dynamics

matrix S and state v0(t) for every agent. Benefited from the properties of µ(t) in Lemma 3.5, the

convergence results are derived without the need for global graph knowledge (i.e., spectral radius

of H), which is different from some existing works in discrete-time MAS (see [39]). Moreover,

distinct from the continuous-time event-triggered communication based adaptive distributed

observer in [35], where a constant positive observer gain is sufficient for the convergence, a

time-varying observer gain is utilized to ensure the validity of (3). Generally, an arbitrary

positive constant observer gain is incapable of achieving the convergence of (3) unless the

spectral radius of H is known to determine an upper bound for the observer gain (see [39]).

Based on these two lemmas, the subsequent result follows straightforwardly.

Lemma 3.9 For any k ≥ 0, we have

lim
t→∞

(FSk
i (t)vi(t) − y0(t + k)) = 0, i = 1, · · · , N. (12)

Proof See the Appendix.

Lemma 3.9 demonstrates that asymptotical estimates for the leader signals y0(t+ k), k ≥ 1

can be achieved with estimated leader’s dynamics matrix Si(t) and state vi(t), which is crucial

for the following adaptive control design of each follower agent.

In continuous-time systems, event-triggered control must address Zeno behavior, i.e., the

occurrence of infinitely many events in a finite time, to ensure a reduction in communica-

tion compared to non-triggered designs. In contrast, discrete-time systems inherently have

a minimum inter-event interval (the sampling time), so Zeno behavior is not a concern. In-

stead, [43] introduced the communication rate as a metric to evaluate the effectiveness of the

event-triggered mechanism in discrete-time systems. By proving a decaying communication

rate, [43] showed that their event-triggered mechanism could significantly reduce the commu-
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nication frequency. Then, to evaluate the validity of the proposed event-triggered mechanism

(6), we analyse its communication rate. First, we give the definition of communication rate

introduced in [43] as follows.

Definition 3.10 (see [43]) Let Ki(t) be the number of triggering events for agent i, i =

1, · · · , N , during the interval [0, t]. The communication rate is defined by λc(t) =
∑

N
i=1

Ki(t)|Ni|

t
∑

N
i=1

|Ni|
,

where |Ni| denotes the number of child neighbors of node i.

The above definition shows that the communication rate λc(t) lies in region [0, 1]. Partic-

ularly, λc(t) = 1 means communication between follower agents occurs at every time instant

up to t. Therefore, a decreasing λc(t) implies a reduction in communication frequency. Based

on this definition, we show the proposed event-triggered mechanism leads to a decaying λc(t)

under appropriate design parameters.

Lemma 3.11 If the triggering threshold gi(t), i = 1, · · · , N , satisfies

limt→∞

gi(t + tσ)

gi(t)
> 0, limt→∞

gi(t)

r(t)tσ
> 0, (13)

where r(t) , (t + t0)
−µ∗(1+d) and σ ∈ (0, 1). Then, we get the communicate rate λc(t) satisfies

limt→∞ λc(t) = 0.

Proof See the Appendix.

Remark 3.12 Condition (13) is easily met with the chosen gi(t) = O(µdi(t)). For in-

stance, one can validate (13) with gi(t) selected as µdi(t) with di > 0. It is well recognized

that there is a trade-off between the convergence rate and the communication resource utiliza-

tion under the event-triggered mechanism. Specifically, for a given observer gain µ(t), a larger

parameter di causes gi(t) to decay more rapidly, increasing the number of triggering events

(and thus communication frequency), but also accelerating the convergence of the adaptive

distributed observer. Therefore, selecting appropriate parameters in (6) is crucial for balancing

these competing requirements.

3.2 Controller Structure

In this subsection, we develop a new form of adaptive controller for each follower agent i. By

employing the estimated leader system matrix Si(t) and the state vi(t), we define the following

auxiliary signals

pri
(t) = FSri

i (t)vi(t) −
ri−1∑

k=0

ai,ri−k(yi(t + k) − FSk
i (t)vi(t)), i = 1, · · · , N, (14)

qi(t) = yi(t + ri) − pri
(t), i = 1, · · · , N, (15)

where ai,1, · · · , ai,ri
are some constant parameters to be chosen such that Pi(z) = zri +

ai,1z
ri−1 + · · · + ai,ri−1z + ai,ri

is a stable polynomial.

We define the leader-following tracking error by ei(t) = yi(t)−y0(t), i = 1, · · · , N . The next

lemma establishes the relationship between the leader-following tracking error and the observer
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estimation error.

Lemma 3.13 For every follower agent i, the leader-following tracking error ei(t) satisfies

Pi(z)[ei](t) = q̃i(t), i = 1, · · · , N, (16)

where q̃i(t) = qi(t) + eoi
(t) with

eoi
(t) = (FSri

i (t)vi(t) − y0(t + ri)) +

ri−1∑

k=0

ai,ri−k(FSk
i (t)vi(t) − y0(t + k)). (17)

Proof For any interger k ≥ 0, yi(t + k) − FSk
i (t)vi(t) = yi(t + k) − y0(t + k) + y0(t + k) −

FSk
i (t)vi(t) = ei(t + k) + y0(t + k) − FSk

i (t)vi(t), i = 1, · · · , N. Substituting this expression

into the definition of qi(t) from (15) gives

qi(t) = yi(t + ri) − FSri

i (t)vi(t) +

ri−1∑

k=0

ai,ri−k(yi(t+k)−FSk
i (t)vi(t))

= ei(t + ri) + (y0(t + ri) − FSri

i (t)vi(t)) + ai,1ei(t + ri − 1) + ai,1(y0(t + ri − 1)

−FSri−1
i (t)vi(t)) + · · · + ai,ri

ei(t) + ai,ri
(y0(t) − Fvi(t))

= Pi(z)[ei](t) − eoi
(t), i = 1, · · · , N.

