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Abstract

This paper gives a definition of identifiability for multidimensional linear input-output sys-
tems and presents a necessary and sufficient condition for its satisfaction. For a class of identifiable
systems it is also shown that the unknown coefficients of the system can consistently be estimated

by a recursive algorithm.
1. Introduction

The basic idea of identifiability is the possibility of determining a system or its param-
eters from the input-output data. Several different definitions of identifiability are given
in the survey paper [1] for one-dimensional systems. However, from the following exam-
ple we shall see that the situation for multidimensional systems is quite different from the
one-dimensional case.

Let the linear input-output system be described by

A(z)y = B(z)w, (1.1)

where A(z) and B(z) are polynomials in the shift-back operator z.

If both y; and u; are one-dimensional, then coprimeness of A(z) and B(z) is necessary
and sufficient for uniquely determining parameters of A(z) and B(z) from the data. But
in the multidimensional case the left-coprimeness of A(z) and B(z) does not guarantee the
uniqueness of representation (1.1).

Example 1.1. Let

01

00

A(z):I-t-[ gl

] 2+ I2%, B(z)=Iz+[0 1] #
They are left-coprime, since

A(z)M(2) + B(2)N(z) =1,
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where
T = I =] 2
M(z)=1 [0 0] z, N(z) = Iz+2{0 O]z.
If we multiply A(z) and B(z) from the left by I — [g ;] z, then the system turns to

A'(2)y = B'(2)u, (1.2)

where

0 1

Allz) =1+ 12 - 57 B'(z) = I=.

0 0
It is easy to see that A’(z) and B’(z) also are left-coprime. Thus the input-output data
cannot uniquely define parameters of the system.

In this paper, we give a definition of identifiability for multidimensional linear systems

and present a necessary and sufficient condition for identifiability. When this condition is
satisfied, strongly consistent estimates for the unknown coefficients are derived.

2. Identifiability and Identification Methods
We now consider the system described by an ARMAX model:

A(z)y = B(z)us + C(2)we, t>0;

2.1
y¢=wt=0, u¢=0, tSD, ( )

where y;, u; and w; are m-output, n-input and m-driven noise, respectively; A(z), B(z) and
C(z) are given by the following equations:

A(z) 21+ Az o+ Ap2P, p >0, (2.2)
B(z) 2 Byz+ - + B2t g> 1, (2.3)
C(z)gf—’r Ciz+ - +C.z2", r> 0. (2.4)

The driven noise {w, 7} is assumed to be a martingale difference sequence with respect
to a non-decreasing family of o-algebras. It is also assumed that

sup E[ ||we41|* %] < o0 as., (2.5)
t>0
1 t
}.itrgigf El—_}—:xmin (z w,w:) >0 a.s., (26)
1=0
1<
limsup — w;||? < o0 a.s. 2T
mare 13" , 2
where
§ 1 (m+1p+r+ T (2.8)
eh= —— = r :
e Rl ja i q

and Api,(z) denotes the minimum eigenvalue of the matrix X.
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In recent years there has been made some progress for consistently estimating the
unknown coefficient 6

O = [ b) A s B B @) 4G (2.9

under various conditions. For example, in Theorem 4 of [2] it is assumed that A(z) is stable,
A, is of row-full-rank and C~*(z) — 3/ is strictly positive real; in [3] it is required that both
C~(z) — I and C(z) — % I are positive real for some @ > 0, 27! B(z) is stable, 4, is of
row-full-rank and A(z), B(z) and C(z) have no common left factor. Obviously, all these
conditions are sufficient for identifying #. Our purpose is to clarify what is the minimum
requirement for this.

Definition 2.1. A system described by (2.1) is said to be identifiable if there are
no polynomials A'(z) = I + Alz+ - + A;,,z”', B'(z).= Biz+v = B,“,z"’ and C'(z) =
I+Ciz+ -+ CLz" withp' <p, ¢ <gandr' <r, respectively, so that (4’(z)) "' B'(z) =
(A(z))"'B(z) and (A'(z))"'C’(z) = (A(z))'C(z) unless A'(z) = A(z), B'(z) = B(z) and
C'(z) = C(2).

