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Abstract—This article investigates the online identifica-
tion problem of binary-valued moving average systems.
A stochastic approximation-based algorithm without pro-
jections or truncations is proposed. To analyze the con-
vergence property of the algorithm, the distribution tail
of the parameter estimate is proved to be exponentially
convergent through an auxiliary stochastic process. Under
uniform persistent excitations, the almost sure and mean
square convergence of the algorithm is obtained. When the
step-size coefficient is properly selected, the almost sure
and mean square convergence rates are proved to reach
O(

√
ln ln k/k) and O(1/k), respectively, where k is the

sample size. A numerical example is given to demonstrate
the effectiveness of the proposed algorithm and theoretical
results.

Index Terms—Binary-valued systems, recursive identifi-
cation, stochastic approximation (SA), stochastic systems,
uniform persistent excitations.

I. INTRODUCTION

B INARY-VALUED systems emerge widely in practice. For
example, in automotive and chemical process applications,

oxygen sensors are used for evaluating gas oxygen contents [1],
[2], [3]. Inexpensive oxygen sensors are switching types that
change their voltage outputs sharply when excess oxygen in
the gas is detected. More examples can be seen in genetic
association studies [4], [5], radar target recognition [6], and
credit scoring [7]. The appearance of the above binary-valued
sensors brings forward new requirements for identification the-
ory, which is the focus of this article. There are some impor-
tant identification algorithms proposed for binary-valued and
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finite-valued systems [8], [9], [10], [11], [12], [13], [14], many
of which are offline. Offline methods take full advantage of the
statistical property of the finite-valued outputs, and require fewer
assumptions than the online ones. However, in some scenarios,
for instance, in adaptive control problems, online identification
is of great importance, since online identification methods need
less memory and computation complexity, and can update the
parameter estimate quickly [15]. The online identification of
binary-valued and finite-valued systems has been investigated
under different type inputs [2], [16], [17], [18], [19], [20], [21],
[23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33],
[34]. For example, the authors in [16], [17], and [18] assume the
inputs to be independent and identically distributed (i.i.d.), and
propose stochastic approximation (SA) algorithms with expand-
ing truncations for binary-valued systems. You [19] required
i.i.d. inputs, and gave a stochastic gradient-based algorithm.
These algorithms are all proved to be convergent almost surely.
Besides, the authors in [2], [20], [21], [22], [23], [24], [25],
[26], [27], [28], and [29] consider periodic inputs, and propose
empirical measurement methods. The methods can be applied
in infinite impulse response systems and Hammerstein systems
with binary-valued observations [23], [28]. The authors in [30]
and [31] consider uniformly persistently exciting inputs, and
design sign-error type identification algorithms. The authors
in [32], [33], and [34] assume the inputs to be persistently
exciting, and propose recursive projection methods.

There are two types of sensors considered in the finite-valued
system identification problems. One type sensors are adaptive
ones, whose thresholds can be adjusted according to historical
data [16], [30], [31]. In the adaptive sensor case, the system
outputs provide richer information when the thresholds are
properly selected. Another type sensors are fixed ones, whose
thresholds are time-invariant [2], [20], [21], [22], [23], [24],
[25], [26], [27], [28], [29], [32], [33], [34]. Fixed sensors are
more common in practical scenarios. A practical example of the
fixed finite-valued sensors is the oxygen sensors in automotive
and chemical process [1], [2], [3]. This article focuses on the
binary-valued system identification problem under uniform per-
sistent excitations and fixed binary-valued sensors. The problem
has been studied in [32], [33], and [34], but these works require
that the unknown parameter is located in a known compact set.
They design projections according to the a priori information
on parameter location to ensure the uniform boundedness of the
identification algorithms.
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We consider the case without any a priori information on
the parameter location. In this case, the identification algorithm
should have the ability to search unknown parameters in the
whole space. Therefore, the projections in [32], [33], and [34]
should be removed for the convergence properties, which cause
the algorithm to lose the uniform boundedness. This makes
it difficult to analyze the convergence properties of the algo-
rithm. To overcome the difficulty, in the periodic input case,
Zhao et al. [29] calculated the distribution tail of the parameter
estimate, which is the probability that the parameter estimate
exceeds a certain compact set. In the nonperiodic input case,
the distribution of observation sequences does not maintain
periodicity and therefore is more complex, which makes the
distribution tail of the parameter estimate difficult to be calcu-
lated.

To solve the difficulty, this article constructs a stochastic
process with averaged observations (SPAO), which builds a
bridge between the average of the binary-valued observations
and the algorithm. By SPAO, we can utilize the distribution tail
of the observation average to estimate the distribution tail of the
algorithm.

In this article, an SA-based algorithm without projections or
truncations is proposed for the binary-valued moving average
(MA) system identification problem. The main contributions of
this article are as follows.

1) A new SA-based identification algorithm without projec-
tions is proposed for binary-valued MA systems. Using
this algorithm, we can recursively obtain the unknown
parameter under uniform persistent excitations without
any a priori information on the parameter location. It is
the first paper where such a property is derived in the fixed
finite-level quantizer and nonperiodic deterministic input
case.

2) The convergence properties of the SA-based identifica-
tion algorithm are established. To be specific, the al-
most sure convergence and mean square convergence
are induced through the exponential convergence of the
estimation error distribution tail. Besides, when the step-
size coefficient is properly selected, the almost sure con-
vergence rate is proved to be O(

√
ln ln k/k), which

is first achieved among online identification algorithms
of stochastic binary-valued systems under nonperiodic
inputs. Moreover, the mean square convergence rate is
proved to beO(1/k), which is the best mean square con-
vergence rate in theory under binary-valued observations
and even accurate ones.

3) A new constructive methodology is developed for the
convergence analysis of binary-valued system identifica-
tion algorithms. Specially, SPAO is constructed to reveal
the connection between the average of the binary-valued
observations and the convergence properties of the al-
gorithm. Moreover, the methodology is also shown to be
practical for a common class of recursive identification al-
gorithms for binary-valued systems, such as the stochastic
gradient-based algorithm [19] and the quasi-Newton type
algorithms [33], [34].

The rest of this article is organized as follows. Section II
formulates the identification problem. Section III proposes an
SA-based identification algorithm of binary-valued systems.
Section IV gives the convergence analysis. Section IV-A con-
structs an auxiliary stochastic process named SPAO and dis-
cusses its property. Based on SPAO, Section IV-B estimates the
distribution tail of the estimation error, and gives the almost sure
and mean square convergence. Sections IV-C and IV-D analyze
the almost sure and mean square convergence rates, respectively.
Section V simulates a numerical example to demonstrate the
theoretical results. Finally, Section VI concludes this article.

Notations: In the rest of this article, N, R, and Rn denote the
sets of natural numbers, real numbers, and n-dimensional real
vectors, respectively. I{·} denotes the indicator function, whose
value is 1 if its argument (a formula) is true, and 0, otherwise.
‖x‖ is the Euclidean norm for vector x. In is an n× n identity
matrix. �x� is the largest integer that is smaller than or equal to
x ∈ R. The positive part of x is denoted as x+ = max{x, 0}.
For square matrices Al, . . . , Ak, denote

∏k
i=lAi = Ak · · ·Al

for k ≥ l. Relations between two series ak and bk are defined as
follows:

1) ak = O(bk) if ak = ckbk for a bounded ck;
2) ak = o(bk) if ak = ckbk for a ck that converges to 0.

II. PROBLEM FORMULATION

Consider the MA system

yk = φ�k θ + dk, k ≥ 1 (1)

where φk = φ(uk, uk−1, . . . , uk−n̄+1) ∈ Rn is a regressed
function of inputsuk for some n̄ > 0, θ ∈ Rn is the unknown pa-
rameter, anddk is the system noise, respectively. The unobserved
system output yk is measured by a binary-valued sensor with a
fixed threshold C, which can be represented by an indicator
function

sk = I{yk≤C} =
{
1, yk ≤ C;
0, yk > C.

(2)

Our goal is to identify the unknown parameter θ based on the
regressed vector φk and the binary observation sk.

Assumption 1: The sequence {φk, k ≥ 1} is bounded, i.e.,

sup
k≥1

‖φk‖ ≤M <∞

and there exist a positive integerN ≥ n and a real number δ > 0
such that

1

N

k+N−1∑
i=k

φiφ
�
i ≥ δIn, k ≥ 1. (3)

Remark 1: The condition (3) is usually called “uniform per-
sistent excitation condition” or “sufficiently rich condition” [32],
[35]. Assumption 1 is common in the binary-valued system
identification field [31], [32].

