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Abstract—This article aims to build a probabilistic frame-
work for Howard’s policy iteration algorithm using the lan-
guage of forward–backward stochastic differential equa-
tions (FBSDEs). As opposed to conventional formulations
based on partial differential equations, our FBSDE-based
formulation can be easily implemented by optimizing crite-
ria over sample data and is, therefore, less sensitive to the
state dimension. In particular, both on-policy and off-policy
evaluation methods are discussed by constructing different
FBSDEs. The backward-measurability-loss criterion is then
proposed for solving these equations. By choosing specific
weight functions in the proposed criterion, we can recover
the popular deep BSDE method or the martingale approach
for BSDEs. The convergence results are established under
both ideal and practical conditions, depending on whether
the optimization criteria are decreased to zero. In the ideal
case, we prove that the policy sequences produced by the
proposed FBSDE-based algorithms and the standard policy
iteration have the same performance and, thus, have the
same convergence rate. In the practical case, the proposed
algorithm is still proved to converge robustly under mild
assumptions on optimization errors.

Index Terms—Forward–backward stochastic differential
equations (FBSDEs), policy iteration (PI), stochastic opti-
mal control.

I. INTRODUCTION

A S an abstract description of policy-based methods, such
as policy iteration (PI) [1], [2], [3], [4], [5], [6] and policy
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gradient methods [7], [8], [9], the general PI (GPI) for optimal
control problems works as follows.

1) (Initialization.) Given an initial policy α0 and set n← 0.
2) (GPI Subroutine.) Given a policy αn−1, find a new policy

αn in the policy space A.
3) Set n← n+ 1 and go back to step 2.

The key element of GPI is step 2, referred to as the GPI
subroutine in this article, which takes the current policy αn−1 as
inputs, along with some other arguments if needed, and returns
a new policy αn. For example, in policy gradient methods, the
new policy is obtained via gradient descent in the policy space.
That subroutine is carefully designed such that the generated
policy sequence {αn} of GPI converges to, or approaches in
some sense, an optimal policy α∗.

Originally developed by Howard for the Markov process
model [1], Howard’s policy improvement procedure (an instance
of GPI subroutines), along with the PI method, has been widely
applied to optimal control problems, from discrete to continuous,
deterministic to stochastic, and linear to nonlinear systems [10],
[11], [12], [13], [14]. A major advantage of Howard’s PI (here-
after referred to as the standard PI) is its fast convergence rate.
For discrete-time and state problems, Puterman and Brumelle [2]
pointed out that the standard PI can be regarded as an instance of
Newton’s method, noting that both are finding zeros of a nonlin-
ear operator. Based on this crucial observation, they successfully
established a local quadratic convergence rate, which is also a
standard result for Newton’s iterative scheme in root-finding
problems. For linear quadratic regulation (LQR) problems in
continuous time and state, the value function sequence generated
by the standard PI also converges quadratically [10]. Another
interesting property of the standard PI is its robustness against
numerical errors. For stochastic nonlinear systems, Kerimkulov
et al. [15] analyzed the standard PI with perturbation errors.
They employed the theory of backward stochastic differential
equations (BSDEs) to estimate the performance error bound; see
also [16] for a perturbation discussion on the continuous-time
LQR problem.

Howard’s policy improvement procedure is usually recog-
nized as two consecutive steps: 1) policy evaluation and 2)
policy improvement. The purpose of policy evaluation is to
collect quantitative information on the current policy, or more
specifically, the value function of the policy. Based on this infor-
mation, the policy improvement step constructs a new policy that
guarantees a monotone increase in performance. In this work,
we focus on policy evaluation, and assume that a minimizing
function for policy improvement exists and is accessible [4],
[15]. Most early methods of policy evaluation obtain value

1558-2523 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Jifeng Zhang. Downloaded on July 31,2024 at 03:57:33 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0009-0005-0984-9777
https://orcid.org/0000-0003-3984-3120
https://orcid.org/0000-0002-1415-4073
https://orcid.org/0000-0002-0656-2886
mailto:yutian.wang@connect.polyu.hk
mailto:yhni@nankai.edu.cn
mailto:chenzq@nankai.edu.cn
mailto:jif@iss.ac.cn


WANG et al.: PROBABILISTIC FRAMEWORK OF HOWARD’S PI: BML EVALUATION AND ROBUST CONVERGENCE ANALYSIS 5201

functions by solving the differential Bellman equation, a first-
or second-order linear partial differential equation (PDE) [10],
[17], [18]. Since traditional finite-difference methods for PDEs
generally suffer from the curse of dimensionality [19], integral
PI [11], and temporal difference learning [20], [21] are preferred
in practice. In addition to the aforementioned works that focus
on the deterministic case, Jia and Zhou [22] investigated policy
evaluation in stochastic settings with a finite planning horizon.
They extended temporal difference learning to stochastic sys-
tems and proposed a martingale approach, which can be viewed
as the stochastic counterpart of integral PI. It is worth noting
that their martingale approach utilized a forward–backward
stochastic differential equation (FBSDE), which is precisely the
stochastic representation of the value function. From this point
of view, their work is closely related to early policy evaluation
methods utilizing PDEs, as Feynman–Kac’s formula relates
FBSDEs and PDEs [23]. On the other hand, Han et al. [24]
proposed the deep BSDE method as a numerical approach
for high-dimensional PDEs, where the problem is transformed
into an optimization problem subject to FBSDEs by nonlinear
Feynman–Kac’s formula.

We conclude the literature review with a brief introduction to
FBSDE computations, specifically focusing on the connection
between FBSDEs and PDEs. Feynman–Kac type formulae es-
tablished a relationship between FBSDEs and PDEs, enabling
the transformation of FBSDE problems into PDE problems. To
solve FBSDEs, various numerical methods have been employed,
including finite element, finite difference, and sparse grid meth-
ods [25], [26]. However, these methods encounter challenges
when dealing with high-dimensional problems due to their ex-
ponential complexity. In recent years, deep learning approaches,
such as the deep BSDE method, have emerged as promising solu-
tions for handling high-dimensional problems without requiring
space discretization [24], [27]. These methods leverage neural
networks to provide efficient and accurate solutions to FBSDEs
and related PDE problems. Additionally, techniques such as
multilayer Picard iteration and neural network optimization
have shown potential in solving nonlinear and high-dimensional
PDEs [28]. The utilization of deep-learning-based methods has
proven valuable in practical applications, as they provide general
solutions to FBSDEs and related PDE problems. These meth-
ods offer a powerful toolset for tackling complex systems in
various fields.

Contributions: The main contributions of this article are as
follows.

1) Motivated by these two parallel applications of Feynman–
Kac type formulae [22], [24], we rigorously build the
FBSDE-based framework of policy evaluation. In partic-
ular, we propose two FBSDE-based GPI subroutines that,
under certain assumptions, are shown to be equivalent to
conventional PDE-based subroutines used in Howard’s
PI. This, in turn, shows GPI equipped with proposed
subroutines converges as fast as the standard PI.