Theorem 2.1. The system (2.1) is identifiable if and only if A(z), B(z) and C(z)
have no common left factor and rank [4,, B, C.] = m.

Proof. We first prove the necessity. Assume the system is identifiable. If the converse
were true, then there would exist a non-unimodular polynomial matrix D(z) and polyno-
mials A'(z), B'(z) and C'(z) with orders less than or equal to those of 4(z), B(z) and
C/(z), respectively, so that [A(z) B(z) C(z)| = D(z)[A'(z) B'(z) C'(z)] which implies
(A'(2))"*B’(z) = (A(2))"'B(2) and (A'(2))"'C'(2) = (A(z)) " 'C(z). Thus by Definition
2.1 we have A'(z) = A(z), B'(z) = B(z) and C'(2) = C(z), and hence D(z) = I. The
obtained contradiction implies that A(z), B(z) and C(z) have no common left factor.

Further, if rank [A, B, C,| # m then rank |4, B, C.| must be less than m, because
[Ap By C,| has m rows. Hence, there is a non-zero square matrix D of dimension m so that
DA, =0, DB, =0 and DC, = 0. Thus, we have

A'(2) E(I+ D2)A(z) = I + (A1 + D)z + - + (DAp—1 + 4A,)2",
B'(2) (I + D2)B(2) = Biz + - + (DBy-1 + B,)2",
C'(z) 2(I+ Dz)Clz) = I+ (C1+ D)z + -+ + (DCry + 4A,)2"

and
(A'(2))7*B'(2) = (A(2))*B(2) and (4'(2))7'C'(2) = (A(2))'C(2),

which combining with Definition 2.1 implies that A'(z) = A(z), B'(z) = B(z) and C'(z) =
C(z). In particular, A; + D = A;, ie. D = 0. The contradiction shows rank (4, B,
Cl=m. -

: | We now show the sufficiency. If A(z), B(z) and C(z) in (2.1) have no common left
factor and rank [4, B, C.| = m, then we can show'that the system is identifiable. In
fact, if the system were not identifiable, then, by Definition 2.1, there would exist three
polynomial matrices A'(z) = I+ Ajz+---+ AL 2?, B'(z) = Biz+-- -+ Bf;,z"' and C'(z) =
I+Clz+ -+ C’,’,,z"' with p' < p, ¢’ < g and ' < r such that [A(2) B(z) C(z)]| # [4'(2)
B'(z) C'(2)], but (4'(2)"B(z) = (A(2)~B(2) and (4'(2)~'C'(z) = (A(2))~'C(z).
Let D(z) = A’(z)(A(z))~*. Then we have

[4'(2) B'(2) C'(2)] = D(2)[A(z) B(z) C(z)].
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Since A(z), B(z) and C(z) have no left common factor, there are three polynomial matrices
M, (z), M;(z) and M;(z) such that

A(z)M1(2) + B(z)Ma(z) + C(z)Ma(z) = I,

and hence A'(z)M,(z) + B'(2)Ma(2) + C'(2)M3s(z) = D(2), which implies that D(z) =
A'(2)(A(2))™" is a polynomial matrix. Furthermore, since both A'(2) and A(z) have identity
as their leading coefficient matrices, the leading coefficient matrix of D(z) must be identity.

Set D(z) = I+ D1z + -+ + Dgz* and a = max(p, g,r), and assume A; = 0 for ¢« > p,
B; =0 for j > g and Cg = 0 for k > r. Then we have

[4'(z) B'(z) C'(2)]
=[I 0 I|+[Ai+D, B, Ci+ D)z
+ [A2 +Dy+ DAy By + DBy, Cao+Dy+ chl] 22
i (DA, “DiB, Dl (2.10)

In the case d > 1 we must have D A, = 0, since deg A'(z) = p' < p. Similarly, we have
Dy4B, = 0, D4C, = 0, and hence D4[A, B, C;| = 0, which together with the fact that
rank [A, B, C,| = m, implies that Dy = 0. Suppose that Dy, =0forh =k+1,- - ,d. Itk >
1, then from (2.10) and Dy = 0 (h = k+1,--- ,d) it follows that Dy [4, B, C;| =0, which
obviously implies that Dy = 0. Therefore, we have D(z) = I, and hence [A(z) B(z) C(z)]| =
[A'(z) B'(2) C'(z)] which contradicts [A(z) B(z) C(2)] # [A'(z) B'(z) C'(2)].