Assumption 2: The system noise sequence {dk, k ≥ 1} is
i.i.d. with zero mean and finite variance, whose distribution
and density function are denoted as F (·) and f(·), respectively.
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The distribution F (·) is Lipschitz continuous, and the density
function f(·) satisfies

inf
x∈X

f(x) > 0 (4)

for any bounded open set X.
For simplicity of notation, denote

Fk = F
(
C − φ�k θ

)
, fk = f

(
C − φ�k θ

)
.

Then, Esk = P{yk ≤ C} = Fk.
Remark 2: Gaussian noise, Laplacian noise, and t-

distribution noise are all examples satisfying Assumption 2.
Moreover, if (4) does not hold for the system noise, we can add a
dither to the binary sensor [2]. Under Assumption 2, the density
function f(·) is bounded because of the Lipschitz continuity of
the distribution function F (·).

Remark 3: It will be a more general problem when the noise is
Gaussian with an unknown variance σ2. In this case, we can use
the similar technique of [26] to transform the joint identification
problem for θ and σ2 into the identification problem for a new
binary-valued system with known noise variance.

III. IDENTIFICATION ALGORITHM

This section will propose an SA-based algorithm for the MA
system (1) with binary observation (2).

In the viewpoint of SA, the identification problem can be
treated as the problem to find the roots of

μk(θ̂) = F
(
C − φ�k θ̂

)
− Fk, k ≥ 1.

Because θ is unknown, Fk is unavailable. Besides, sk is avail-
able, and its expectation is Fk. We replace Fk with sk. Then,
based on the SA method [36], the identification algorithm is
given as

θ̂k = θ̂k−1 + ρkφk

(
F

(
C − φ�k θ̂k−1

)
− sk

)
where ρk ∈ R is the step-size.

Remark 4: In the algorithm design, Fk can be replaced with
sk because {sk − Fk} is a martingale difference sequence with
uniformly bounded variances. When the step-size is properly
selected, martingale difference noises with uniformly bounded
variances will not influence the convergence of SA-based algo-
rithms [36].

Denote F̂k = F (C − φ�k θ̂k−1). Set ρk = β/k, where β > 0
is a constant coefficient. Then, the SA-based algorithm is given
as follows:

θ̂k = θ̂k−1 +
βφk
k

(
F̂k − sk

)
∀k > k0 (5)

where k0 ∈ N is the starting point, and the initial value θ̂k0 can
be arbitrarily selected in Rn.

The observation error θ̂k − θ is denoted as θ̃k.
Remark 5: Algorithm (5) is similar to the recursive projection

algorithm proposed in [32]. The main difference is that we
do not introduce any projections or truncations in (5). The
difference brings major difficulty in the convergence analysis.
The convergence analysis of the recursive projection algorithm

relies on the fact that if the search region is constrained in a
compact set, then there is a uniform positive lower bound for
−(F̂k − Fk)/φ

�
k θ̃k−1. Without any projection, Algorithm (5)

can reach every point in the whole space. Then, the infimum of
−(F̂k − Fk)/φ

�
k θ̃k−1 can be arbitrarily close to 0. To overcome

the problem, we should investigate the distribution tail of the
algorithm.

Remark 6: The step-size ρk that converges to 0 is used to
reduce the effect of noise dk [36]. In the SA method [36], ρk
should satisfy

∑∞
i=1 ρi = ∞ and

∑∞
i=1 ρ

2
i <∞. One of the

example is ρk = β/k that is used in (5). Another example is
ρk = β/(1 +

∑k
i=1 ‖φi‖2) that is used in [32].

Remark 7: In Algorithm (5), F̂k is used to approximate sk
because F̂k = E[sk(θ)|θ = θ̂k−1]. Therefore, in the multiple
threshold case with threshold number q, Algorithm (5) also
works after replacing F̂k with E[sqk(θ)|θ = θ̂k−1], where sqk is
the corresponding observation in {0, 1, . . . , q}.

IV. CONVERGENCE

This section will focus on the convergence analysis of the al-
gorithm, including the distribution tail, almost sure convergence
rate, and mean square convergence rate. An auxiliary stochastic
process is introduced first to assist in the analysis.

A. Stochastic Process With Averaged Observations

This section will introduce an auxiliary stochastic process
satisfying the following:

1) the trajectory of the stochastic process gradually ap-
proaches that of the estimation error θ̃k;

2) the convergence property of the stochastic process is easy
to analyze compared with that of the algorithm.

The construction is inspired by the idea that βφk(Fk − sk)
can be replaced by the linear combination ofwk andwk−1, where

wk =

∑k
i=1 βφi(Fi − si)

k
(6)

i.e.,

βφk(Fk − sk) =
k∑
i=1

βφi(Fi − si)−
k−1∑
i=1

βφi(Fi − si)

= k (wk − wk−1) + wk−1.

Define ψk = θ̃k − wk. Then, by the transformation above

ψk = ψk−1 +
βφk
k

(
F

(
C − φ�k θ − φ�kψk−1 − φ�kwk−1

)
− F

(
C − φ�k θ

))
+
wk−1

k
. (7)

The above stochastic process is named as SPAO. With SPAO, the
convergence property of the algorithm can be analyzed through
that of wk.

Remark 8: For general SA methods,wk is also used to verify
the robustness of the algorithm ([36], Assumption 2.7.3, Th.
2.7.1).
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To analyze the properties of SPAOψk, we should first estimate
the distribution tail of wk.

Lemma 1: Let wk be defined in (6), and assume that the
following holds:

1) φk ∈ Rn is bounded;
2) sk ∈ {0, 1} is a binary random variable with expectation
Fk, and the sequence {sk, k ≥ 1} is independent.

Then, for any ε ∈ (0, 12 ), there exists m > 0 such that

P

{
sup
j≥k

jε ‖wj‖ > 1

}
= O

(
exp(−mk1−2ε)

)
.

The proof is given in Appendix A.
Next, we give the following lemma to describe the distance

between ψk and the estimation error θ̃k in three different senses
based on Lemma 1.

Lemma 2: Assume that the following holds:
1) system (1) with binary observation (2) satisfies Assump-

tions 1 and 2;
2) wk is defined in (6), and ψk = θ̃k − wk.

Then, we have the following:
1) for any ε ∈ (0, 12 ), there existsm > 0 such that P{‖θ̃k −
ψk‖ > k−ε} = O(exp(−mk1−2ε));

2) ‖θ̃k − ψk‖ = O(
√

ln ln k/k), a.s.;
3) E‖θ̃k − ψk‖2 = O(1/k).

Proof: Since θ̃k − ψk = wk, the three parts of the lemma
can be obtained immediately from Lemma 1, the law of it-
erated logarithm ([37], Th. 10.2.1), and E‖wk‖2 = O(1/k),
respectively. �

Then, by using Lemmas 1 and 2, the following theorem
estimates the distribution tail of SPAO ψk.

Theorem 1: Under the condition of Lemma 2, for anyM ′ > 0
and ε ∈ (0, 12 ), when k is sufficiently large

{‖ψk‖2 < M ′} ⊇
{

sup
j≥�k1−ε�

jε ‖wj‖ ≤ 1

}
.

Furthermore, there exists m > 0 such that

P
{‖ψk‖2 ≥M ′} = O

(
exp

(
−mk(1−ε)(1−2ε)

))
.

Proof: Set ks = �k1−ε� and k′s = k −N�k−ksN �. It is worth
mentioning that k′s ∈ [ks, ks +N − 1], and k − k′s is divisible
byN . Assume that supj≥ks j

ε‖wj‖ ≤ 1 is true in the rest of the
proof. Then, it suffices to prove that ‖ψk‖2 < M ′.

We first simplify the recursive formula of ‖ψk‖2. By (7)
and the monotonicity and Lipschitz continuity of F (·), for any
positive real number b, we have

‖ψk‖2

≤ ‖ψk−1‖2+ 2βφ�kψk−1

k

(
F (C− φ�k θ − φ�kwk−1 − φ�kψk−1)

− F (C − φ�k θ)
)
+

2ψ�
k−1wk−1

k
+

(β‖φk‖+ ‖wk−1‖)2
k2

= ‖ψk−1‖2+ 2βφ�kψk−1

k

(
F (C − φ�k θ − φ�kwk−1 − φ�kψk−1)

− F (C − φ�k θ − φ�kwk−1)
)
+O

(
k−1−ε/2

)

≤ ‖ψk−1‖2 + 2βφ�kψk−1

k

(
F (C − φ�k θ − φ�kwk−1 − b)

− F (C − φ�k θ − φ�kwk−1)
)
I{φ�

kψk−1≥b}

+
2βφ�kψk−1

k

(
F (C − φ�k θ − φ�kwk−1 + b)

− F (C − φ�k θ − φ�kwk−1)
)
I{φ�

kψk−1≤−b}

+O
(
k−1−ε/2

)
. (8)

By Assumption 2 and the boundedness of C − φ�k θ −
φ�kwk−1, there exists B > 0 such that

−2β
(
F (C − φ�k θ − φ�kwk−1 − b)

− F (C − φ�k θ − φ�kwk−1)
)
> B

2β
(
F (C − φ�k θ − φ�kwk−1 + b)

− F (C − φ�k θ − φ�kwk−1)
)
> B

which together with (8) implies

‖ψk‖2≤ ‖ψk−1‖2 − B|φ�kψk−1|
k

I{|φ�
kψk−1|≥b} +O

(
k−1−ε/2

)
.