Therefore, it is easy to drive the conclusion. This completes the proof.

Remark 3.14 The decomposition q̃i(t) = qi(t) + eoi
(t) shows that the leader-follower

tracking error ei(t) is caused by two components. The term eoi
(t) characterizes the estima-

tion error between true leader outputs and the estimated ones. Thus, its zero convergence

is guaranteed by Lemma 3.9. Meanwhile, qi(t) captures the difference between agent’s out-

put and its estimate of the leader’s output. Consequently, if the control law ui(t) is designed

to drive qi(t) to zero, then the stability of Pi(z) guarantees asymptotical output tracking by

limt→∞ Pi(z)[ei](t) = 0. In other words, by focusing on regulating qi(t), we indirectly control

the tracking error. This is a certainly equivalence based design idea. Indeed, if Si(t) = S

and vi(t) = v0(t), then the equation (16) would become an equality with qi(t) becoming the

leader-following tracking error. Notably, the establishments of auxiliary signals pri
(t) and qi(t)

in (15) only rely on local estimation of leader’s information with the developed adaptive dis-

tributed observer (3). Thus, by converting the original leader-following tracking problem to a

local tracking control problem for the signal pri
(t) to be tracked and the error signal qi(t), we

could overcome the difficulty caused by heterogeneous nonlinear dynamics of the follower agent.

Motivated by Lemma 3.13, we consider taking qi(t) as the error variable to be regulated for

each agent i. We now design the control law for agent i with the system dynamics (1). First,

we define ρ∗i = 1
b∗

i

, i = 1, · · · , N , and δ∗i = ρ∗i θ
∗
i , i = 1, · · · , N . Then, for agent i, the adaptive

controller ui(t) is given by
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ui(t) = (1 + αi(t)bi(t))
−1(−δT

i (t)fi(xi(t)) − αi(t)θ
T
i (t)fi(xi(t)) + (ρi(t) + αi(t))pri

(t)), (18)

where δi(t), θi(t), ρi(t), and bi(t) denote estimates of parameters δ∗i , θ∗i , ρ∗i , and b∗i , respectively.

Additionally, the function αi(t) is a time-varying gain to be designed later to guarantee the

inverse operation 1 + αi(t)bi(t) remains nonzero.

Remark 3.15 In the controller (18), it is assumed that the nonlinear function fi(xi(t))

and the state xi(t) are available for every follower i. Moreover, the auxiliary signal pri
(t)

defined in (14) is constructed entirely from the agent’s output measurements yi(t + k), k =

0, 1, · · · , ri − 1, and the estimates Si(t) and vi(t), all of which are accessible to each agent.

Consequently, the control law (18) is implementable since no undetectable signals are involved.

However, note that the inverse operation in (18) may lead to high gain issues. Hence, the

time-varying gain αi(t) needs to be designed appropriately to ensure 1 + αi(t)bi(t) 6= 0, which

will be performed in the subsequent discussion.

3.3 Parameter Update Law

In this subsection, we devise a parameter update law for the controller parameter estimates.

For this purpose, we first derive the closed-loop error equation for each follower i based on the

control law (18). For i = 1, · · · , N , we rewrite (18) in the form

ui(t) = −δT
i (t)fi(xi(t)) − αi(t)θ

T
i (t)fi(xi(t)) + (αi(t) + ρi(t))pri

(t) − αi(t)bi(t)ui(t). (19)

According to the system dynamics (1), the output dynamics can be expressed compactly as

yi(t + ri) = θ∗Ti fi(xi(t)) + b∗i ui(t), i = 1, · · · , N. Next, by adding and subtracting the term

αi(t)yi(t + ri) in (19), we obtain

ui(t) = −δT
i (t)fi(xi(t)) − αi(t)θ

T
i (t)fi(xi(t)) + (ρi(t) + αi(t))pri

(t) − αi(t)bi(t)ui(t)

+αi(t)yi(t + ri) − αi(t)yi(t + ri)

= −δT
i (t)fi(xi(t)) − αi(t)θ̃

T
i (t)fi(xi(t)) + (ρi(t) + αi(t))pri

(t) − αi(t)̃bi(t)ui(t)

−αi(t)yi(t + ri), i = 1, · · · , N, (20)

where θ̃i(t) , θi(t) − θ∗i and b̃i(t) , bi(t) − b∗i . Since ρ∗i = 1
b∗

i

and δ∗i = ρ∗i θ
∗
i , it follows that

ρ∗i yi(t + ri) = δ∗Ti fi(xi(t)) + ui(t), i = 1, · · · , N. (21)

Substituting (20) into (21) gives

ρ∗i yi(t + ri) = −δ̃T
i fi(xi(t)) − αi(t)θ̃

T
i (t)fi(xi(t)) − αi(t)̃bi(t)ui(t) + (αi(t) + ρi(t))pri

(t)

−αi(t)yi(t + ri), i = 1, · · · , N, (22)

where δ̃i(t) , δi(t) − δ∗i . Introducing the parameter error ρ̃i(t) , ρi(t) − ρ∗i , we rearrange (22)

to obtain
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(ρi(t) + αi(t))yi(t + ri) = −δ̃T
i fi(xi(t)) − αi(t)θ̃

T
i (t)fi(xi(t)) − αi(t)̃bi(t)ui(t) + ρ̃i(t)yi(t + ri)

+(ρi(t) + αi(t))pri(t), i = 1, · · · , N.