2) We propose a novel optimization-based formulation of
policy evaluation, whereby value function gradients are
evaluated rather than the value function itself. In the
case of inexact policy evaluation, we present a robust
convergence result in terms of the optimization errors.

3) We propose a versatile criterion for the optimization prob-
lem in policy evaluation. As the solution to the FBSDE

Fig. 1. Hierarchical illustration of the proposed PI framework. At the
top level of the hierarchy is GPI, which iterates in the policy space. At
the midlevel is the GPI subroutine, and at the bottom is the optimization
formulation of policy evaluation.

constraint is not known a priori, we prove that it is equiva-
lent to optimizing the proposed backward-measurability-
loss (BML) criterion. By selecting different weight
functions in the BML criterion, we are able to recover
the deep BSDE method in [24] as well as the martingale
approach in [22]. Combined with the time discretization
scheme in [29], our method can also be used to solve
FBSDEs and Feynman–Kac type PDEs. See also Fig. 1
for an overview of our PI framework.

Organizations: The rest of the article is organized as follows.
In Section II, we set up the stochastic optimal control problem
and review the concept of value functions. In Section III, we state
the standard PI algorithm and present a global linear convergence
result. Two FBSDE-based PI algorithms are introduced and
analyzed in Section IV. In addition to the ideal convergence
results, a robust convergence analysis is offered regarding opti-
mization errors. Section V discusses the optimization problems
in proposed algorithms. Numerical examples are present in
Section VI.1

Notations: Notations to be used frequently are summarized
as follows.

1) About probability theory and stochastic analysis. An
element ξ ∈ L2

F is an F-measurable function with
E ‖ξ‖2 <∞. W t,T ≡ {W t,T

s : t ≤ s ≤ T} denotes a d-
dimensional Brownian motion starting at W t,T

t = 0.
S
2(t, T ) denotes the set of adapted process Y satisfy-

ing E[supt≤s≤T |Ys|2] <∞. H2(t, T ) denotes the set of

adapted processZ satisfyingE
∫ T

t ‖Zs‖2 ds <∞. When
there is no ambiguity, we drop the dependencies on t and
T in these notations.

2) About optimal control and reinforcement learning. We
use x ∈ R

n and a ∈ R
m to denote the state and the action

(control). A function α is termed a (feedback-control)
policy if it maps time–state pairs to control values. We use
Fα to indicate that a quantityF depends on a policyα and
F ∗ to indicate the quantity corresponding to the optimal

1The code and additional numerical experiments are available at
https://github.com/Dou-Meishi/TAC-PIBSDE.
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policy. Moreover, for a quantity F (t, x, a) depending on
the time–state–action triple, we writeF a(·, ·) ≡ F (·, ·, a)
and Fα(·, ·) ≡ F (·, ·, α(·, ·)) if a is a control value and α
is a control policy.

3) About vector space. For elements in Euclidean space, ‖ · ‖
stands for the L2 norm and 〈·, ·〉 stands for the standard
inner product.

4) About functional classes. We use w ∈ C1,2 to say that w
is continuously differentiable with respect to the first vari-
able and twice continuously differentiable with respect to
the second variable. In Section III-A, we also introduce
the notation φ ∈ CUniLip

b to say that φ is uniformly Lips-
chitz continuous and uniformly bounded.

II. PRELIMINARIES

In this section, we review some basic concepts and results in
general stochastic optimal control theory. For a comprehensive
description of this subject, refer to the monograph [30].

A. Problem Settings

We consider an optimal control problem with system dynam-
ics governed by the stochastic differential equation (SDE)

Xs = x+

∫ s

t

bα(τ,Xτ ) dτ +

∫ s

t

σ(τ,Xτ ) dWτ . (1)

The solution to this equation, denoted by Xα,t,x or simply Xα,
is a controlled diffusion process, depending on both the policy
α and the starting point (t, x). Let us fix the initial time–state
pair (t, x) at first. Equation (1) is studied on an underlying prob-
ability space (Ω,F ,P), which is required to be complete and
admits a standard d-dimensional Brownian motion {Ws}t≤s≤T
with Wt = 0. Here, T <∞ is the planning horizon. We equip
(Ω,F ,P) with the natural filtration {Fs}t≤s≤T generated by
{Ws}t≤s≤T . Note that the definition of {Ws,Fs; t ≤ s ≤ T}
relies on the choice of t ∈ [0, T ].2 We develop our theory with
fixed (t, x) and the generalization to varying (t, x) is straight-
forward by substituting specific values.

The (controlled) drift coefficient bα and diffusion coeffi-
cient σ are measurable functions defined on [0, T ]× R

n. In
particular, bα is defined by other measurable functions b :
[0, T ]× R

n × R
m → R

n and a policy α : [0, T ]× R
n → R

m,
i.e., bα : (t, x) �→ b(t, x, α(t, x)). Under certain conditions on
bα and σ, there exists an adapted process Xα,t,x satisfying
(1) P-a.s. for any s ∈ [t, T ]; see, for example, Karatzas and
Shreve [23]. Here, by saying a process is adapted, we mean
it is progressively measurable.3

The cost of a policy α starting at (t, x) is measured by the
following expectation:

vα(t, x) := E

[∫ T

t

fα
(
s,Xα,t,x

s

)
ds+ g

(
Xα,t,x

T

)]
. (2)

Here, f : [0, T ]× R
n × R

m → R and g : Rn → R are measur-
able functions, and fα is defined in terms of f and α, in the

2This is known as the weak formulation of stochastic optimal control problems
in [30]. The main motivation of this formulation is that we can deal with a family
of stochastic optimal control problems by varying (t, x).

3Strictly speaking, an adapted process need not be progressively measurable.
But, if it is also measurable, then it has a stochastic equivalent process, which
is indeed progressively measurable [31].

same way as bα is defined in terms of b and α. A control
policy is said to be admissible if it takes value in A ⊂ R

m

and the solution to (1) uniquely exists. We denote by A the
collection of all admissible policies. When the policy α is fixed,
the function vα : [0, T ]× R

n → R is called the value function
of α. In addition, the following infimum:

v∗(t, x) := inf
α∈A

vα(t, x) (3)

is called the optimal value function.
The stochastic optimal control problem, in view of (1)–(3), is

then stated as finding α∗ ∈ A such that v∗(t, x) = vα
∗
(t, x) for

a given pair (t, x).

B. Characterizing Value Functions via PDEs

Using dynamic programming, we can link value functions
to a family of PDEs. Specifically, the dynamic programming
principle states that

v∗(t, x) = inf
α∈A

E

[∫ t+ε

t

fα(s,Xα,t,x
s ) ds+v∗

(
t+ ε,Xα,t,x

t+ε

)]
.