The proof is completed. [

Theorem 2.2. If A(z) is stable, C~!(z) — 3/ is strictly positive real and the system
(2.1) is identifiable, then a strongly consistent estimate 6; for f can be given on the basis of
input-output data of the system.

Proof. Let {v:} be a sequence of n-dimensional mutually independent random vectors
with continuous distributions and satisfying

1 o2
EUt = D, E‘Ugt}: = t—‘I, ”Ut ”2 S t—‘, t _>_ 1, Uy — 0, t S 0, (211)
S 0, == 1 3
€ [ 2“+3), p=(m+1l)p+qg+r
where o2 is a fixed positive constant.

Take u; = v; and estimate 6 by 6;:

Ber =0r + o Pepe (941 — 0701),
Piyy =P — et Popep} Py, a::(1+<pIPtgot)"1,

F e T T T et T T e T Ko T = T
P —[y: o Yt—ppr Y Uy Y - T Pz—rgtfr-rl]

with Py = I and with § arbitrary.
Set

Q=L T g T i e T
v; =| v o Yp—ppr YoYUy Wy wt——r+1] )
t—1
- 012
0 =mp+ng+mr+ ) |ef

=0
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and denote by A%, (t) the minimum eigenvalue of I + Yics o 0.

By Theorem 2 of [2] we know that

0 0y\e z
16 — 8|2 = O log r}(log log ) ’ _—
]]l]]l(t)

F‘rom“[f‘l.?), (2.11) and stability of A(2) it follows that r? = O(t), and hence

(1 ¢
16— 62 =0 EEQEEEL e
A (£)

Thus for the consistency of 6; it suffices to show

liminf ¢~ 10 (1) £ 0 a.s. (2.12)

t—o00 min

Set
fi & (det A(2))87, det A(z ] Zaytaz+-+a,z", s<mp

By the Schwarz inequality and the fact that py =0 fort <0, it is easy to see
t s

M) = inf S )< (s 4 1) ) i),

=1
lell=1 = 4

where /\mm( ) denotes the minimum eigenvalue of 22:1 Fob5s
So for (2.12) it suffices to prove that

liminf t~1Tethe 3L (3) £0. (2.13)

t— 00 1]1]1[
If this were not true, then there would exist a vector sequence {ne, }:

(0) (p—1)7 (0) q—1 ] (r=1)T]7 )
e, = [Ottk A ati ﬁ T Y ‘:[‘k )T ,_Ak}r & '_h: T] e R™ +np+mr,

such that [|ne, || = 1 and

llmmf t, Bdtatic g (Z(’?tkf‘ ) 0. (2.14)

\i=1
Let
p-1 q-1
H, (2 Za“'* ‘(Adj A(2)) [B(2) Clz)]+ Y A2 [(det A(2)) 1, 0]

=1

+nyt'lr z [0 (det A(z))1..]

" . . )

2% (A g2, < max(p,g,r) +mp—1,

; ) : : "
where h(til and g,li are n- and m-dimensional vectors respectively.
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Applying the same argument as that used in (49)-(63) of 2], from (2.14) we conclude
that

By, =8

k—o0
This means that there exists a unit vector
=lag rap_y B5 o Bgiy VoWl o nll =
such that i 3
Z afz'(Adj A(2))B(z) = Zﬁ’z‘(det A(2)) 1, (2.15)
and
Z afz'(Adj A(2))C(z) = ny z'(det A(2))], (2.16)

Since A(z), B(z) and C(2) have no common left factor, there are M'(z), N'(z) and
L'(z) such that

A(z)M'(2) + B(2)N'(z) + C(2)L'(2) = I, (2.17)
which implies
,Z a7 (Adj A(2)) = Z ofz'(Adj A(2)) (A(z)M'(2) + B(2)N'(2) + C(2) L' ()
= (Z aIz‘(Ade(Z))A(z)) M'(z)

(Z af 2 (Adj A(2)) B( z)) N'(z)

+ (Z o= (A A(z))o(z)) L'(2)