Assuming ρi(t) + αi(t) 6= 0 for i = 1, · · · , N , the error variable qi(t) defined in (15) can be

expressed as

qi(t) = −δ̃T
i

fi(xi(t))

ρi(t) + αi(t)
− θ̃T

i (t)
αi(t)fi(xi(t))

ρi(t) + αi(t)
− b̃i(t)

αi(t)ui(t)

ρi(t) + αi(t)
+ ρ̃i(t)

yi(t + ri)

ρi(t) + αi(t)
. (23)

For each i = 1, · · · , N , we define the following parameter vector.

β∗
i = [δ∗Ti , θ∗Ti , b∗i , ρ

∗
i ]

T, βi(t) = [δT
i (t), θT

i (t), bi(t), ρi(t)]
T, β̃i(t) = βi(t) − β∗

i .

Also, for i = 1, · · · , N , define the regressor

ωi(t) =

[
−

fT
i (xi(t))

ρi(t) + αi(t)
,−

αi(t)f
T
i (xi(t))

ρi(t) + αi(t)
,−

αi(t)ui(t)

ρi(t) + αi(t)
,

yi(t + ri)

ρi(t) + αi(t)

]T

.

With these definitions, (23) becomes

qi(t) = β̃T
i (t)ωi(t), i = 1, · · · , N. (24)

Equation (24) characters the relationship between the parameter estimates and the error vari-

able qi(t). For convenience of statement, we refer the equation (24) as the tracking error

equation for the error variable qi(t). It is crucial to note that ρi(t) + αi(t) must never vanish

during adaptation to avoid singularities. The design of the time-varying gain αi(t) will ensure

this condition.

While the state xi(t) and the outputs yi(t + k), k = 0, 1, · · · , ri − 1, are available at the

current time, the signal yi(t + ri) is not directly measurable. This makes the regressor ωi(t)

impractical for immediate use. To avoid this casuality contradiction issue in adaptive design,

we introduce stable filter operators defined as

hi(z) =
1

z − λi

, i = 1, · · · , N, (25)

where 0 ≤ λi < 1 are chosen constants. Define the filtered versions of qi(t) and ωi(t) by

qi(z) = hi(z)[qi](t) and ωi(t) = hi(z)[ωi](t). Operating on both sides of (24) with the filter (25)

yields

qi(t) = hi(z)[βiωi](t) − β∗T
i ωi(t), i = 1, · · · , N, (26)

which we refer as the filtered tracking error equation for error variable qi(t). The filtered signals

qi(t) and ωi(t) are now available at the current time, thereby facilitating the subsequent design

of the parameter update law.
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Next, we proceed to develop a parameter update law for the estimated controller parameters

using an estimation cost criterion (see [44]). With the filtered tracking error qi(t), the estimation

error εi(t) is defined as

εi(t) = qi(t) − hi(z)[βT
i ωi](t) + βT

i (t)hi(z)[ωi](t), i = 1, · · · , N. (27)

By combining this definition with the filtered tracking error equation (26), we derive the fol-

lowing estimation error equation as

εi(t) = β̃T
i (t)ωi(t), i = 1, · · · , N. (28)

Using εi(t), i = 1, · · · , N , we then introduce a quadratic cost function Ji =
ε2

i

2m2
i

, where

m2
i = m2

i (t) , 1 + ωT
i (t)ωi(t) is a normalized signal. Based on the gradient of cost function Ji,

the parameter βi(t) is updated by the following parameter update law

βi(t + 1) = βi(t) −
Γiεi(t)ωi(t)

m2
i (t)

, i = 1, · · · , N, (29)

with the adaptive gain Γi satisfying 0 < Γi < 2I.

Remark 3.16 It is notable that the signal qi(t) involves the unmeasurable output signal

yi(t+ri), which makes it unavailable at the current time. In this case, we use qi(t) to define the

estimation error εi(t). Then, a linear regressive estimation error equation (28) can be derived

as above. This formulation allows us to derive the gradient based parameter update law (29)

for adjusting the controller parameters effectively.