(4)
Recall that for any sufficient smooth v, there is L αv(t, x) =

limε→0
1
ε E
[
v(t+ ε,Xα,t,x

t+ε )− v(t, x)
]

with L α the infinitesi-
mal generator associated with (1)

L αv := ∂tv + 〈bα, ∂xv〉+ 1

2
tr {σσᵀ∂xxv} . (5)

Here, we drop the dependence on (t, x) for simplicity. Dividing
(4) by ε and taking ε→ 0 lead to a second-order PDE. Setting t =
T in the definition (3) yields a boundary condition. Putting these
all together and varying (t, x) leads to the following second-
order nonlinear Cauchy problem for the optimal value function:

{
0 = inf

a∈A
{L av∗(t, x) + fa(t, x)} ∀(t, x) ∈ [0, T )× R

n

v∗(T, x) = g(x) ∀x ∈ R
n

(6)
which is exactly the Hamilton–Jacobi–Bellman (HJB) equation.

Following the similar arguments of (4)–(6) leads to the fol-
lowing linear Cauchy problem for the value function:{

0 = L αvα(t, x) + fα(t, x) ∀(t, x) ∈ [0, T )× R
n

vα(T, x) = g(x) ∀x ∈ R
n

(7)

where the infimum is absent because this value function might
be not optimal. We refer to this as the PDE characterization of
value functions.

C. Characterizing Value Functions via FBSDEs

As a result of Feynman–Kac’s formula, solutions to PDEs (7)
admit FBSDEs representation, and therefore, it is possible to
characterize value functions with FBSDEs. To see this, one may
apply Itô’s rule to find that

dvα(s,Xα
s ) = L αvα(s,Xα

s ) ds+ 〈σᵀ∂xvα(s,Xα
s ), dWs〉.
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Substituting (7) into this equality and combining (1) yield the
FBSDE characterization of vα⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Xs = x+
∫ s

t bα(τ,Xτ ) dτ +
∫ s

t σ(τ,Xτ ) dWτ

Ys = g(XT ) +
∫ T

s fα(τ,Xτ ) dτ −
∫ T

s 〈Zτ , dWτ 〉
Ys = vα(s,Xs) ∀s ∈ [t, T ], dP-a.s.

Zs = σᵀ∂xvα(s,Xs), ds⊗ dP-a.e. on [t, T ]× Ω

(8)

under some conditions ensuring the solution’s existence and
uniqueness. We shall point out that this FBSDE is not in the
most general form. In (8), the forward SDE does not contain
the backward part Y as well as the control part Z. This means
that the FBSDE is decoupled, and we can separately solve the
forward SDE and the backward SDE.

The PDE characterization (7) and FBSDE characterization
(8), along with HJB (6), are fundamental motivations of this
article. However, in deriving these equations, we implicitly
assume that v∗ and vα are sufficiently smooth. This is nontrivial,
especially for HJB (6), which is strongly nonlinear. Although
the nonlinear Feynman–Kac formula is still valid in viscosity
settings, the difficulty lies in connecting the Z process of the
FBSDE to the optimal control u∗ when ∂xv

∗ does not exist.
Nevertheless, we focus on problems such that this assumption
holds, as the nonsmooth solution to the HJB equation is already
a broad topic, in which the concept of viscosity solutions must
be introduced [32]. Extensions to the nonsmooth case might be
considered in future works.

To conclude this section, we point out that the HJB (6) char-
acterizing the optimal value function is a nonlinear PDE while
it is reduced from (7), satisfied by the value function of a given
policy, is linear. From this point of view, the standard PI manages
to approximate the solution to a nonlinear PDE with a sequence
of solutions to linear PDEs. This linearization coincides with
the idea of Newton’s method for finding zeros, regarding some
abstract arguments of general derivatives. However, as discussed
in Section I, solving PDEs directly generally suffers the curse of
dimensionality and, thus, prevents applications in large-scale
problems. This is the reason why we need the probabilistic
formulation (8).

III. PDE-BASED PI ALGORITHM

In this section, we reformulate the system dynamics, state our
assumptions, and present a global linear convergence result of
the standard PI algorithm. At last, we highlight two key issues
with this PDE-based algorithm.

A. Problem Reformulation and Assumptions

In this article, we consider a slightly different system descrip-
tion other than the general form (1). Specifically, we require
the drift coefficient can be decomposed in a way such that the
control-dependent term is explicitly coupled with the diffusion
coefficient: ∀(t, x, a) ∈ [0, T ]× R

n ×A

b(t, x, a) = b̄(t, x) + σ(t, x)b̂(t, x, a). (9)

Namely, b(t, x, a) can be split into two parts; one b̄(t, x) is
independent of control, and the other one σ(t, x)b̂(t, x, a) is
control-dependent. It seems too restrictive at the first glance. But,
if σσᵀ is nondegenerate, i.e., (σσᵀ)−1 exists on [0, T ]× R

n,
then the desired decomposition exists. Indeed, we can choose
b̄ ≡ 0 and b̂ ≡ σᵀ(σσᵀ)−1b. Also, we require that a measurable

minimizing function μ is given such that for any (t, x, z) ∈
[0, T ]× R

n × R
d

μ(t, x, z) ∈ arginf
a∈A

{
〈b̂a(t, x), z〉+ fa(t, x)

}
. (10)

This function is useful in canceling the painful infimum operator
in the HJB equation. To see this, we note that the diffusion
coefficient σ is independent of control, and thus, for any (t, x)
and smooth function v(·, ·)

arginf
a∈A

{L av(t, x) + fa(t, x)}

= arginf
a∈A

{
〈b̄+ σb̂a, ∂xv(t, x)〉+ fa(t, x)

}
= μ (t, x, σᵀ∂xv(t, x)) .

We should stress that this property holds only for b = b̄+ σb̂.
Without the explicit appearance of σb̂, the definition of μ would
be problematic. However, for the affine system and quadratic
control cost, which is the main topic of adaptive dynamic pro-
gramming [11], [33], [34], [35], [36], [37], the minimizer of
the right-hand side of (10) uniquely exists and admits a closed
analytic form. In particular, suppose that b is linear in a (then
so is b̂) and that f is quadratic in a, and that A is closed and
convex. Then, μ can be obtained by projecting the minimizer
of a quadratic function onto a closed convex set. See also the
work in [15] for a more general discussion on the existence of
μ. Nevertheless, μ is regarded as an abstract representation of
the minimizer. For complex systems where (10) does not admit
closed-form solutions, an intermediate numerical solver could
be embedded. A rigorous analysis in this direction exceeds the
scope of this article. Interested readers may refer to the work
in [38] for a possible resolution.

In order to rigorously state our algorithm and establish the
desired convergence results, we need to pose some conditions
for our problem. At first, we recall the useful uniform Lipschitz
continuity and uniform boundness, which are able to ensure the
existence and uniqueness of solutions to SDEs and BSDEs.

Definition 1 (Uniform Lipschitz continuity and boundness):
A continuous functionφ(t, x, y) is said to be uniformly Lipschitz
continuous in x, y with respect to t if there exists a positive
constant L such that for any t ∈ E1, x, x′ ∈ E2, y, y′ ∈ E3

‖φ(t, x, y)− φ(t, x′, y′)‖ ≤ L‖x− x′‖+ L‖y − y′‖ (11)

where E1, E2, and E3 are nonempty subsets of Euclidean
spaces with proper dimensions.