Set b =
√
δM ′
2 . Then, we have

‖ψk+N‖2

≤ ‖ψk‖2 −
k+N∑
i=k+1

B|φ�i ψi−1|
i

I{
|φ�

i ψi−1|≥
√

δM ′
2

}

+

k+N∑
i=k+1

O
(
i−1−ε/2

)
. (9)

By (6), (7), and Assumption 1

‖ψk − ψk−1‖ ≤ 1

k
(2β ‖φk‖+ ‖wk−1‖)

≤ 1

k
(2βM + 2βM) =

4βM

k
. (10)

Note that M ′ > 0. Then, by Lemma A.2, when k is sufficiently
large, there exists k′ ∈ [k + 1, k +N ] such that

|φ�k′ψk′−1| ≥
√
δ

2
‖ψk‖ I{‖ψk‖2≥M ′

2 }
which implies{

|φ�k′ψk′−1| ≥
√
δM ′

2

}

⊇
{√

δ

2
‖ψk‖ ≥

√
δM ′

2

}
∩

{
‖ψk‖2 ≥ M ′

2

}

⊇
{
‖ψk‖2 ≥ M ′

2

}
. (11)

Then, by (9) and (11)

‖ψk+N‖2
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≤ ‖ψk‖2 − B|φ�k′ψk′−1|
k +N

I{
|φ�

k′ψk′−1|≥
√

δM ′
2

}+O
(
k−1−ε/2

)

≤ ‖ψk‖2 − B
√
δ√
2

‖ψk‖
k +N

I{‖ψk‖2≥M ′
2 } +O

(
k−1−ε/2

)
. (12)

Hence, when k = k′s +N(t− 1), we have∥∥ψk′s+Nt∥∥2

≤ ∥∥ψk′s+N(t−1)

∥∥2 − B
√
δ√
2

∥∥ψk′s+N(t−1)

∥∥
k′s +Nt

I{‖ψk′
s+Nt‖2≥M ′

2

}

+O
(
(k′s +Nt)−1−ε/2

)
. (13)

Since limk→∞ k′s = ∞, we have

lim
k→∞

∞∑
t=1

(k′s +Nt)−1−ε/2 = 0.

Then, by (13) and Lemma A.3 in Appendix A, when k is
sufficiently large, we have

‖ψk‖2 =
∥∥∥ψ

k′s+N� k−�k1−ε�
N �

∥∥∥2

< max

{
M ′,Δ2

k +
M ′

2

}
where

Δk =

(∥∥ψk′s∥∥ − B
√
δ

2
√
2N

ln

(
�k−�k1−ε�

N �+ k′s
N + 1

k′s
N + 1

))+

.

Note that ln( �(k−�k1−ε�)/N�+k′s/N+1
k′s/N+1 ) is of the same order as

ln k since k′s = O(k1−ε). By Corollary A.2 in Appendix A, it
holds that ψk′s = O(

√
ln k). Then, when k is sufficiently large,

Δk = 0 and ‖ψk‖2 < M ′, which proves the theorem. �
Remark 9: The distribution tail estimation of SPAO ψk in

Theorem 1 can be promoted to Theorem A.1 in Appendix A.
Remark 10: It is worth noting that the constructed SPAO can

not only be adapted to Algorithm (5), but also can be extended to
a class of identification algorithms of the binary-valued systems.
The details are given in Appendix B.

B. Estimate of the Distribution Tail

In this section, the distribution tail of the estimation error will
be estimated.

Theorem 2: If system (1) with binary observations (2) satis-
fies Assumptions 1 and 2, then for anyM ′ > 0 and ε > 0, there
exists m > 0 such that

P

{
sup
j≥k

‖θ̃j‖2 ≥M ′
}

= O
(
exp(−mk1−ε)) .

Proof: Reminding that θ̃k = ψk + wk, by Theorem 1, for
sufficiently large k, we have{

sup
j≥�k1−ε�

jε ‖wj‖ ≤ 1

}

⊆
{
‖ψk‖2 < M ′

4

}
∩

{
‖wk‖2 ≤ M ′

4

}
⊆

{
‖θ̃k‖2 < M ′

}

and hence{
sup
j≥k

‖θ̃j‖2 ≥M ′
}

⊆
⋃
j≥k

{
sup

j0≥�j1−ε�
jε0 ‖wj0‖ > 1

}

=

{
sup

j≥�k1−ε�
jε ‖wj‖ > 1

}
.

So, by Lemma 1

P

{
sup
j≥k

‖θ̃j‖2 ≥M ′
}

= O
(
exp(−mk(1−ε)(1−2ε))

)
.

Thus, the theorem can be proved by the arbitrariness of ε. �
Remark 11: Theorem 2 estimates the distribution tail of the

estimation error θ̃k. For the convergence analysis of identifi-
cation algorithms, the existing works are usually interested in
the asymptotic properties of the estimation error distribution.
For example, the asymptotic normality of ρ−1/2

k θ̃k is given for
general SA algorithms under different conditions ([36], Sec. 3.3
and [38]). For the finite-valued system with i.i.d. inputs and
designable quantizers, You [19] also analyzed the asymptotic
normality of the algorithm. Compared with the asymptotic nor-
mality, Theorem 2 weakens the description of the estimate distri-
bution in the neighborhood of θ, but gives a better description on
the exponential tail of the estimation error. This helps to obtain
the almost sure and mean square convergence of the algorithm.

Theorem 3: Under the condition of Theorem 2, Algorithm
(5) converges to θ in both almost sure and mean square sense.

Proof: The almost sure convergence can be immediately
obtained by Theorem 2.

By Theorem 2 and Corollary A.1 in Appendix A, for any
M ′ > 0 and ε > 0, there exists m > 0 such that

E‖θ̃k‖2 =

∫
{‖θ̃2k‖<M ′}

‖θ̃k‖2dP +

∫
{‖θ̃2k‖≥M ′}

‖θ̃k‖2dP

< M ′ +O
(
ln k · exp(−mk1−ε)) =M ′ + o(1).

Thus, the mean square convergence can be obtained by the
arbitrariness of M ′. �

Remark 12: When the inputs are periodic, the mean square
convergence of the empirical measurement method without
truncation is also proved by the estimation of the distribu-
tion tail [29]. The distribution tail of the estimate is relatively
easy to be obtained for the empirical measurement method,
because there is a direct connection between the average of the
binary-valued observations and the distribution tail. But, in the
SA-based algorithm, the relationship is much more complicated.
Therefore, SPAO is constructed to reveal the connection.

C. Almost Sure Convergence Rate

This section will estimate the almost sure convergence rate of
the SA-based algorithm.

Before the analysis, we define

f(x) = sup
z>M‖θ‖+x

inf
t∈[C−z,C+z]

f(t) > 0 ∀x ≥ 0 (14)
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and

f = f(0). (15)

The convergence rate of the algorithm depends on f .
Remark 13: Under Assumption 2, f is the lower bound of

f(C − φ�k θ) for all possible regressorsφk. The following lemma
gives properties of f(·) and f .