Remark 3.17 Notably, the parameter update law (29) does not require any sign infor-

mation for bi, nor does the selection of the adaptive gain Γi depend on knowing an upper

bound for bi. This advantage stems from the design of new adaptive control law (18), which

leads to a linear tracking error equation (24) and, consequently, a linear regressive estimation

error equation (28) rather than the usual bilinear form. Specifically, if we design a conventional

adaptive control law of the form

ui(t) = −δT
i (t)fT

i (xi(t)) + ρi(t)pri(t), i = 1, · · · , N,

then the induced tracking error equation for the error variable qi(t), i = 1, · · · , N , would

be qi(t) = b∗i β̃
T
i (t)ωi(t) with β̃i(t) , βi(t) − β∗

i = [δT
i (t), ρi(t)]

T − [δ∗Ti , ρ∗i ]
T. After defining

an estimation error εi(t), one would typically arrive at a parameter update law to estimate

β∗
i = [δ∗Ti , ρ∗i ]

T and b∗i as follows

βi(t + 1) = βi(t) −
sign[b∗i ]Γiεi(t)ζi(t)

m2
i (t)

, i = 1, · · · , N,

bi(t + 1) = bi(t) −
γiεi(t)ξi(t)

m2
i (t)

, i = 1, · · · , N,
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where ζi(t) and ξi(t) are some regressors and the adaptive gain Γi satisfies 0 < Γ < 2I/b0
i with

b0
i being an upper bound of bi. In contrast, the parameter update law (29) based on control

law (18) avoids the need for both the sign information sign[b∗i ] and an upper bound b0
i . This

simplification, afforded by the linear regressive estimation error equation in (28), highlights a

key benefit of the new controller structure (18).

From the form of control law (18) and parameter update law (29), it is obvious that the

control algorithm may become singular if either 1 + αi(t)bi(t) = 0 or αi(t) + ρi(t) = 0 occurs.

To prevent such singularities, the following lemma gives the design of time-varying gain αi(t).

Lemma 3.18 If gain functions αi(t), i = 1, · · · , N , is designed as

αi(t) =





− (|ρi(t)| + αi) , bi(t) < 0,

|ρi(t)| + αi, bi(t) ≥ 0,
(30)

where αi is a arbitrary positive constant to be chosen, then the conditions 1 + αi(t)bi(t) 6=

0, ρi(t) + αi(t) 6= 0, i = 1, · · · , N would always hold for any ρi(t) ∈ R and bi(t) ∈ R.

The proof of Lemma 3.18 can be seen in the literature (see [38]). Lemma 3.18 ensures that

no singularity problem would arise in the adaptive process with αi(t), i = 1, · · · , N , defined

as (30).

3.4 Stability Analysis

We now analyse the closed-loop control performance. We begin by establishing properties

of the estimated parameters under the parameter update law (29).

Lemma 3.19 Under the parameter update law (29), for each agent i, the following prop-

erties hold: βi(t) ∈ L∞, εi(t)
mi(t)

∈ L2 ∩ L∞, and βi(t + 1) − βi(t) ∈ L2.

Proof Choose a positive definite function as: Vi(β̃i) = β̃T
i Γ−1

i β̃i. Then, it yields

Vi(β̃i(t + 1)) − V (β̃i(t)) = −

(
2 −

ωT
i (t)Γiωi(t)

m2
i (t)

)
ε2

i (t)

m2
i (t)

.

Since 0 < Γi = ΓT
i < 2I, it follows from the definition of mi(t) that Vi(β̃i(t + 1)) − Vi(β̃i(t)) ≤

−ki
ε2

i (t)

m2
i
(t)

for some constant ki > 0. This implies that βi(t) ∈ L∞ and εi(t)
mi(t)

∈ L2. Then, we get
εi(t)
mi(t)

∈ L∞. Further, we have βi(t + 1) − βi(t) ∈ L2. This completes the proof.

Based on the design process described, we now present the main theoretical result.

Theorem 3.20 Under Assumptions (A1) and (A2), for every follower agent i, the de-

veloped adaptive control law (18) and parameter update law (29) can achieve that the output

yi(t) tracks the leader’s output y0(t) asymptotically via the event-triggered communication based

adaptive distributed observer (3), i.e., limt→∞(yi(t) − y0(t)) = 0, i = 1, · · · , N .

Proof First, we prove some boundedness property of the regressor ωi(t). By the definition

of ωi(t) and the boundedness of the parameter estimates, it yields ‖ωi(t)‖ ≤ c maxk≤t ‖ui(k)‖+

c maxk≤t+ri
‖yi(k)‖ + c, i = 1, · · · , N, with c > 0 being a general constant bound. Lemma 3.6
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and Lemma 3.7 imply the estimates Si(t) and vi(t) are bounded. Then, since y0(t) is bounded

and qi(t) in (15) is defined based on measurable signals, we have ‖ωi(t)‖ ≤ c maxk≤t ‖qi(k)‖ +

c, i = 1, · · · , N. Since hi(z), i = 1, · · · , N, is stable filter and ωi(z) = hi(z)[ωi](z), we have

‖ωi(t)‖ ≤ c max
k≤t

‖qi(k)‖ + c, i = 1, · · · , N. (31)

Then, we prove the boundedness of closed-loop signals. It follows from the definition of nor-

malization signal mi(t) and (31) that

‖mi(t)‖ ≤ 1 + ‖ωi(t)‖ ≤ c max
k≤t

‖qi(k)‖ + c, i = 1, · · · , N. (32)

Without loss of generality, assuming that for i = 1, · · · , N , the filter hi(z) is selected as 1/z.