Furthermore, φ is said to be uniformly bounded if there exists
a constant L such that (suppose 0 ∈ E2, E3)

‖φ(t, 0, 0)‖ ≤ L ∀t ∈ E1. (12)

For convenience, let CUniLip(E1 × E2 × E3) denote the collec-
tion of functions satisfying (11), and CUniLip

b (E1 × E2 × E3)
denote the collection of functions satisfying both (11) and (12).

Convention 1: For continuous function φ1(t, x) or φ2(x),
we mean φ1 or φ2 ∈ CUniLip(E1 × E2 × E3) if the extended
function φ̃1 or φ̃2 ∈ CUniLip(E1 × E2 × E3), where

φ̃1(t, x, ·) ≡ φ1(t, x), φ̃2(·, x, ·) ≡ φ2(x).

We apply this simplification to CUniLip
b too.

Assumption 1: Let the following assumptions hold.
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1) The functions b̄, b̂, σ, f, g ∈ CUniLip([0, T ]× R
n ×A).

Moreover, the given minimizing function μ ∈
CUniLip([0, T ]× R

n × R
d).

2) The functions b̄, μ, f are uniformly bounded: ∀t ∈ [0, T ]

‖b̄(t, 0, 0)‖+ ‖μ(t, 0, 0)‖+ |f(t, 0, 0)| ≤ L

and b̂ and σ are bounded: ∀(t, x, a) ∈ [0, T ]× R
n ×A

‖b̂(t, x, a)‖+ ‖σ(t, x)‖ ≤ L.

3) For any α ∈ CUniLip
b ([0, T ]× R

n), the linear Cauchy
problem (7) has a smooth solution wα ∈ C1,2([0, T ]×
R

n) such that ∂xwα ∈ CUniLip
b . Moreover, the HJB (6)

has such a smooth solution v∗ too.
Remark III.1: As a matter of fact, one essential condition on

the existence of a smooth solution to HJB equation (6) is the uni-
form elliptic condition: ∃δ > 0 such that yᵀσσᵀy ≥ δyᵀy holds
for any (t, x, y) ∈ [0, T ]× R

n × R
n. Clearly, this condition is

also sufficient to ensure the existence of b̄ and b̂.
Remark III.2: Under Assumptions 1.1 and 1.2, we have

b, σ, f, g, μ ∈ CUniLip
b , and thus, for any policy α ∈ CUniLip

b tak-
ing values in A, there is bα ∈ CUniLip

b . Hence, the solution to
(1) uniquely exists for any (t, x). Moreover, for any 
 > 1,
E[supt≤s≤T ‖Xα,t,x

s ‖�] is finite [39].
Remark III.3: In linear quadratic problems, the assumptions

that f and g are bounded and Lipschitz are violated. In prac-
tice, however, we can make some minor modifications to the
problem in order to satisfy these assumptions. The idea is to
manually clip the control and state in these functions below a
certain threshold. For example, if f(t, x, a) = xᵀQx+ aᵀRa,
then f̃(t, x, a) = f(t, x̃, ã) may be used, where x̃ and ã are
componentwise clipped versions of x and a, respectively. By
choosing a sufficiently large threshold, we can still obtain a
satisfactory suboptimal control policy for the original problem.

We stress that Assumption 1 might not be the most general
condition to make the aforementioned assertions. But, it is
very convenient to illustrate our key ideas without getting too
involved in abstract theories of PDEs and SDEs. In particular,
we have the following lemma to characterize value functions,
which also serves as a starting point for the following sections.

Lemma 1: Let Assumption 1 hold. Then, for any policy α ∈
CUniLip

b ([0, T ]× R
n) valued inA, the value function vα, defined

by (1) and (2) is a unique solution to PDE (7) with vα ∈ C1,2.
Moreover, vα admits the stochastic representation (8).

Proof: This is a direct consequence of Remark III.2 and [30,
Th. 7.4.1].

Remark III.4: Under Assumption 1.3, ∂xvα ∈ CUniLip
b , and

thus, μ(·, ·, σᵀ∂xvα(·, ·)) is a policy valued in A and lies in
CUniLip. It is also important to note that in the stochastic rep-
resentation (8), the term σᵀ∂xvα is encoded in the Z process.
Therefore, obtaining Z is to some extent sufficient to construct
the policy μ(·, ·, σᵀ∂xvα(·, ·)).

B. Standard PI Subroutine

Let us focus on the HJB (6) and the PDE characterization (7).
Suppose α is an optimal policy, then vα satisfies both of these
equations. Combining (6) and (7), for any (t, x) ∈ [0, T ]× R

n,

Algorithm 1: A PDE-Based Subroutine of GPI.
Input: a feedback control policy α.
Output: a feedback control policy α′ not worse than α.
1: Obtain the value function vα by (7).
2: Construct the output policy by (14) with z ← σᵀ∂xvα.

we have

L αvα(t, x) + fα(t, x) = inf
a∈A
{L avα(t, x) + fa(t, x)}.

(13)
Conversely, if this equation is satisfied by some policyα, then its
value function vα satisfies the HJB equation. Hence, the central
idea of PI is to force (13) to hold.

The standard PI algorithm works as follows.
1) Given a policy α, find its value function vα by (7).
2) Given vα, find a policy α′ such that for any (t, x)

α′(t, x) = arginf
a∈A
{L avα(t, x) + fa(t, x)}.

Alternatively repeating these two steps generates a sequence
of policies. The first step is also known as policy evaluation, and
the second step is policy improvement. According to (10), the
policy improvement step can also be realized by setting

α′(t, x) := μ(t, x, z(t, x)) ∀(t, x) ∈ [0, T ]× R
n (14)

where z(·, ·) = σᵀ∂xvα(·, ·). For simplicity, we combine policy
evaluation and policy improvement into a single procedure and
refer to it as the standard PI subroutine or the PDE-based
subroutine; see Algorithm 1. The global convergence result of
GPI equipped with this subroutine is provided in Proposition 1.

Proposition 1: Let Assumption 1 hold. Starting at an ini-
tial policy α0 valued in A, let {αn}n∈N denote the policy
sequence generated by GPI equipped with Algorithm 1. If
α0 ∈ CUniLip

b ([0, T ]× R
n) is valued in A, then αn is admissible

for any n ≥ 0. For any (t, x) ∈ [0, T ]× R
n, the cost sequence

{vαn
(t, x)}n∈N is monotonically decreasing to v∗(t, x). More-

over, there exists a constant C = C(t, x) depending on (t, x)
and a constant q ∈ (0, 1) independent to (t, x) such that

|vαn

(t, x)− v∗(t, x)| ≤ C(t, x)qn, for any n ≥ 0. (15)

Proof: The assertion of admissibility is a direct consequence
of Remark III.4. The monotonicity is also expected due to
the definition of μ [12]. Under our assumptions, (15) can be
demonstrated by following the proof of [15, Th. 4.1], so we
omit this technical proof here. The proof of (15) can also be
viewed as a simplified version of the proof of Theorem 4; see
Remark IV.4 for more details.