Lemma 3: Under Assumption 2, f(·) and f have the follow-
ing properties:

a) f(·) is nonincreasing and right continuous;
b) limx→0 f(x) = f ;
c) f(x) ≤ inft∈[C−M‖θ‖−x,C+M‖θ‖+x] f(t);
d) if, in addition, f(·) is locally Lipschitz continuous, then

so is f(·).
The proof is given in Appendix A.
The almost sure convergence rate of the algorithm can be

achieved through that of ψk.
Theorem 4: Under the condition of Theorem 2, for any ε > 0,

we have

ψk =

⎧⎨
⎩O

(√
ln lnk
k

)
, η > 1

2 ;

O
(

1
kη−ε

)
, η ≤ 1

2 ,
a.s. (16)

where η = βδf with f defined in (15). If f(·) is assumed to be
locally Lipschitz continuous, then the almost sure convergence
rate can be promoted into

ψk =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
O

(√
ln lnk
k

)
, η > 1

2 ;

O

(
ln k

√
ln lnk
k

)
, η = 1

2 ;

O
(

1
kη

)
, η < 1

2 ,

a.s. (17)

Proof: The proof is based on Lemma A.5 in Appendix A.
For the proof of (16), we first simplify the recursive for-

mula of ‖ψk‖. By Assumption 2, F (·) is Lipschitz continu-
ous, which implies supx∈R f(x) <∞. Then, in (7), by La-
grange mean value theorem ([39], Th. 5.3.1), there exists ξk
between C − φ�k θ − φ�kψk−1 and C − φ�k θ, and ξ′k between
C − φ�k θ − φ�kwk−1 − φ�kψk−1 and C − φ�k θ − φ�kψk−1 such
that

F (C − φ�k θ − φ�kwk−1 − φ�kψk−1)− F (C − φ�k θ)

= F (C − φ�k θ − φ�kwk−1 − φ�kψk−1)

− F (C − φ�k θ − φ�kψk−1)

+ F (C − φ�k θ − φ�kψk−1)− F (C − φ�k θ)

= f(ξ′k)φ
�
kwk−1 + f(ξk)φ

�
kψk−1

= f(ξk)φ
�
kψk−1 +O (wk−1) . (18)

Then, by the law of iterated logarithm ([37], Th. 10.2.1)

F (C − φ�k θ − φ�kwk−1 − φ�kψk−1)− Fk

= f(ξk)φ
�
kψk−1 +O

(√
ln ln k

k

)
, a.s.

which together with (7) implies

ψk =

(
In − βf(ξk)

k
φkφ

�
k

)
ψk−1 +O

(√
ln ln k

k3

)
, a.s.

Note that except for the first few steps, we have

∥∥∥∥∥
k∏

i=k−N+1

(
In − βf(ξi)

i
φiφ

�
i

)∥∥∥∥∥
≤

∥∥∥∥∥In − β

k

k∑
i=k−N+1

f(ξi)φiφ
�
i

∥∥∥∥∥ +O

(
1

k2

)

≤
∥∥∥∥∥In − β

k
f

(
max

k−N<i≤k
∣∣φ�i ψi−1

∣∣) k∑
i=k−N+1

φiφ
�
i

∥∥∥∥∥ +O

(
1

k2

)

≤
(
1− βδN

k
f

(
max

k−N<i≤k
∣∣φ�i ψi−1

∣∣))
+O

(
1

k2

)
(19)

where f(·) is defined in (14). Denote

f
k|N = f

(
max

k−N<i≤k
∣∣φ�i ψi−1

∣∣) .

Then, we have

‖ψk‖ ≤
(
1− βδN

k
f
k|N

)
‖ψk−N‖+O

(√
ln ln k

k3

)
, a.s.

(20)
By (b) of Lemma 3, limk→∞ f

k|N = f almost surely. Then,

there exists ε1 ∈ (0,min{η − 1
2 , ε}), if η > 1

2 , and ε1 ∈
(0,min{η, ε}), otherwise. Therefore, there almost surely exists
ka such that for all k ≥ ka, we have βδf

k|N > βδf − ε1 =

η − ε1, and thus by (20)

‖ψk‖ ≤
(
1− N

k
(η − ε1)

)
‖ψk−N‖+O

(√
ln ln k

k3

)
, a.s.

If k − ka is divisible by N , then by Lemma A.5 in Appendix
A, one can get

‖ψk‖

≤
k−ka

N∏
i=1

(
1− N(η − ε1)

ka + iN

)
‖ψka‖

+O

⎛
⎝ k−ka

N∑
l=1

k−ka
N∏

i=l+1

(
1− N(η − ε1)

ka + iN

) √
ln ln(ka + lN)

(ka + lN)3

⎞
⎠

= O

(
1

kη−ε1

)

+O

⎛
⎝ k−ka

N∑
l=1

k−ka
N∏

i=l+1

(
1− N(η − ε1)

ka + iN

) √
ln ln(l + 2)

l3

⎞
⎠
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=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
O

(√
ln lnk
k

)
, η − ε1 >

1
2 ;

O

(
ln k

√
ln lnk
k

)
, η − ε1 = 1

2 ;

O
(

1
kη−ε1

)
, η − ε1 <

1
2 ,

a.s.

By the settings of ε1, we have ε1 ≤ ε, and η − ε1 >
1
2 if and

only if η > 1
2 . Therefore

‖ψk‖ =

⎧⎨
⎩O

(√
ln lnk
k

)
, η > 1

2 ;

O
(

1
kη−ε

)
, η ≤ 1

2 ,
a.s. (21)

If k − ka is not divisible by N , then there exists
an integer κ ∈ [k −N + 1, k] such that κ− ka is divisi-
ble by N . By (10), ‖ψk − ψκ‖ ≤ ∑k

i=κ+1 ‖ψi − ψi−1‖ ≤
4βM(k−κ−1)

k ≤ 4βMN
k . Hence, by (21)

‖ψk‖ = ‖ψk − ψκ‖+ ‖ψκ‖

=

⎧⎨
⎩O

(√
ln lnk
k

)
+O

(
1
k

)
, η > 1

2 ;

O
(

1
kη−ε

)
+O

(
1
k

)
, η ≤ 1

2 ,
a.s.

=

⎧⎨
⎩ O

(√
ln lnk
k

)
, η > 1

2 ;

O
(

1
kη−ε

)
, η ≤ 1

2 ,
a.s.

(16) is thereby proved.
Then, we now prove (17). For sufficiently large k

1− βδN

k
f
k|N ≤

(
1 +

βδN

k

(
f − f

k|N

))(
1− βδN

k
f

)
(22)

which together with (20) implies

‖ψk‖
/

k∏
i=N+1

(
1 +

βδN

i

(
f − f

i|N

))

≤
(
1− Nη

k

)
‖ψk−N‖

/
k−N∏
i=N+1

(
1 +

βδN

i

(
f − f

i|N

))

+O

(√
ln ln k

k3

)
, a.s. (23)

By (16) and (d) of Lemma 3, f − f
i|N converges to 0 at a

polynomial rate. Hence, we have
∞∏

i=N+1

(
1 +

βδN

i

(
f − f

i|N

))
<∞.

Then, (17) can be proved by (23) and Lemma A.5. �
Then, the almost sure convergence rate of the algorithm can

be obtained by Theorem 4.
Theorem 5: Under the condition of Theorem 2, for any ε > 0

θ̃k =

⎧⎨
⎩O

(√
ln lnk
k

)
, η > 1

2 ;

O
(

1
kη−ε

)
, η ≤ 1

2 ,
a.s.

where η = βδf with f defined in (15). If the density function
f(·) is assumed to be locally Lipschitz continuous, then the

almost sure convergence rate can be promoted into

θ̃k =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

O

(√
ln lnk
k

)
, η > 1

2 ;

O

(
ln k

√
ln lnk
k

)
, η = 1

2 ;

O
(

1
kη

)
, η < 1

2 ,

a.s.

Proof: The theorem can be obtained by Lemma 2 and Theo-
rem 4. �

Remark 14: By Theorem 5, the algorithm may not achieve
the optimal almost sure convergence rate when the coefficient
η is smaller than 1/2. Since η = βδf , the convergence rate of
the algorithm depends on the step-size, the inputs, the noise
distribution, and the relationship between the threshold C and
M‖θ‖. However,M‖θ‖ relies on the true parameter θ. Thus, the
almost sure convergence rate of Algorithm (5) cannot be known
without a priori information on θ. The problem can be solved if
the step-size is designed as ρk = βk/k, where

βk > 1

/(
2δ sup

z>M‖θ̂k‖
inf

t∈[C−z,C+z]
f(t)

)
.

The analysis for the modified algorithm is similar to the algo-
rithm with time-invariant β.

Remark 15: For the identification problem of stochastic
finite-valued systems, O(

√
ln ln k/k) is the best almost sure

convergence rate. In the periodic input case, the empirical
measurement algorithm in [2] generates a maximum likelihood
estimate ([10], Lemma 4). The almost sure convergence rate of
the empirical measurement algorithm isO(

√
ln ln k/k) [23]. In

the nonperiodic input case, Theorem 5 appears to be the first
to achieve the almost sure convergence rate of O(

√
ln ln k/k)

theoretically. Guo and Zhao [32] achieved the almost sure
convergence rate of O(

√
ln k/k) for the recursive projection

method. The almost sure convergence rate of SA algorithms
with expanding truncations is O(1/kε) for ε ∈ (0, 1/2) [17].
When properly selecting β, the almost sure convergence rate of
Algorithm (5) is better than both of them.

D. Mean Square Convergence Rate

This section will estimate the mean square convergence rate
of the SA-based algorithm.