From the definition of the estimation error εi(t), i = 1, · · · , N , we obtain

qi(t) = εi(t) + hi(z)[βT
i ωi](t) − βT

i (t)hi(z)[ωi](t)

=
εi(t)

mi(t)
mi(t) − (βi(t) − βi(t − 1))Tωi(t). (33)

From Lemma 3.19, we have εi(t)
mi(t)

∈ L2 ∩ L∞ and βi(t) − βi(t − 1) ∈ L2 ∩ L∞. Hence, for

i = 1, · · · , N , it follows from (32) and (33) that

‖qi(t)‖ ≤

∣∣∣∣
∣∣∣∣
εi(t)

mi(t)

∣∣∣∣
∣∣∣∣ ‖mi(t)‖ + ‖βi(t) − βi(t − 1)‖‖ωi(t)‖ ≤ τ(t)max

k≤t
‖qi(k)‖ + c, (34)

where τ(t) denotes a general L2 ∩ L∞ function which converges to zero as t goes to ∞. From

the definition of qi(t) and (34), it yields that qi(t), i = 1, · · · , N , is bounded. Therefore,

we get qi(t), i = 1, · · · , N , is bounded. Noting the definition of qi(t) in (15), we obtain

yi(t), i = 1, · · · , N , is bounded. Then, it is easy to drive the control law ui(t), i = 1, · · · , N,

designed as (18) are bounded with the boundness of yi(t) and the non-singularity of 1+αi(t)ρi(t)

shown in Lemma 3.18. Further, all signals in the closed-loop signals can be proven as bounded.

Finally, we prove the tracking performance. It follows from εi(t)
mi(t)

∈ L2 ∩ L∞ and βi(t) −

βi(t − 1) ∈ L2 ∩ L∞ in Lemma 3.19 and (33) that qi(t) ∈ L2 ∩ L∞, i.e., limt→∞ qi(t) =

0, i = 1, · · · , N . The stability of the filters hi(z), ensures that limt→∞ qi(t) = 0, i = 1, · · · , N .

From Lemma 3.6 and Lemma 3.7, we obtain that limt→∞ eoi
= 0, i = 1, · · · , N , by noting its

definition in (17). Then, combining limt→∞ eoi
= 0 and limt→∞ qi(t) = 0 gives limt→∞ q̃i(t) =

0, i = 1, · · · , N . Further, invoking Lemma 3.13, we conclude that limt→∞ Pi(z)[ei](t) = 0, i =

1, · · · , N . Because Pi(z) is a stable polynomial for i = 1, · · · , N , it yields that limt→∞ ei(t) =

0, i = 1, · · · , N , which implies the asymptotical convergence of leader-following tracking errors

ei(t), i = 1, · · · , N . This completes the proof.

So far, a distributed leader-following adaptive tracking control strategy has been developed

that enables each follower agent to asymptotically track the leader using only neighboring

information. This strategy contains two main steps, i.e., estimating leader’s dynamics matrix
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and state signal by an adaptive distributed observer and regulating the behavior of each follower

by an adaptive controller. Particularly, by incorporating an event-triggered mechanism, the

communication frequency among follower agents is reduced, as demonstrated by the decaying

communication rate. Furthermore, the novel controller structure ensures that no prior system

parameter information, such as sign[bi] and upper bound of bi, is needed to achieve stable

parameter update law design.

4 Simulation Study

This section presents a numerical example to illustrate the validity of the developed control

method.

4.1 Simulaiton Model

Consider an MAS including a leader system with the dynamics (2) and four follower sys-

tems with the dynamics (1). Specifically, the four follower agents have the following system

parameters and nonlinear dynamics.

θ∗1 = [1,−1], b∗1 = 0.5, f1(x1) = [sinx11,
√

1 + sin x12],

θ∗2 = [2,−1], b∗2 = −1, f2(x2) = [0.5 sin ln(x21)
2,

√
(1 + sin x22)2],

θ∗3 = [1,−1], b∗3 = −1, f3(x3) = [1 + sinx33,
√

x2
31 + x2

32],

θ∗4 = [1,−1], b∗4 = −0.5, f4(x4) = [sinx41, sinx42],

where x1 = [x11, x12], x2 = [x21, x22], x3 = [x31, x32, x33], x4 = [x41, x42] are the state

variable of four follower agents. Thus, we derive that relative degrees of four follower agents

are r1 = 2, r2 = 2, r3 = 3, r4 = 2. The leader system is with the initial value v(0) = [0, 2]T and

possesses the following system matrix

S =



S11 S12

S21 S22



 =



 cos π
6 sin π

6

− sin π
6 cos π

6



 , F = [1, 0].

The communication graph of the MAS is depicted as Figure 1, where aij = 1 if a directed edge

from node j to node i exists.

Figure 1 Communication graph
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For the event-triggered communication based adaptive distributed observer (3), we choose

the observer gain as µ(t) = t−0.4 and the triggering threshold gi(t) = t−0.7 for i = 1, 2, 3, 4, which

satisfy µ∗(1 + di) > 1. The initial estimates are set as S1(0) = 1.1S, S2(0) = 0.8S, S3(0) =

0.9S, S4(0) = 1.2S and v1(0) = [−1, 3]T, v2(0) = [2, 2]T, v3(0) = [−2, 1]T, v4(0) = [3, 2.2]T.