1=

Therefore, by (2.15)—(2.16) we have
p—1 p—1 q—1
> alz'(Adj A(z)) =(det A(z)) (Z ajz'M'(2) + > f7z'N'(2) + qu ‘Bz )
1=0 i=0 1=0

2(det A(z)) Zﬁ;z‘. (2.18)

Multiplying the equality (2.18) by A(z), B(z) and C(z) from the right, we obtain
respectively that

r—1 A q—1 A
Za{zi = (Z ﬁfzi) A(z), Zﬁfz’ = (Zﬁ'{z‘) B(z) (2.19)

and
b

iq;zi = (Zmz‘) C(2). (2.20)

1=0
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Comparing coefficients for (2.19) and (2.20) and noticing that rank [4, B, C;| = m we
find 5; = 0,7 =0,---, A and then from (2.19), (2.20) we conclude a; =0, §; =0, 1, =0,
g =105 Ay g =0 g =L R By F e =

This contradicts ||n|| = 1 and at the same time verifies (2.12).

The proof of Theorem 2.2 is complete. |

Corollary 2.1. If the system noise in (2.1) is uncorrelated, i.e. C(z) = I, then the
system is always identifiable whatever A(z) and B(z) are.

Remark 2.1. From this theorem it is seen that the results in [2]-[5] remain valid
under weaker conditions, namely, the row-full-rank of A, or B, or C, can be weakened to
row-fuli-rank of (A, B, C,l.

Remark 2.2. By using the recent result developed in [6], Theorem 2.2 remains true
if stability of A(z) is replaced by stability of 27 B(z).

The next theorem gives conditions different from those used in Theorem 2.2.

Theorem 2.3. If m = n, 27! B(z2) is stable, system (2.1) is identifiable, and C(z) — 3/
is strictly positive real, then a strongly consistent estimate 6; for # can be given on the basis
of the input-output data of the system.

Proof. Let {v;} be a sequence of m-dimensional mutually independent random vectors
with independent components having continuous distributions. Further, assume that

o?

vy =0, FEuvv] = I, | t” Vit =2,

log® t ~ log°t’

ec |0 . max ( +1)
et LeEE s = max r
] 43( + 2) ) p’ q’ ]

where o2 is a constant.

Define ; by the stochastic gradient algorithm

1 #
ft41 =0y + ;‘P;(!IIH — ; 0;),
t

! i 0 T
' :[y{ yzrwpﬂ ug - u:—-q+1 Y — ‘Pt xSt Pt r] )
t—1
ry =mp+ ng + mr + Z |1=A “2
1=0

It has been shown in [5] that at any time the estimate B, given by 0; for B, is
nondegenerate and

S (sl + 1wl = 0)  as,

if the initial estimate B}, for B; is nondegenerate and u; is given by
U = u? + v
and
0
Bjuy = Blyw — 0,7}

By Theorem 2 of (4], for the consistency of ¢; it suffices to show that

£
timint 530, () %0 (2.21)
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Using the treatment used in Theorem 3 of [4], the assumption converse to (2.21) leads to
(2.15) and (2.16), which imply a contradiction as is shown in Theorem 2.2.

Hence 0] is strongly consistent. ]

Remark 2.3. It is clear, however, that Condition (2.6) cannot be satisfied by a
deterministic system for which the analogues of Theorems 2.1-2.3 still take place. In this
case Theorem 2.1 turns to the following statement. System (1.1) is identifiable if and only
if A(z) and B(z) are left-coprime and rank[4, B,] = m. Similarly, Theorems 2.2 and
2.3 remain true for deterministic systems if we remove conditions imposed on C(z) in the
theorems. This is because Theorem 3 of [2] and Theorem 3 of [5] are obviously true for
deterministic systems if we remove conditions on C(z) and {w,} in these theorems.

3. Conclusion

We have introduced a new definition of identifiability for multidimensional linear input-
output systems and presented a necessary and sufficient condition for its satisfaction. In the
case where the system is identifiable, by the methods given in this paper one can design a
kind of experiment signal that leads to consistant estimates for the unknown coefficients of
the system.

Acknowledgement: Particular thanks are due to Professor Xu Kekang for valuable
discussion.
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