Theorem 6: Under the condition of Theorem 2, for any ε > 0

E‖θ̃k‖2 =

{
O

(
1
k

)
, η > 1

2
O

(
1

k2η−ε

)
, η ≤ 1

2

(24)

where η = βδf with f defined in (15). If f(·) is assumed to be
locally Lipschitz continuous, then the mean square convergence
rate can be promoted into

E‖θ̃k‖2 =

⎧⎨
⎩
O

(
1
k

)
, η > 1

2

O
(
lnk
k

)
, η = 1

2
O

(
1
k2η

)
, η < 1

2 .
(25)

Proof: To prove (24), we first simplify the recursive formula
of E‖θ̃k‖2.

By (5) and the Lagrange mean value theorem ([39], Th. 5.3.1),
there exists ζk between C − φ�k θ and C − φ�k θ − φ�k θ̃k−1 such
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that

θ̃k = θ̃k−1 +
βφk
k

(
F̂k − Fk

)
+
βφk
k

(Fk − sk)

=

(
In − β

k
f(ζk)φkφ

�
k

)
θ̃k−1 +

βφk
k

(Fk − sk)

=

k∏
i=k−N+1

(
In − β

i
f(ζi)φiφ

�
i

)
θ̃k−N

+

k∑
l=k−N+1

k∏
i=l+1

(
In − β

i
f(ζi)φiφ

�
i

)
βφl
l

(Fl − sl)

=
k∏

i=k−N+1

(
In − β

i
f(ζi)φiφ

�
i

)
θ̃k−N

+

k∑
l=k−N+1

βφl
l

(Fl − sl) +O

(
1

k2

)
.

Similar to (19), except for the first few steps, we have

∥∥∥∥∥
k∏

i=k−N+1

(
In − βf(ζi)

i
φiφ

�
i

)∥∥∥∥∥
≤

(
1− βδN

k
f ′
k|N

)
+O

(
1

k2

)

where f ′
k|N = f(maxk−N<i≤k |φ�i θ̃i−1|), and f(·) is defined

in (14). Besides, noticing that θ̃k−N is independent of∑k
l=N+1

βφl

l (Fl − sl), we have

E

⎡
⎣(

k∑
l=k−N+1

βφl
l

(Fl − sl)

)�

·
k∏

i=k−N+1

(
In − β

i
f(ζi)φiφ

�
i

)
θ̃k−N

]

= E

⎡
⎣(

k∑
l=k−N+1

βφl
l

(Fl − sl)

)�

·
(

k∏
i=k−N+1

(
In − β

i
f(ζi)φiφ

�
i

)
− In

)
θ̃k−N

]

= O

(
1

k2

)
.

Therefore, for sufficiently large k, one can get

E‖θ̃k‖2 ≤ E

[(
1− βδN

k
f ′
k|N

)2

‖θ̃k−N‖2
]
+O

(
1

k2

)
.

(26)
By Theorem 2 and (b) of Lemma 3, P{f ′

k|N < f − ε
2βδ} =

O(exp(−mk1/2)). Hence, by Corollary A.1 in Appendix A, we

have

E

[(
1− βδN

k
f ′
k|N

)2

‖θ̃k−N‖2
]

≤
∫
{
f ′
k|N≥f− ε

2βδ

}
(
1− N

k

(
η − ε

2

))2

‖θ̃k−N‖2dP

+

∫
{
f ′
k|N<f− ε

2βδ

} ‖θ̃k−N‖2dP

=

(
1− N

k

(
η − ε

2

))2

E‖θ̃k−N‖2

+O
(
ln k · exp(−mk1/2)

)
.

Substituting the above estimate into (26) gives

E‖θ̃k‖2 ≤
(
1− N

k

(
η − ε

2

))2

E‖θ̃k−N‖2 +O

(
1

k2

)
.

Thus, (24) can be proved by Lemma A.5 in Appendix A.
Then, we prove (25). Similar to (22), for sufficiently large k

1− βδN

k
f ′
k|N ≤

(
1 +

βδN

k

(
f − f ′

k|N

))(
1− βδN

k
f

)
.

Therefore, by (26) and η = βδf , one can get

E‖θ̃k‖2 ≤
(
1− Nη

k

)2

E

[(
1 +

βδN

k

(
f − f ′

k|N

))2

·‖θ̃k−N‖2
]
+O

(
1

k2

)
. (27)

By (d) of Lemma 3, since f(·) is assumed to be locally Lips-
chitz continuous here, f(·) is also locally Lipschitz continuous.

Hence, if ‖θ̃j‖ ≤ j−ε
′
for ε′ > 0 and all j = k −N + 1, . . . , k,

then there exists L > 0 such that f − f ′
k|N ≤ Lk−ε

′
, which

together with Corollaries A.1 and A.3 in Appendix A implies
that there exist positive numbers m and ε such that

E

[(
1 +

βδN

k

(
f − f ′

k|N

))2

‖θ̃k−N‖2
]

≤
(
1 +

βδNL

k1+ε′

)2 ∫
∩k
j=k−N+1{‖θ̃j‖≤j−ε′ }

‖θ̃k−N‖2dP

+O
(
ln k · exp(−mk1−ε))

≤
(
1 +

βδNL

k1+ε′

)2

E‖θ̃k−N‖2dP +O
(
ln k · exp(−mk1−ε)) .

Substituting the above estimate into (27) gives

E‖θ̃k‖2≤
(
1− Nη

k

)2(
1 +

βδNL

k1+ε′

)2

E‖θ̃k−N‖2 +O

(
1

k2

)
.

Therefore, we have

E‖θ̃k‖2
/

k∏
i=1

(
1 +

βδNL

i1+ε′

)2

Authorized licensed use limited to: CAS Academy of Mathematics & Systems Science. Downloaded on January 09,2025 at 11:40:40 UTC from IEEE Xplore.  Restrictions apply. 



8212 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 12, DECEMBER 2024

≤
(
1− Nη

k

)2

E‖θ̃k−N‖2
/

k−N∏
i=1

(
1 +

βδNL

i1+ε′

)2

+O

(
1

k2

)
.

Then, by Lemma A.5, one can get

E‖θ̃k‖2
/

k∏
i=1

(
1 +

βδNL

i1+ε′

)2

=

⎧⎨
⎩
O

(
1
k

)
, η > 1

2

O
(
lnk
k

)
, η = 1

2
O

(
1
k2η

)
, η < 1

2 .

Due to the boundedness of
∏∞
i=1(1 +

βδNL

i1+ε′ )
2, (25) is

proved. �
Remark 16: By Theorem 6, the mean square convergence

rate of the SA-based algorithm achieves O(1/k) when properly
selecting the coefficient β. By [34], the Cramér–Rao lower
bound for estimating θ based on binary observations s1, . . . , sk
is

σ2
CR(s1, . . . , sk) =

(
k∑
i=1

f2i
Fi(1− Fi)

φiφ
�
i

)−1

= O

(
1

k

)
.

Besides, for the identification problem of MA systems with
accurate observations and Gaussian noises, the least square
algorithm generates a minimum variance estimate ([40], Th.
4.4.2). The mean square convergence rate of the recursive least
square algorithm isO(1/k). Therefore,O(1/k) is the best mean
square convergence rate in theory of the identification problem
of the binary-valued MA systems and even accurate ones.

Remark 17: In the multiple threshold case, when properly se-
lecting the coefficientβ, the almost sure and mean square conver-
gence rates of the SA-based algorithm are also O(

√
ln ln k/k)

and O(1/k), respectively. The analysis is similar to the binary
observation case.

Remark 18: From Theorems 5 and 6, we learn that the almost
sure and mean square convergence rates are influenced by the
step-size, inputs, and the threshold. Here, we give the following
intuitive explanations.

1) The step-size coefficient β influences the convergence
rates. If we adopt a small step-size β, then the algorithm
updates the estimate at a slow rate.

2) Excitations of {φk, k ≥ 1} also affect the convergence
rates. If δ in (3) is large, then {yk, j ≥ 1} provides rich
information on θ from every direction, which causes good
effectiveness of the algorithm.

3) The threshold C is another factor influencing the conver-
gence rates. If the thresholdC is too high or too low, then
sk may have always the same value, which causes poor
effectiveness of the algorithm.

Besides, given {φk, k ≥ 1}, the upper bound M does not
influence the actual convergence rate of the algorithm, but only
influences the estimation on the convergence rates. If M is too
large, then we have less information on {φk, k ≥ 1} for estimat-
ing the convergence rates, which may lead to an unsatisfactory
estimation on the convergence rates.

V. NUMERICAL SIMULATION

A numerical simulation will be performed in this section to
verify Theorems 3, 5, and 6.

Fig. 1. Convergence of Algorithm (5). (a) Trajectory of θ̂k. (b) Box-plots
of θ̂k in 200 repeated experiments.