C. Two Key Issues

To this end, we have formulated the PDE-based subroutine in
Algorithm 1 and developed corresponding convergence results.
Sadly, we have to admit that the global linear convergence rate
in Proposition 1 generally cannot be achieved with a practical
program. The dilemma arises from the policy evaluation step.

The first issue is the design of numerical methods for policy
evaluation. In Algorithm 1, policy evaluation is formulated as
solving PDEs, which generally has no closed-form solution and
has to be solved with numerical methods. Traditional numerical
ways for PDEs require discretizing the time–state space and,
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Algorithm 2: The On-Policy Subroutine of GPI.

Input: a feedback control policy α; an initial point (t, x).
Output: a feedback control policy α′ not worse than α.
1: Find the solution Xα to the forward SDE (1).
2: Find an optimal solution zα to the optimization problem

min
z∈CUniLip

b

εα := E

∫ T

t

‖z(s,Xα
s )− Zα

s ‖2 ds (16)

where Zα is a part of the solution to the BSDE in (8).
3: Construct the output policy by (14) with z ← zα.

thus, suffer from the curse of dimensionality. Moreover, extend-
ing traditional ways to model-free settings seems to be challeng-
ing. Based on these considerations, another two PI subroutines
utilizing the FBSDE characterization of value functions are
proposed in Section IV. We also develop a numerical method for
solving FBSDEs by optimizing a novel criterion; see Section V.

The second issue is more subtle. Since numerical methods
cannot be expected to provide the exact solution, especially
after time discretization, approximation errors are generally
inevitable. Consequently, the improved policy based on this
inexact solution is different from the expected output policy.
To address this issue, we quantify these approximation errors
as εn and analyze the convergence of the PI with εn > 0. We
discuss this topic at the end of Section IV.

IV. FBSDE-BASED PI ALGORITHMS

In this section, we propose two FBSDE-based PI algorithms.
The convergence result is established by showing the equiva-
lence between the PDE-based and FBSDE-based PI subroutines.
At last, we present a robust convergence result with respect to
approximation errors. In all the following sections, the initial
pair of time states (t, x) is fixed.

A. On-Policy Subroutine

In the PDE-based subroutine, the next trial policy is con-
structed by μ and σᵀ∂xvα, where the latter is obtained via
solving PDE (7). In view of Lemma 1, it is very natural to
consider carrying out policy evaluation by solving FBSDE (8).
We formulate this idea in Algorithm 2.

The second step of Algorithm 2 is the key of this work.
Instead of evaluating vα via a linear PDE and substituting ∂xv

α

into the policy improvement step, we directly obtain a zα term
via an optimization problem and, then, construct the next trial
policy based on it. We will discuss in detail how to minimize the
objective function (16) in Section V. Here, we simply assume
that there is a method that can be used to determine the global
solution zα.

Comparing the policies returned by Algorithms 2 and 1, it
can be seen that zα plays the role of σᵀ∂xvα. According to
Lemma 1, σᵀ∂xvα is, indeed, a global solution to that optimiza-
tion problem. Noting that Zα

s = σᵀ∂xvα(s,Xα
s ) holds almost

everywhere on the product space [t, T ]× Ω, we can rewrite the
objective function (16) as

εα(z) = E

∫ T

t

h(s,Xα
s ) ds (17)

where h(·, ·) := ‖z(·, ·)− σᵀ∂xvα(·, ·)‖2 ≥ 0. Hence, we have
εα(zα) = 0. In the opposite direction, however, one cannot say
that σᵀ∂xvα is the unique optimal solution in CUniLip

b , since
h ≡ 0 is not the necessary condition of εα = 0. In fact, the
necessary and sufficient condition is that h equals zero almost
everywhere on the product space under the measure induced
by Xα(s, ω). To put it another way, we can only say that
zα(·, ·) equals σᵀ∂xvα(·, ·) almost everywhere along the pro-
cess Xα,t,x. Fortunately, Lemma 2 suggests that this almost
everywhere identity is enough to guarantee that Algorithms 1
and 2 are equivalent, in the sense that the returned policies have
the same cost value.

Before proceeding, we would like to clarify one more point
regarding this algorithm. The first two steps for obtaining zα

can be implemented in a pure data-driven fashion. The forward
state process {Xα

s }t≤s≤T can be sampled by sending the cur-
rent policy α to the dynamic system and observing the state
trajectory. Furthermore, it is possible to solve that optimization
problem using only samples without knowing the exact solution
(Y α, Zα). This is the reason why we call Algorithm 2 on-policy.
In Section IV-B, we introduce the off-policy subroutine, where
the forward SDE is driven by a fixed behavior policy αb instead
of the current policy α.

Lemma 2: Let Assumption 1 hold. For any α1, α2 ∈
CUniLip

b ([0, T ]× R
n), let X1, X2 be their state processes, re-

spectively. Then, for any nonnegative measurable function
h(·, ·) ≥ 0, the following statements are equivalent.

1) h(s,X1
s ) = 0 holds ds⊗ dP-a.e. on [t, T ]× Ω.

2) h(s,X2
s ) = 0 holds ds⊗ dP-a.e. on [t, T ]× Ω.

Proof: Consider the following two auxiliary processes:

W i
s = Ws +

∫ s

t

b̂α
i

(τ,Xi
τ ) dτ, s ∈ [t, T ], i = 1, 2.

Noting that {b̂αi
(s,Xi

s); t ≤ s ≤ T} is bounded and, thus, sat-
isfies Novikov condition, there exists probability measure P

i,
equivalent to P, such that W i becomes a standard Brownian
motion under P

i. This is known as Girsanov’s theorem [23,
Ch. 3]. Therefore, (X1,W 1,P1) and (X2,W 2,P2) are two
weak solutions to the following SDE:

Xs = x+

∫ s

t

b̄(τ,Xτ ) dτ +

∫ s

t

σ(τ,Xτ ) dWτ .

By the uniformly Lipschitz continuity and boundness of b̄ and
σ, the strong existence and uniqueness hold for this SDE. Then,
the weak uniqueness in the sense of probability law holds too,
namely, X1 and X2 have the same law. Thus, the integral of
h(s,X1

s ) equals the integral of h(s,X2
s )∫ T

t

(∫
h(s,X1

s ) dP
1

)
ds =

∫ T

t

(∫
h(s,X2

s ) dP
2

)
ds.