For the adaptive controller design of agent i, i = 1, 2, 3, 4, we choose the adaptive gain Γi = I

and αi = 0.5 for i = 1, 2, 3, 4. Setting initial values as β1(0) = [1,−2.3, 1.1,−1.5,−0.5, 1.5]T,

β2(0) = [−2.1, 1.5, 2.2,−1.5,−1.5,−0.5]T, β3(0) = [0.8,−2.5,−0.2, 2.5,−1.5,−1.2]T, β4(0) =

[−2.5, 1.1, 1.2,−0.8,−0.9,−3]T and x1(0) = [1, 5]T, x2(0) = [1, 4]T, x3(0) = [−2, 3, 2]T, x4(0) =

[−3, 3]T. Moreover, we choose a11 = −1, a12 = 1/4, a21 = −1, a22 = 1/4, a31 = −3/2, a32 =

3/4, a33 = −1/8, a41 = −1, a42 = 1/4. Then, for every agent i, we could determine the control

law ui(t) with (18) and the parameter update law with (29).

4.2 Simulation Results

The simulation results are presented in Figures 2–7. Figure 2 and Figure 3 display the

trajectories of estimate errors vi(t) − v0(t) = [vi1(t) − v01(t), vi2(t) − v02(t)]
T and Si(t) −

S = [Si11(t) − S11, Si12(t) − S12; Si21(t) − S21, Si22(t) − S22] for agent i, i = 1, 2, 3, 4, under

the proposed adaptive distributed observer. Figures 2–3 confirms that the both the leader’s

dynamics matrix S and state v0(t) are asymptotically estimated, which is in accordance with

the results of Lemma 3.6 and Lemma 3.7. Figure 4 illustrates the leader-following tracking

performance and Figure 5 shows the trajectory of parameter estimates bi(t), i = 1, 2, 3, 4, which

demonstrates that the control strategy achieves both asymptotical tracking and closed-loop

stability. To access the event-triggered mechanism, we simulate the trajectories of triggering

instants and the communication rate, as shown in Figure 6 and Figure 7, respectively. These

results indicate that the introduced event-triggered mechanism reduces the communication

frequency, leading to a decaying communication rate. In a word, this simulation demonstrates

the validity of the proposed distributed adaptive control method.
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5 Concluding Remarks

This paper develops a distributed adaptive control approach to achieve leader-following

tracking for an MAS with nonlinear uncertain follower agent dynamics. By designing an

adaptive distributed observer, the follower agent could estimate the leader’s information solely

through local communication. Building on this, an adaptive control law along with a parameter

update law is designed ensure that each follower’s output converges to that of the leader de-

spite parameter uncertainties. In particular, an event-triggered mechanism is integrated within

the adaptive distributed observer to reduce communication frequency among the followers, as

evidenced by a decaying communication rate. Notably, the proposed controller structure elim-

inates the need for any prior parameter knowledge when designing a stable adaptive update

law. For future study, the switching topology of communication graph is worth investigating.

In addition, a time-varying leader’s dynamics matrix would be a bigger challenge to be solved,

where the time-varying observer gain may fail for the observer design. Further, a more mean-
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ingful topic might be considering that the leader dynamics is a non-autonomous system. That

is, the leader agent is driven by a external reference input. In this case, the common distributed

observer technique may not be effective. This would be a future research focus.
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Appendix

Proof of Lemma 3.6 First, we denote Φ1(t, s) =
∏t

k=s(I −µ(k)(H⊗ I)). Then, it follows

from (7) that

s̃(t + 1) = Φ1(t, t0)s̃(t0) +

t∑

k=t0

Φ1(t, k + 1)µ(k)(−H ⊗ In2)es(k), (A.1)

where Φ1(t, t+1) , I. Based on Assumption (A1) and Lemma 3.4, we obtain λa , λmin(H) > 0.

Since µ(t) is non-increasing and satisfies limt→∞ µ(t) = 0, there exists a finite time instant t1 > 0

such that µ(t)H < I. Then, for sufficiently large t ≥ t1, we have

Φ1(t, t1) =

t∏

k=t1

(I − µ(k)(H ⊗ In2 )) ≤
t∏

k=t1

(1 − λaµ(k))I. (A.2)

Thus, for sufficiently large t ≥ t1, it follows from (A.1) and (A.2) that
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‖s̃(t + 1)‖ ≤ ‖Φ1(t, t1)‖‖s̃(t1)‖ + λb

t∑

k=t1

‖Φ1(t, k + 1)‖µ(k)‖es(k)‖

≤
t∏

k=t1

(1 − λaµ(k))‖s̃(t1)‖ + λb

t∑

k=t1

t∏

l=t1+1

(1 − λaµ(l))µ(k)‖es(k)‖, (A.3)

where 0 < λb , λmax(H). From the event-triggered mechanism (6), it yields that ‖esi
(t)‖ ≤

gi(t), i = 1, · · · , N . Noting that the triggering threshold gi(t) = O(µdi(t)) with di satisfying

µ∗(1 + di) > 1, i = 1, · · · , N , it follows from Lemma 3.5 and the definition of es(t) in (5) that

t∏

k=t1

(1 − λaµ(k)) ≤ c exp

(
λa

µ∗ − 1
(t + t0)