Consider an MA system yk = φ�k θ + dk with binary-valued
observation

sk = I{yk≤C} =
{
1, yk ≤ C
0, yk > C

where the unknown parameter θ = [3,−1]�, the threshold C =
1, and dk is i.i.d. Gaussian noise with variance σ2 = 25 and
zero mean. The regressed function of inputs φk = [uk, uk−1]

�

is generated by u3i = −1 + e3i, u3i+1 = 2 + e3i+1, u3i+2 =
1 + e3i+2 for natural number i, where ek = 0.1 sin(ln(k + 1)).
It can be verified that the input follows Assumption 1 withM =
2.38, N = 3, and δ = 1.42.

In the simulation, set β = 20, k0 = 20, and the initial value
θ̂k0 = [1, 1]�. Fig. 1(a) shows a trajectory of θ̂k. Fig. 1(b) gives
the box-plots of θ̂k in 200 repeated experiments. The figures
demonstrate the convergence of Algorithm (5).

Remark 19: We set β = 20 to have η > 1/2. When k0 = 0,
large β causes large step-sizes in first few steps. Due to the
randomness of {sk}, the estimate θ̂k may run away from the
true value θ after first few steps of iterations. Then, it will take
much more time to reduce the estimation error. To avoid this
situation, we should adjust the starting point k0 according to the
selection of β. In the simulation, we set k0 = 20.

Authorized licensed use limited to: CAS Academy of Mathematics & Systems Science. Downloaded on January 09,2025 at 11:40:40 UTC from IEEE Xplore.  Restrictions apply. 



KE et al.: RECURSIVE IDENTIFICATION OF BINARY-VALUED SYSTEMS UNDER UNIFORM PERSISTENT EXCITATIONS 8213

Fig. 2. Trajectory of k‖θ̃k‖2/ ln ln k.

Fig. 3. Trajectory of k‖θ̃k‖2 in 200 repeated experiments.

Note that η is about 0.53. Then, by Theorem 5, Algorithm (5)
achieves the almost sure convergence rate of O(

√
ln ln k/k).

Fig. 2 shows that the trajectory of k‖θ̃k‖2/ ln ln k is bounded,
which consists of the almost sure convergence rate of
O(

√
ln ln k/k).

By Theorem 6, Algorithm (5) achieves the mean square
convergence rate of O(1/k). Fig. 3 illustrates that the average
of the 200 trajectories of k‖θ̃k‖2 is bounded, which consists of
the mean square convergence rate of O(1/k).

Besides, by Theorem 6, the step-size β influences the mean
square convergence rate. Fig. 4 shows the empirical mean square
convergence rate under the case of β = 20 is faster than that
under the case of β = 1.

It will be an interesting problem to consider the situation
where the distribution used in Algorithm (5) is different from
the actual noise distribution. When the distribution used in
Algorithm (5) is Gaussian with variance 20 and zero mean, but
the actual noise variance is 25, Fig. 5 shows that the estimation
error is bounded.

Fig. 4. Empirical mean square convergence rates under different β.

Fig. 5. Trajectory of ‖θ̃k‖2 for the wrong variance case.

VI. CONCLUSION

This article investigates the identification problem of binary-
valued MA systems with uniformly persistently exciting inputs.
An SA-based algorithm without projection is proposed to iden-
tify the unknown parameter. The algorithm appears to be the first
online identification method for binary-valued systems whose
implementation does not rely on projections or truncations.
When properly selecting the coefficients, the almost sure conver-
gence rate of the SA-based algorithm isO(

√
ln ln k/k), and the

mean square convergence rate isO(1/k). Both the convergence
rates are the best for the identification problem of binary-valued
systems. Moreover, an auxiliary stochastic process named SPAO
is constructed for the effectiveness analysis.

Here, we give some topics for future research. First, the design
of the step-size ρk is left as an open question. How can we design
a dynamic ρk to allow the convergence rates to be the best auto-
matically, and how can we design ρk to make the identification
algorithm achieve the Cramér–Rao lower bound asymptotically?
Second, can the algorithm be extended to other general forms
of systems, such as the infinite impulse response system? Third,
how can we design system control laws to regulate the system
performance using the SA-based algorithm?
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APPENDIX A
LEMMAS AND THE PROOFS

Proof of Lemma 1: The lemma can be indicated by [41, Th.
5.5.1]. We transfer the problem first.

First, we claim that it is sufficient to prove that there exists
m > 0 such that P{‖wk‖ > k−ε} = O(exp(−mk1−2ε)). This
is because

∑∞
j=k exp(−mj1−2ε) = O(k2ε exp(−mk1−2ε)) =

O(exp(−mk1−2ε/2)).
Second, we claim that it is sufficient to prove that for

any i ∈ {1, 2, . . . , n}, wk,i satisfies P{|wk,i| > k−ε/
√
n} =

O(exp(−mk1−2ε)), wherewk,i is the ith component ofwk. This
is because {‖wk‖ > k−ε} ⊆ ∪i{|wk,i| > k−ε/

√
n}, which im-

plies

P
{‖wk‖ > k−ε

} ≤
n∑
i=1

P
{|wk,i| > k−ε/

√
n
}
.

The transformation has been finished. Now, we show that the
converted problem is a corollary of [41, Th. 5.5.1].

Lemma A.1 ([41], Th. 5.5.1): Assume that the following
holds:

1) {Xk, k ≥ 1} is a sequence of independent random vari-
ables;

2) EXk = 0 and |Xk| ≤ X̄ <∞;
3) Sk =

∑k
i=1Xi, σk =

√
var(Sk).

Then,

P

{
Sk
σk

> dk

}
< max

{
exp

(
−d

2
k

4

)
, exp

(
−dkσk

4X̄

)}
.

Set Xk,i = βφk,i(Fk − sk), Sk,i =
∑k
j=1Xj,i, σk,i =√

var(Sk,i), and dk,i = k1−ε/σk,i
√
n, where φk,i is the ith

component of φk. Then, by Lemma A.1

P

{
wk,i >

k−ε√
n

}
= P

{
Sk,i
σk,i

> dk,i

}

< max

{
exp

(
−d

2
k,i

4

)
, exp

(
−dk,iσk,i

4X̄

)}

= max

{
exp

(
− k2−2ε

4nσ2
k,i

)
, exp

(
− k1−ε

4X̄
√
n

)}
.

Noting that

σ2
k,i = var(Sk,i) =

k∑
j=1

var(Xj,i) ≤ 4X̄2k

then exp(−k2−2ε/4nσ2
k,i) ≤ exp(−k1−2ε/16nX̄2). There-

fore, there exists m+ > 0 such that P{wk,i > k−ε/
√
n} =

O(exp(−m+k
1−2ε)).

P{wk,i < −k−ε/√n} can be similarly analyzed.
Combining the two consequences, the converted problem is

thereby proved. That is to say, we get Lemma 1. �
Proof of Lemma 3: (a) For x1 ≥ x2, one can get

f(x1) = sup
z>M‖θ‖+x1

inf
t∈[C−z,C+z]

f(t)

≤ sup
z>M‖θ‖+x2

inf
t∈[C−z,C+z]

f(t) = f(x2).

Therefore, f(·) is nonincreasing.
Due to the monotonicity of f(·), supx>χ f(x) is the right limit

of f(·) at the point χ. Then, f(·) is right continuous because

sup
x>χ

f(x) = sup
x>χ

sup
z>M‖θ‖+x

inf
t∈[C−z,C+z]

f(t)

= sup
z>M‖θ‖+χ

inf
t∈[C−z,C+z]

f(t) = f(χ).

(b) Since f(·) is right continuous and only defined on [0,∞),
we have limx→0 f(x) = f(0) = f .

(c) By (14), we have

f(x) ≤ sup
z≥M‖θ‖+x

inf
t∈[C−z,C+z]

f(t)

= inf
t∈[C−M‖θ‖−x,C+M‖θ‖+x]

f(t).

(d) We first prove that g(z) = inft∈[C−z,C+z] f(t) is locally
Lipschitz continuous on z ≥ 0. Since f(t) is locally Lipschitz
continuous, for any given z0 ≥ 0, there exist δ1 > 0 andK1 > 0
such that

|f(t1)− f(t2)| ≤ K1|t1 − t2| (A.1)

for all t1, t2 ∈ (C + z0 − δ1, C + z0 + δ1) and t1, t2 ∈ (C −
z0 − δ1, C − z0 + δ1).