We conclude that h(s,X1
s ) = 0 holds ds⊗ dP1-a.e. if and only

if h(s,X2
s ) = 0 holds ds⊗ dP2-a.e. The proof is finished by

noting that P,P1,P2 are equivalent to each other. �
This lemma offers the freedom to change the underlying

process in the optimization problem of the on-policy subrou-
tine. By setting h(·, ·) as (17), this lemma suggests that min-
imizing the E

∫ T

t h(s,Xα
s ) to zero is equivalent to minimiz-

ing E
∫ T

t h(s,Xαb

s ) to zero for any αb ∈ CUniLip
b . Thus, it is

also reasonable to choose a policy αb different from α and
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optimize the integral of h along Xαb
. On the other hand, let

E
∫ T

t h(s,Xα
s ) = 0 hold and α′ be the policy returned by Al-

gorithm 1. Then, h(s,Xα′
s ) = 0 holds almost everywhere on

the product space [t, T ]× Ω. This argument is also the key
to proving the following equivalence between the PDE-based
subroutine and the on-policy subroutine.

Theorem 2: Let Assumption 1 hold. For an input policy
α ∈ CUniLip

b ([0, T ]× R
n) valued in A, let α′1 and α′2 denote the

outputs of Algorithms 1 and 2, respectively. Then, α′1 and α′2
generate the “same” trajectory starting at (t, x)

X
α′1,t,x
s = X

α′2,t,x
s , ds⊗ dP-a.e. on [t, T ]× Ω.

Moreover, vα
′
1(t, x) = vα

′
2(t, x).

Proof: Let vα and zα denote the same objects in Algorithms 1
and 2, respectively. We write down the explicit expression of
α′1, α

′
2

α′1(·, ·) = μ(·, ·, σᵀ∂xvα(·, ·)), α′2(·, ·) = μ(·, ·, zα(·, ·))
and denote by h(·, ·) = ‖zα(·, ·)− σᵀ∂xvα(·, ·)‖2.

According to Remark III.4, α′1 and α′2 are admissible. Con-
sider the forward SDEs satisfied by Xα′1 , Xα′2

X
α′1
s = x+

∫ s

t

bα
′
1

(
τ,X

α′1
τ

)
dτ +

∫ s

t

σ
(
τ,X

α′1
τ

)
dWs

X
α′2
s = x+

∫ s

t

bα
′
2

(
τ,X

α′2
τ

)
dτ +

∫ s

t

σ
(
τ,X

α′2
τ

)
dWs.

We claim that

α′1(s,X
α′1
s ) = α′2(s,X

α′1
s ), ds⊗ dP-a.e. on [t, T ]. (18)

Indeed, it can be concluded from Lemma 1 that h(s,Xα
s ) =

0 almost everywhere on [t, T ]× Ω. Then, applying Lemma 2

yields h(s,Xα′1
s ) = 0 almost everywhere. Denote by

X̃
α′1
s = x+

∫ s

t

bα
′
2

(
τ,X

α′1
τ

)
dτ +

∫ s

t

σ
(
τ,X

α′1
τ

)
dWs

and φ(u) := E
∫ t+u

t ‖Xα′1
τ −X

α′2
τ ‖2 dτ . Noting (18) and the

Lipschitz continuity of bα
′
2 and σ, we have

φ(u) = E

∫ t+u

t

‖X̃α′1
s −X

α′2
s ‖2 ds

≤ E

∫ t+u

t

{
2

[∫ s

t

(bα
′
2

(
τ,X

α′1
τ

)
− bα

′
2(τ,X

α′2
τ )) dτ

]2

+ 2

[∫ s

t

(
σ(τ,X

α′1
τ )− σ

(
τ,X

α′2
τ

))
dWτ

]2}
ds

≤ E

∫ t+u

t

2(s− t+ 1)L2

∫ s

t

‖Xα′1
τ −X

α′2
τ ‖2 dτ ds

≤ 2(T + 1)L2

∫ u

0

φ(s) ds ∀u ∈ [0, T − t].

Hence, by Grönwall’s inequality, there is φ(T − t) = 0. This

proves that X
α′1
s = X

α′2
s almost everywhere on [t, T ]× Ω.

Moreover, the cost of α′1 and α′2 at (t, x) is equal. �
Remark IV.1: This result reveals that there is no difference

between the cost sequence produced by GPI using the PDE-
based subroutine and the on-policy subroutine. Thus, all the

convergence properties of the standard PI are preserved in our
probabilistic framework.

Corollary 1: For any fixed (t, x) ∈ [0, T ]× R
n, the con-

clusions of Proposition 1 hold if Algorithm 1 is replaced by
Algorithm 2.

Remark IV.2: Because the output of Algorithm 2 may de-
pend on the argument (t, x), we cannot make a conclusion that
{vαn

(t′, x′)} is monotone at any (t′, x′) as in Proposition 1. Nev-
ertheless, the cost sequence {vαn

(t, x)} is still monotonically
decreasing, where (t, x) is the argument passed into Algorithm 2.

B. Off-Policy Subroutine

On-policy and off-policy are terminologies in reinforcement
learning [5]. They are different in the way of collecting data. In an
on-policy algorithm, a value function of a policy α is evaluated
with data collected by it. This corresponds to FBSDE (8), where
the forward SDE is driven by α and the solution to the backward
SDE is related to vα too. However, in an off-policy algorithm, vα

is generally evaluated with data collected by a different policy,
called the behavior policy αb usually. The advantage of off-
policy algorithms is the high data efficiency. If we adopt the
on-policy subroutine Algorithm 2 in GPI, then the current policy
α generally changes during the iteration. Therefore, we have to
resample data at the beginning of each iteration, i.e., solving a
new forward SDE in our case.

With the help of nonlinear Feynman-Kac’s formula, it is
straightforward to extend the on-policy FBSDE characterization
of value function to the off-policy case.

Lemma 3: Let the condition of Lemma 1 hold and use the
same notation. For any policyαb ∈ CUniLip

b ([0, T ]× R
n) valued

in A, the value function vα admits the following stochastic
representation:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Xb
s = x+

∫ s

t bα
b
(τ,Xb

τ ) dτ +
∫ s

t σ(τ,Xb
τ ) dWτ

Ys = g(Xb
T ) +

∫ T

s fα(τ,Xb
τ ) dτ −

∫ T

s 〈Zτ , dWτ 〉
+
∫ T

s 〈b̂α(τ,Xb
τ )− b̂α

b
(τ,Xb

τ ), Zτ 〉 dτ
Ys = vα(s,Xb

s) ∀s ∈ [t, T ], dP-a.s.

Zs = σᵀ∂xvα(s,Xb
s), ds⊗ dP-a.e. on [t, T ]× Ω.

(19)

Proof: By the definitions of b̄, b̂, and μ, we can rewrite the
PDE satisfied by vα as follows:⎧⎪⎪⎨⎪⎪⎩

0 =
〈
b̂α(t, x)− b̂α

b
(t, x), σᵀ∂xvα(t, x)

〉
+L αb

vα(t, x) + fα(t, x) ∀(t, x) ∈ [0, T )× R
n

vα(T, x) = g(x) ∀x ∈ R
n.

Applying the nonlinear Feynman–Kac’s formula [30, Th. 7.4.5]
to this leads to the desired representation. �

Remark IV.3: If αb ≡ α, this degenerates to Lemma 1. It is
important to note that the forward process Xb is independent
of α, which is the key difference between the on-policy and
off-policy methods. GPI equipped with the off-policy subroutine
and a fixed αb should be viewed as an iteration of BSDEs while
that equipped with the on-policy subroutine should be viewed
as an iteration of FBSDEs.