1−µ∗

)
,

t∑

k=t1

t∏

l=t1+1

(1 − λaµ(l))µ(k)es(k) ≤ c (t + t0)
−µ∗(1+d) , (A.4)

where c > 0 denotes a general constant signal bound and d , min{d1, · · · , dN}. Then, for

sufficiently large t > t1, combining (A.3) and (A.4) gives

‖s̃(t + 1)‖ ≤ c exp

(
λa

µ∗ − 1
(t + t0)

1−µ∗

)
+ c (t + t0)

−µ∗(1+d) ≤ c (t + t0)
−µ∗(1+d)

,

which indicates that limt→∞ ‖s̃(t)‖ = 0. Thus, we have limt→∞ si(t) = s, i.e., limt→∞ Si(t) = S,

i = 1, · · · , N . This completes the proof.

Proof of Lemma 3.7 First, we denote F1(t) = (I ⊗ S)− µ(t)(H ⊗ S), F2(t) = −(S̃d(t)−

µ(t)A(t)), F3(t) = S̃d(t)(I ⊗ v0(t)) − µ(t)B(t)ev(t). Then, it follows from (8) that ṽ(t + 1) =

(F1(t)+F2(t))ṽ(t)+F3(t). Based on the convergence of Si(t) in Lemma 3.6, we have ‖F2(t)‖ ≤

c (t + t0)
−µ∗(1+d) for sufficiently large t > t1. Denote Φ2(t, s) =

∏t

k=s(F1(k)+F2(k)). Thus, we

get

‖ṽ(t + 1)‖ ≤ ‖Φ2(t, t1)‖‖ṽ(t1)‖ +

t∑

k=t1

‖Φ2(t, k + 1)‖‖F3(k)‖. (A.5)

Based on Assumption (A2), for sufficiently large t > t1, we have

∣∣∣∣∣

∣∣∣∣∣

t∏

k=s

F1(k)

∣∣∣∣∣

∣∣∣∣∣ =

∣∣∣∣∣

∣∣∣∣∣

t∏

k=s

(I − µ(k)H) ⊗ St−s+1

∣∣∣∣∣

∣∣∣∣∣ ≤
∣∣∣∣∣

∣∣∣∣∣

t∏

k=s

(I − µ(k)H)

∣∣∣∣∣

∣∣∣∣∣ ≤
t∏

k=s

(1 − λaµ(k)). (A.6)

Thus, it follows from Lemma 3.5 and (A.6) that

‖Φ2(t, t1)‖‖ṽ(t1)‖ ≤ c

∣∣∣∣∣

∣∣∣∣∣

t∏

k=s

F1(k)

∣∣∣∣∣

∣∣∣∣∣ + c(t + t0)
−µ∗(1+d)
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≤ c
t∏

k=t1

(1 − λaµ(k)) + c(t + t0)
−µ∗(1+d)

≤ c exp

(
λa

µ∗ − 1
(t + t0)

1−µ∗

)
+ c(t + t0)

−µ∗(1+d)

≤ c(t + t0)
−µ∗(1+d). (A.7)

In addition, from Assumption (A2), the state variable v0(t) of the leader system (2) is bounded.

Then, for sufficiently large t > t1, it follows from Lemma 3.6 that ‖S̃d(t)(I ⊗ v0(t))‖ ≤ c(t +

t0)
−µ∗(1+d). From the event-triggered mechanism in (6), we have ‖evi

(t)‖ ≤ gi(t) ≤ cµdi(t), i =

1, · · · , N . From Lemma 3.6, the estimates Si(t), i = 1, · · · , N , are bounded. Thus, the signal

B(t) is bounded. Then, for sufficiently large t > t1, we have ‖µ(t)B(t)ev(t)‖ = cµdi+1(t) ≤

c(t+t0)
−µ∗(1+d). Then, we have ‖F3(t)‖ ≤ c(t+t0)

−µ∗(1+d) for sufficiently large t > t1. Further,

it follows from Lemma 3.5 that

t∑

k=t1

‖Φ2(t, k + 1)‖‖F3(k)‖ ≤
t∑

k=t1

∣∣∣∣∣

∣∣∣∣∣

t∏

l=k+1

F1(k)

∣∣∣∣∣

∣∣∣∣∣ ‖F3(k)‖ + c(t + t0)
−µ∗(1+d)

≤ c

t∑

k=t1

t∏

l=s+1

(1 − λaµ(l))µ1+d(k) + c(t + t0)
−µ∗(1+d)

≤ c(t + t0)
−µ∗(1+d). (A.8)

Finally, it follows from (A.5), (A.7) and (A.8) that ‖ṽ(t+1)‖ ≤ c(t+ t0)
−µ∗(1+d), which implies

limt→∞ ṽ(t) = 0, i.e., limt→∞ vi(t) = v0(t), i = 1, · · · , N . This completes the proof.

Proof of Lemma 3.9 With the leader dynamics (2), we have FSi(t)vi(t) − y0(t + 1) =

F (Si(t)vi(t) − Sv0(t)). Since Si(t)vi(t) − Sv0(t) = Si(t)(vi(t) − v0(t)) + (Si(t) − S)v0(t), it

follows from Lemma 3.6 and Lemma 3.7 that (12) holds for k = 1. For k > 1, we have

Sk
i (t) − Sk = Sk

i (t)(Si(t) − S) + Sk−2
i (t)(Si(t) − S)S + · · · + (Si(t) − S)Sk−1.