Consider z1, z2 ∈ (z0 − δ1, z0 + δ1) ∩ [0,∞).
If z1 = z2, then g(z2)− g(z1) = 0.
If z1 �= z2, then without the loss of generality, consider

z1 > z2, which implies g(z1) = inft∈[C−z1,C+z1] f(t) ≤
inft∈[C−z2,C+z2] f(t) = g(z2). Hence, |g(z1)− g(z2)| =
g(z2)− g(z1). By the definition of infimum [39], there exists
τ1 ∈ [C − z1, C + z1] such that

g(z1) = inf
t∈[C−z1,C+z1]

f(t) ≥ f(τ1)− (z1 − z2). (A.2)

When τ1 ∈ [C − z2, C + z2]

g(z2)− g(z1) ≤ f(τ1)− f(τ1) + z1 − z2 = z1 − z2.

When τ1 ∈ [C − z1, C − z2), set τ2 = C − z2. Therefore, τ2 −
τ1 ≤ z1 − z2, and

τ1, τ2 ⊆ [C − z1, C − z2] ⊆ (C − z0 − δ1, C − z0 + δ1)

which together with (A.1) and (A.2) implies

g(z2)− g(z1) ≤ f(τ2)− f(τ1) + (z1 − z2)

≤ K1(τ2 − τ1) + (z1 − z2) ≤ (K1 + 1)(z1 − z2). (A.3)

When τ1 ∈ (C + z2, C + z1], set τ2 = C + z2. Then, (A.3) can
be obtained similar to the case of τ1 ∈ [C − z1, C − z2).

Therefore, g(z) is locally Lipschitz continuous on z ≥ 0. Now
we further prove that f(x) = supz>M‖θ‖+x g(z) is also local
Lipschitz continuous on x ≥ 0. Since g(z) is locally Lipschitz
continuous, for any givenx0 ≥ 0, there exist δ2 > 0 andK2 > 0
such that

|g(z1)− g(z2)| ≤ K2|z1 − z2| (A.4)

for all z1, z2 ∈ (M‖θ‖+ x0 − δ2,M‖θ‖+ x0 + δ2) ∩ [0,∞).
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Consider x1, x2 ∈ (x0 − δ2, x0 + δ2) ∩ [0,∞).
If x1 = x2, then f(x1)− f(x2) = 0.
If x1 �= x2, then without loss of generality, consider x1 >

x2, which together with (a) of this lemma implies |f(x1)−
f(x2)| = f(x2)− f(x1). By the definition of supremum [39],
there exists υ2 ∈ (M‖θ‖+ x2,∞) such that

f(x2) = sup
z>M‖θ‖+x2

g(z) ≤ g(υ2) + (x1 − x2). (A.5)

When υ2 ∈ (M‖θ‖+ x1,∞)

f(x2)− f(x1) ≤ g(υ2) + (x1 − x2)− g(υ2).

When υ2 ∈ (M‖θ‖+ x2,M‖θ‖+ x1], set

υ1 = min

{
M ‖θ‖+ 2x1 − x2,M ‖θ‖+ x1 + x0 + δ2

2

}
.

Therefore, υ1 > M‖θ‖+ x1 ≥ υ2, υ1 − υ2 < 2(x1 − x2), and

υ1, υ2 ∈ (M ‖θ‖+ x0 − δ2,M ‖θ‖+ x0 + δ2) ∩ [0,∞)

which together with (A.4) and (A.5) implies

f(x2)− f(x1) ≤ g(υ2) + (x1 − x2)− g(υ1)

≤ K2(υ1 − υ2) + (x1 − x2) ≤ (2K2 + 1)(x1 − x2).

Hence, f(·) is local Lipschitz continuous. �
Lemma A.2: Assume that φk satisfies Assumption 1 and the

stochastic process ψk satisfies ‖ψk − ψk−1‖ ≤ Ψ/k for some
Ψ > 0. Then,

δ ‖ψk‖2 ≤ 1

N

k+N∑
j=k+1

(
φ�j ψj−1

)2
+

2NM2Ψ

k

k+N−1∑
j=k

‖ψj‖

+
N2M2Ψ2

k2
.

Furthermore, if b′ > 0 and k is large enough, then there is k′ ∈
[k + 1, k +N ] such that |φ�k′ψk′−1| ≥

√
δ/2‖ψk‖I{‖ψk‖>b′}.

Proof: The lemma is based on Assumption 1.
Because ‖ψk − ψk−1‖ ≤ Ψ/k, ‖ψk − ψj−1‖ ≤ NΨ/k for

any j ∈ [k + 1, k +N ]. Therefore,

1

N

k+N∑
j=k+1

(
φ�j ψj−1

)2

≥ 1

N

k+N∑
j=k+1

(
φ�j ψk

)2 − 2NM2Ψ

k

k+N−1∑
j=k

‖ψj‖ − N2M2Ψ2

k2
.

Besides, by Assumption 1

1

N

k+N∑
j=k+1

(
φ�j ψk

)2
=

1

N

k+N∑
j=k+1

ψ�
k φjφ

�
j ψk ≥ δ ‖ψk‖2 .

Thus, the first part of the lemma is proved.
As for the second part, we note that under the condition of the

lemma, ψk = O(ln k). Then,

2NM2Ψ

k

k+N−1∑
j=k

‖ψj‖+ N2M2Ψ2

k2
= O

(
ln k

k

)
.

Hence, if ‖ψk‖ > b′ and k is sufficiently large, then one can
get

1

N

k+N∑
j=k+1

(
φ�j ψj−1

)2 ≥ δ ‖ψk‖2 +O

(
ln k

k

)
>
δ

2
‖ψk‖2

which implies 1
N

∑k+N
j=k+1(φ

�
j ψj−1)

2 > δ
2‖ψk‖2I{‖ψk‖>b′} for

sufficiently large k. Then, there exists k′ ∈ [k + 1, k +N ] such
that (φ�k′ψk′−1)

2 ≥ δ
2‖ψk‖2I{‖ψk‖>b′}, which verifies the second

part of the lemma. �
Lemma A.3: If a sequence {ak} satisfies the recursive func-

tion

ak ≤ ak−1 −
D
√
ak−1

k + k0
I{ak−1≥M ′

2 } + νk (A.6)

where D, k0, and M ′ are all positive, and
∑∞
k=1 |νk| < M ′/2,

then

ak<max

⎧⎨
⎩M ′,

[(√
a0 − D

2
ln

(
k + k0 + 1

k0 + 1

))+
]2

+
M ′

2

⎫⎬
⎭

(A.7)
where x+ = max{0, x}.

Proof: If ak < M ′, then the lemma is proved. Hence, we can
assume that ak ≥M ′ in the rest of the proof, which implies

at ≥ ak −
k∑

i=t+1

νi ≥ ak − M ′

2
≥ M ′

2
∀t ≤ k.

Define a′0 = a0 and a′t = at −
∑t
i=1 |νi| > M ′/2−

M ′/2 = 0 for t ≥ 1. Then, we have

a′t = at −
t∑
i=1

|νi| ≤ at−1 −
D
√
at−1

t+ k0
+ νt −

t∑
i=1

|νi|

≤ at−1 −
t−1∑
i=1

|νi| −
D

√(
at−1 −

∑t−1
i=1 |νi|

)+

t+ k0

= a′t−1 −
D

√
a′t−1

t+ k0

and hence

a′k < a′k−1 −
D

√
a′k−1

k + k0
+

D2

4(k + k0)2

=

(√
a′k−1 −

D

2(k + k0)

)2

which implies
√
a′k <

√
a′k−1 − D

2(k+k0)
. Therefore, by x ≤

x+

√
a′k <

√
a′0 −

k∑
t=1

D

2(t+ k0)

≤
(√

a0 − D

2
ln

(
k + k0 + 1

k0 + 1

))+

.
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So, we have

ak = a′k +
t∑
i=1

|νi|

<

[(√
a0 − D

2
ln

(
k + k0 + 1

k0 + 1

))+
]2

+
M ′

2
.

The lemma is thereby proved. �
Remark A.1: Lemma A.3 ensures the uniform ultimate upper

boundedness of the sequence {ak}, which satisfies (A.6). Given
the initial value a0

√
a0 − D

2
ln

(
k + k0 + 1

k0 + 1

)
< 0

when k > (k0 + 1) exp(2
√
a0/D)− k0 − 1, which together

with (A.7) implies ak < M ′.
Lemma A.4: Assume that the following holds:
1) v(·) : Rn → R is a continuously twice differentiable non-

negative function, whose second derivative is bounded;
2) gk(·) : Rn → Rn is uniformly bounded;
3) ∇v(x)�gk(x) is uniformly upper bounded, where ∇v(·)

is the gradient of v(·);
4) the positive step-size ρk ∈ R satisfies limk→∞ ρk = 0;
5) xk = xk−1 + ρkgk(xk−1).

Then, v(xk) = O(
∑k
i=1 ρi).