Based on Lemma 3, we propose Algorithm 3, in which the
optimization problem is modified according to (19). It can be
concluded from Lemma 2 that the optimization problems in
Algorithms 2 and 3 have the same solutions. In light of this
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Algorithm 3: The Off-Policy Subroutine of GPI.

Input: policies α, αb; an initial condition (t, x).
Output: a policy α′ not worse than α.
1: Find the solution Xb to the forward SDE (1) with

α← αb.
2: Find an optimal solution zα to the optimization problem

min
z∈CUniLip

b

εα := E

∫ T

t

‖z(s,Xb
s)− Zα,b

s ‖2 ds (20)

where Zα,b is a part of the solution to the BSDE in (19).
3: Construct the output policy by (14) with z ← zα.

observation, we are able to prove that the returned policies of
on-policy and off-policy subroutines are equivalent.

Theorem 3: Let the condition of Theorem 2 hold and use
the same notation. If αb ∈ CUniLip

b ([0, T ]× R
n) is valued in A,

then the output policies of Algorithms 2, 3, denoted by α′2, α
′
3,

generate the “same” trajectory starting at (t, x):

X
α′2,t,x
s = X

α′3,t,x
s , ds⊗ dP-a.e. on [t, T ]× Ω.

Moreover, vα
′
2(t, x) = vα

′
3(t, x).

Proof: The proof is similar to the proof of Theorem 2 except
that we need to show

α′2(s,X
α′2
s ) = α′3(s,X

α′2
s ), ds⊗ dP-a.e. on [t, T ]× Ω.

Let zαi (i = 2, 3) be the term zα in Algorithms 2 and 3, respec-
tively. Using Lemma 1–3, we have

zαi (s,X
α′2
s ) = σᵀ∂xvα(s,X

α′2
s ), ds⊗ dP-a.e. on [t, T ]× Ω.

Substituting this into the definition of α′i finishes our proof. �
In view of Theorems 2 and 3, we conclude that these three

subroutines are equivalent to each other. Consequently, the
following convergence result for Algorithm 3 holds.

Corollary 2: For any fixed (t, x) ∈ [0, T ]× R
n and αb ∈

CUniLip([0, T ]× R
n) valued in A, the conclusions of Proposi-

tion 1 hold if Algorithm 1 is replaced by Algorithm 3.
We conclude the discussion on the proposed on-policy and

off-policy subroutines with a comment on their partially model-
free property. In this work, b̄, b̂, σ, g, and f are recognized as
the model knowledge, and the minimizer μ as a combination of
knowledge of b̂ and f , as shown in (10). However, it is easy to see
that the on-policy method requires only f, g, and μ to improve
a given policy while the off-policy method uses an additional
term b̂. Both methods can work without knowing all system
dynamics if desired state trajectories for training are available.
This enables the learning and improvement of control policies
in a partially model-free setting.

C. Robust Convergence Result

Consider the optimization problem in Algorithm 3. In view
of Lemma 3, there exists a zα with εα(zα) = 0. In practice,
however, it is usually the case that we can only find a suboptimal
solution ẑ and, thus, εα(ẑ) > 0. If we construct a policy by
(14) with z ← ẑ, then there is no guarantee that this new policy
α̂ performs better than the current policy α. To see this, we
apply Itô’s formula to obtain (noting the PDEs satisfied by value

Algorithm 4: A BSDE-Based PI Algorithm.

Input: policies α0, αb; an initial condition (t, x).
Output: a sequence of policies {αn}.
1: Find the solution Xb to the forward SDE (1) with

α← αb.
2: for n = 0, 1, 2, . . . do
3: Run a numerical method to solve the optimization

problem (20) with α← αn. Denote by zn the returned
solution and εn the associated objective value.

4: Construct αn+1 by (14) with z ← zn.
5: end for

functions)

vα(t, x)− vα̂(t, x)

= E

∫ T

t

(
L α̂vα̂ −L α̂vα

) (
s,X α̂

s

)
ds

= E

∫ T

t

(
L αvα + fα −L α̂vα − f α̂

) (
s,X α̂

s

)
ds.

If ẑ = zα, then α̂(s,X α̂
s ) = μ(s,X α̂

s , σ
ᵀ∂xvα(s,X α̂

s )) almost
everywhere on [t, T ]× Ω, and thus, vα(t, x)− vα̂(t, x) equals

E

∫ T

t

(
L αvα + fα − inf

a∈A
{L avα + fa}

)(
s,X α̂

s

)
ds ≥ 0.

If εα(ẑ) > 0, then generally vα(t, x) ≥ vα̂(t, x) does not hold,
and thus, the monotonicity of policy improvement is broken.

In the following, we study the case in which the objective
function in the off-policy subroutine does not reach zero during
PIs. Although the cost sequence {vαn

(t, x)} may be not mono-
tone, we show that it still converges to the optimal cost if the
nth objective value εn converges to zero. To make it more clear,
we spell the PI procedure in Algorithm 4. In comparison to the
GPI that is equipped with the off-policy subroutine, Algorithm 4
contains two important differences. The first difference is that
the behavior policy αb is fixed during iteration. This is not the
only way to apply the off-policy BSDE subroutine in GPI, as
it can be proved that the cost of the output policy does not
change if αb is different. In order to view the whole algorithm
as the iteration of BSDEs, however, we do not allow the forward
SDE changes during iteration. The second difference is that zn

is not necessarily an optimal solution of (20). Also, εn is not
necessarily equal to 0.

With notations defined in Algorithm 4, we can state our robust
convergence result as follows.

Theorem 4: Let Assumption 1 hold and use notations in Al-
gorithm 4. If α0, αb ∈ CUniLip

b ([0, T ]× R
n) are policies valued

in A, then αn is admissible for any n ≥ 0. Moreover, there exist
constants q ∈ (0, 1) and γ > 0, both independent of (t, x), such
that the following inequality holds:

limsup
n→∞

∣∣vαn

(t, x)− v∗(t, x)
∣∣2 ≤ qeγ(T−t)

1− q
· limsup

n→∞
εn.

Proof: See Appendix A. �
Remark IV.4: If αb = α0 and εn = 0 for any n, then cn = 0

for any n, and (33) is reduced to an + bn ≤ qnb0. Dropping bn
and expanding the definition of an yield the (15). This shows
that our proof can be adapted to prove Proposition 1.
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V. SOLVING FBSDES BY OPTIMIZATION

In this section, we discuss how to solve the optimization prob-
lems encountered in the FBSDE-based subroutines, in which
we propose a novel criterion, called the (general) BML crite-
rion. Due to the uncoupling nature of the FBSDEs in our PI
algorithms, we focus on solving BSDEs.