From Lemma 3.6, we obtain Si(t) is bounded and limt→∞(Si(t) − S) = 0, which implies that

limt→∞(Sk
i (t) − Sk) = 0. Moreover, we have

Sk
i (t)vi(t) − Skv0(t) = Sk

i (t)vi(t) − Sk
i (t)v0(t) + Sk

i v0(t) − Skv0(t)

= Sk
i (vi(t) − v0(t)) + (Sk

i (t) − Sk)v0(t).

Since v0(t) and Si(t) are bounded and noting y0(t+k) = FSkv0(t) and limt→∞(vi(t)−v0(t)) = 0,

we obtain (12) holds for k > 1. This completes the proof.

Proof of Lemma 3.11 First, it follows from (3) that ‖esi
(t+1)‖ = ‖ŝi(t+1)−si(t+1)‖ ≤

‖ŝi(t) − si(t)‖ + µ(t)‖
∑N

j=0 aij(sj(t) − si(t))‖ + µ(t)‖
∑N

j=0 aij(esj
(t) − esi

(t))‖, i = 1, · · · , N.

Denote d0 = maxi∈V
∑

j∈Ni
aij . From Lemma 3.6, we have ‖si(t) − s‖ ≤ cr(t), i = 1, · · · , N .

Then, for sufficiently large t ∈ [tik, tik+1), we have
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‖esi
(t + 1)‖ ≤ ‖ŝi(t) − si(t)‖ + d0µ(t)max

i∈V
‖si(t) − s‖ + d0µ(t)gi(t)

≤ ‖ŝi(t) − si(t)‖ + cµ(t)r(t) + cµ(t)gi(t)

≤ ‖ŝi(t) − si(t)‖ + cr(t)

= ‖esi
(t)‖ + cr(t), i = 1, · · · , N. (A.9)

Moreover, it follows from the event-triggered mechanism (6) that ‖evi
(t)‖ = ‖v̂i(t) − vi(t)‖ ≤

gi(t) and ‖esi
(t)‖ = ‖ŝi(t) − si(t)‖ ≤ gi(t) for sufficiently large t ∈ [tik, tik+1). Besides, from

Assumption (A2), we have ‖S‖ ≤ 1. Then, for sufficiently large t ∈ [tik, tik+1), we have

‖evi
(t + 1)‖ ≤ ‖S‖‖v̂i(t) − vi(t)‖ + ‖Ŝi(t) − S‖‖v̂i(t) − vi(t)‖ + ‖(Si(t) − Ŝi(t))vi(t)‖

+

∥∥∥∥µ(t)Si(t)
N∑

j=0

aij(vj(t) − vi(t))

∥∥∥∥ +

∥∥∥∥µ(t)Si(t)
N∑

j=0

aij(esj
(t) − esi

(t))

∥∥∥∥

≤ ‖v̂i(t) − vi(t)‖ + cr(t)gi(t) + cµ(t)r(t) + cµ(t)gi(t)

≤ ‖evi
(t)‖ + cr(t), i = 1, · · · , N. (A.10)

Define Li
k as the time interval between the kth trigger time instant and the (k + 1)th trigger

time instant for agent i, i = 1, · · · , N . Then, from (A.9), (A.10), and the monotonicity of r(t),

we obtain

‖esi
(tik+1)‖ + ‖evi

(tik+1)‖ ≤ ‖esi
(tik+1 − 1)‖ + ‖evi

(tik+1 − 1)‖ + cr(tik+1 − 1)

≤ ‖esi
(tik − 1)‖ + ‖evi

(tik − 1)‖ + c

ti
k+1−1∑

k=ti
k

r(k)

≤ cLi
kr(tik), i = 1, · · · , N. (A.11)

Noting the event-triggered mechanism (6), we observer that to ensure the event is triggered for

agent i at the time instant tik, a necessary condition is cLi
kr(tik) > gi(t

i
k+1), i = 1, · · · , N, which

is equivalent to Li
k > cr−1(tik)gi(t

i
k + Li

k), i = 1, · · · , N. From the conditions on the threshold

gi(t), we have the following inequality holds Li
k ≥ c(tik)σ, i = 1, · · · , N. Then, for k, s ∈ N

+

such that k > s, the following inequality holds tik ≥ tis + c
∑k−1

j=s (tij)
σ, i = 1, · · · , N. Note that

tij ≥ j. Then, the following inequality holds tik ≥ tis+c
∑k−1

j=s jσ ≥ c(k−1)σ+1, i = 1, · · · , N. For

tik ≤ t < tik+1, it yields k < (
t−ti

s

c
)

1
σ+1 +1, i = 1, · · · , N, which means Ki(t) ≤ (

t−ti
s

c
)

1
σ+1 +1, i =

1, · · · , N. Thus, for i = 1, · · · , N , it follows from σ ∈ (0, 1) that

lim
t→∞

Ki(t)

t
< lim

t→∞

1

t

((
t − tis

c

) 1
σ+1

+ 1

)
= 0,

which combines the definition of λc(t) imply limt→∞ λc(t) = 0. This completes the proof.