Proof: From

v(xk) = v(xk−1 + ρkgk(xk−1))

= v(xk−1) + ρk∇v(xk−1)
�gk(xk−1) +O

(
ρ2k

)
≤ v(xk−1) +O(ρk) ≤ O

(
k∑
i=1

ρi

)

we get the lemma. �
Corollary A.1: Under Assumptions 1 and 2, the estimation

error of Algorithm (5) satisfies θ̃k = O(
√
ln k).

Proof: Due to the finite covariance of the noise, by Markov
inequality ([37], Th. 5.1.1), when t goes to ∞

F
(
C − φ�k θ − t

)
= P

{
dk < C − φ�k θ − t

}
≤ P

{
d2k >

(
C − φ�k θ − t

)2}

≤ Ed2k(
C − φ�k θ − t

)2 = O

(
1

t2

)
(A.8)

and similarly, when t goes to −∞

1− F
(
C − φ�k θ − t

)
= O

(
1

t2

)
. (A.9)

Set v(x) = x�x. Then, ∇v(x) = x. By (A.8) and (A.9)

∇v(x)�φk
(
F

(
C − φ�k θ − φ�kx

) − sk
)

= φ�kx
(
F

(
C − φ�k θ − φ�kx

) − sk
)

is uniformly upper bounded. Thus, we get the corollary by
Lemma A.4. �

Corollary A.2: Under the condition of Lemma 2, ψk =
O(

√
ln k).

Proof: Fromψk = θ̃k − wk = O(
√
ln k) +O(1), we get the

corollary. �
Remark A.2: Corollaries A.1 and A.2 estimate the estimation

error θ̃k and SPAO ψk in the worst case, respectively.
Lemma A.5: For the sequence {hk}, assume that the follow-

ing holds:
1) hk is positive and monotonically increasing;
2) lnhk = o(ln k).

Then, for nonnegative real numbers i0, η′, and ε, and any
positive integer p

k∑
l=1

k∏
i=l+1

(
1− η′

i+ i0

)p
hl
l1+ε

=

⎧⎪⎨
⎪⎩
O

(
hk

kε

)
, pη′ > ε

O
(
hk lnk
kε

)
, pη′ = ε

O
(

1
kpη′

)
, pη′ < ε.

Proof: Since i0 ≥ 0, one can get l+1+i0
l = 1 + i0+1

l ≤ 2 +

i0 and k
k+i0

≤ 1 for all positive integers l and k. Then, by [42,
Lemma A.2], we have

k∏
i=l+1

(
1− η′

i+ i0

)
≤

(
l + 1 + i0
k + i0

)η′
≤ (2 + i)η

′
(
l

k

)η′

which leads to
k∑
l=1

k∏
i=l+1

(
1− η′

i+ i0

)p
hl
l1+ε

=

k∑
l=1

[
k∏

i=l+1

(
1− η′

i+ i0

)]p
hl
l1+ε

≤ (2 + i)pη
′
k∑
l=1

(
l

k

)pη′
hl
l1+ε

= O

(
1

kpη′

k∑
l=1

hl
l1+ε−pη′

)
.

Then, it suffices to estimate
∑k
l=1 hl/l

1+ε−pη′ .
First, when pη′ < ε, by lnhk = o(ln k), we have

hk < k(ε−pη
′)/2 for sufficiently large k, which implies∑∞

l=1
hl

l1+ε−pη′ <∞. So, we can get

k∑
l=1

k∏
i=l+1

(
1− η′

i+ i0

)p
hl
l1+ε

= O

(
1

kpη′

)
.

Second, by the monotonicity of hk, we have

k∑
l=1

hl
l
≤

k∑
l=1

hl (ln l − ln(l − 1))

≤
k∑
l=1

(hl ln l − hl−1 ln(l − 1)) = hk ln k.

Hence, when pη′ = ε, one can get

k∑
l=1

k∏
i=l+1

(
1− η′

i+ i0

)p
hl
l1+ε

= O

(
hk ln k

kε

)
.
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Lastly, when pη′ > ε, we have

k∑
l=1

hl
l1+ε−pη′

= O

(
k∑
l=1

hl

(
lpη

′−ε − (l − 1)pη
′−ε

))

≤ O

(
k∑
l=1

(
hll

pη′−ε − hl−1(l − 1)pη
′−ε

))

= O
(
hkk

pη′−ε
)

which implies

k∑
l=1

k∏
i=l+1

(
1− η′

i+ i0

)p
hl
l1+ε

= O

(
hk
kε

)
.

Remark A.3: Ifhk is constant, p = 1 and i0 = 0, then Lemma
A.5 implies [29, Lemma 4]. Besides, if hk/ ln k is assumed to
be monotonically decreasing, then the estimate of Lemma A.5
is accurate.

Theorem A.1: Under the condition of Lemma 2, for any ε ∈
(0, 1), there exist positive numbers ε′ and m such that

P
{
‖ψk‖ > k−ε

′
}
= O

(
exp

(−mk1−ε)) .
Proof: The theorem can be proved by verifying that there

exists ε′ > 0 such that{
‖ψk‖ ≤ k−ε

′
}
⊇

{
sup

j≥�k1−2ε�
jε ‖wj‖ ≤ 1

}
. (A.10)

By the monotonicity of {supj≥k jε‖wj‖ ≤ 1} and Theorem 1{
sup

j≥�k1−ε�
‖ψj‖2 < M ′

}
⊇

{
sup

j≥�k1−2ε�
jε ‖wj‖ ≤ 1

}
.

Therefore, if supj≥�k1−2ε� jε‖wj‖ ≤ 1, then by (18) and (19),
for all j ≥ �k1−ε�+N

‖ψj‖ ≤
(
1− βδN

j
f

(
M

√
M ′

))
‖ψj−N‖+O

(
1

j1+ε

)

where f(·) is defined in (14). Then, by Corollary A.2 and
Lemma A.5, ‖ψj‖ converges at a polynomial rate. Hence, we
get (A.10). Then, the theorem can be proved by Lemma 1 and
the arbitrariness of ε. �

Corollary A.3: Under the condition of Theorem 2, for any
ε > 0, there exist positive numbers ε′ and m such that

P
{
‖θ̃k‖ > k−ε

′
}
= O

(
exp

(−mk1−ε)) .
Proof: By (A.10) and θ̃k = ψk + wk, we have{
‖θ̃k‖2 ≤ k−ε

′
+ k−ε

}
⊇

{
‖ψk‖ ≤ k−ε

′
}
∩ {‖wk‖ ≤ k−ε

}

⊇
{

sup
j≥�k1−2ε�

jε ‖wj‖ ≤ 1

}
.

Then, the corollary can be proved by Lemma 1. �
Remark A.4: Theorem A.1 and Corollary A.3 are extensions

of Theorems 1 and 2, respectively.

APPENDIX B
OTHER APPLICATION OF SPAO

First, the construction of SPAO can be applied to many online
identification algorithms of binary-valued systems. For binary-
valued systems with threshold Ck, a large number of recursive
identification algorithms can be represented as

θ̂k = θ̂k−1 + ρkvk

(
h(φk, θ̂k−1)− sk

)
where {φk, k ≥ 1} are independent regressed function of inputs,
and Ck and vk are generated by {φj , sj−1, j ≤ k} [16], [17],
[18], [19], [30], [31], [32], [33], [34]. The step-size ρk can also
be matrices [33], [34].

Define ψk = θ̃k − wk, where θ̃k = θ̂k − θ is the estimation
error and

wk = ρk

(
k∑
i=1

vi (E [si|φj , sj−1, j ≤ i]− si)

)

= ρk

(
k∑
i=1

vi
(
F (Ci − φ�i θ)− si

))
.

Then, one can get

ψk = ψk−1 + ρk
(
ρ−1
k − ρ−1

k−1

)
wk−1

+ ρkvk
(
h(φk, ψk−1 + wk−1 + θ)− F (Ck − φ�k θ)

)
.

If there is a good convergence property for wk, then the tra-
jectory of ψk is similar to that of θ̃k and that of the deterministic
sequence

ψk = ψk−1 + ρkvk
(
h(φk, ψk−1 + θ)− F (Ck − φ�k θ)

)
.

Therefore, we can analyze the convergence property of the
algorithm through ψk.

Second, SPAO technique can be applied in the robustness
analysis of Algorithm (5). If the noise distribution used in
our algorithm F (·) is different from the true noise distribution
Ftrue(·), then by the SPAO technique, we can prove that under
the condition of Theorem 2, the following holds:

lim
k→∞

‖θ̃k‖2 ≤M ′′(ΔF ), a.s.

where ΔF = supx∈R |F (x)− Ftrue(x)|, andM ′′(·) is a positive
function satisfying limΔF→0M

′′(ΔF ) = 0. The detailed anal-
ysis is similar to Theorem 1, and hence, omitted here.
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