A. Practical Objective Function

The on-policy subroutine involves a BSDE in the form

Ys = ξ +

∫ T

s

fτ dτ −
∫ T

s

〈Zτ , dWτ 〉 ∀s ∈ [t, T ]. (21)

Specifically, for a trial process z ∈ H
2, we are interested in

calculating the distance E
∫ T

t ‖Zs − zs‖2 ds between z and the
true solution Z. The difficulty is that Z is not known and goes
into the equation. Hence, we need to find practical objective
functions that do not explicitly contain Z. For this purpose, the
following theorem provides useful insights.

Theorem 5: Suppose that ξ ∈ L2
FT

and f ∈ H
2. Then,

BSDE (21) admits a unique adapted solution (Y, Z) ∈ S
2 ×H

2.
For adapted process z ∈ H

2, let Ỹ z
s denote the process (not

necessarily adapted)

Ỹ z
s = ξ +

∫ T

s

fτ dτ −
∫ T

s

〈zτ , dWτ 〉 ∀s ∈ [t, T ].

Then, it holds that

E |Ỹ z
t − E Ỹ z

t |2 = E

∫ T

t

‖Zs − zs‖2 ds. (22)

Proof: The uniqueness and existence are standard results for
BSDEs; see [40, Ch 6] for example. We rewrite the left-hand
side of (22) as

E |Ỹ z
t − Yt|2 + 2E[(Ỹ z

t − Yt)(Yt − E Ỹ z
t )] + E |Yt − E Ỹ z

t |2.
Due to the fact that Ft contains only P-null sets, we know that
Yt = EYt holds almost surely. Moreover

E Ỹ z
t = E

[
ξ +

∫ T

t

fs ds

]
= EYt.

Thus, Yt − E Ỹ z
t is almost surely zero and

E |Ỹ z
t − E Ỹ z

t |2 = E |Ỹ z
t − Yt|2

= E

[
−
∫ T

t

〈zs, dWs〉+
∫ T

t

〈Zs, dWs〉
]2
.

Thus, the desired equality holds due to Itô’s isometry.
Remark V.1: By Remark III.2, the BSDE in the on-policy

subroutine satisfies the conditions here. Thus, E |Ỹ z
t − E Ỹ z

t |2
can be used in the place of objective function. We call this the
special BML criterion, where its general form is discussed in
Section V-B.

An intuitive explanation of the BML criterion is based on
the measurability. By definition, (Ỹ z, z) has already satisfied
the stochastic integral relationship as (Y, Z). Not surprisingly,
this is not sufficient to conclude that it is a solution, as z is
just arbitrarily selected. The key is that a true pair of solution
(Y, Z) should also be adapted. That is to say, Ỹ z

s should be Fs-
measurable for any s ∈ [t, T ]. This is not a trivial matter since the

definition of Ỹ z
s involves the “future” information, particularly

the {Wτ}s≤τ≤T . Assume, however, that Ỹ z
t′ has been proven to

be Ft′ -measurable. Then, it is safe to conclude that Ỹ z
s is Fs-

measurable for any s ∈ [t′, T ]. This is because for any s ∈ [t′, T ],
we have

Ỹ z
t′ = ξ +

∫ T

t′
fτ dτ −

∫ T

t′
〈zτ , dWτ 〉

= Ỹ z
s +

∫ s

t′
fτ dτ −

∫ s

t′
〈zτ , dWτ 〉.

Clearly, the integral part isFs-measurable. As a result, Ỹ z
s isFs-

measurable because Ỹ z
t′ is Fs-measurable (recall that Ft′ ⊂ Fs

if t′ ≤ s).
The left-hand side of (22) serves as a criterion of the mea-

surability loss of Ỹ z
t with respect to Ft. Recall that Ft =

σ(N ∪ σ(Wt)), where N is the collection of P-null sets and
σ(Wt) is the trivialσ-algebra withWt = 0. Ỹ z

t isFt-measurable
if and only if Ỹ z

t is a constant almost surely. To put it in another
way, Ỹ z

t should be equal to the expectation almost surely. This
is exactly the case that (22) equals 0.

B. BML Criterion

According to Theorem 5, the distance E
∫ T

t ‖Zs − zs‖2 can
be calculated with only samples of ξ, f , and W in BSDE (21).
This allows an optimization-based approach to solving the Z
part of solutions by parameterizing the trial process z and then
minimizing the practical objective function. However, in many
applications, obtaining the Y part of solutions may be appealing
as well. Indeed, according to Feynman–Kac’s formula, Yt is the
value function at (t, x). If we manage to find the exact or an
approximated solution of Y , then we also find a method to solve
PDEs in the form of (7).

In the proof of Theorem 5, we utilize the fact that E Ỹ z
t =

EYt = Yt holds almost surely. Unfortunately, Ỹ z is not a
suitable replacement for Y in applications. The major issue
is that the definition of Ỹ z is “anticipated.” Even if z ≡ Z,
calculating the value of Ỹ z

t by its definition requires samples of
{Ws; t ≤ s ≤ T} and {fs; t ≤ s ≤ T}, which are not available
at the time instant t. Nevertheless, Ỹ z differs from the true
solution only by a martingale term, and this difference can be
eliminated by taking conditional expectation

E[Ỹ z
s | Fs] = E[Ys | Fs] = Ys, P-a.s. ∀s ∈ [t, T ]. (23)

In light of this, we extend Theorem 5 by adding the distance
between a trial solution ṽ ∈ S

2 and the true solution Y .
Theorem 6: Let the condition of Theorem 5 hold and use the

same notation. Then, for any adapted process ṽ ∈ S
2, there is

E

∫ T

t

|Ỹ z
s − ṽs|2 ν(ds) = E

∫ T

t

∫ T

s

‖Zτ − zτ‖2 dτ ν(ds)

+ E

∫ T

t

|Ys − ṽs|2 ν(ds) (24)

where ν is an arbitrary σ-finite measure on [t, T ].
Proof: Similarly, we prove (24) by splitting the square term

into three terms and showing that the expectation of the cross
term is zero. As ν is σ-finite, we are able to change the order of
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expectation and integration, and thus, the left-hand side of (24)
equals∫ T

t

[
E |Ỹ z

s − Ys|2 + 2E
[(

Ỹ z
s − Ys

)
(Ys − ṽs)

]
+ E |Ys − ṽs|2

]
ν(ds).

The first term can be transformed with Itô’s isometry

E

∫ T

t

|Ỹ z
s − Ys|2 ν(ds) = E

∫ T

t

∣∣∣∣∫ T

s

〈zτ − Zτ , dWτ 〉
∣∣∣∣2 ν(ds)

= E

∫ T

t

∫ T

s

‖zτ − Zτ‖2 dτ ν(ds).

The second term vanishes according to the tower property of
conditional expectation

E

[(
Ỹ z
s − Ys

)(
Ys − ṽs

)]
= E

[
E

[(
Ỹ z
s − Ys

)(
Ys − ṽs

)
| Fs

]]
= E

[(
Ys − ṽs

)
E

[(
Ỹ z
s − Ys

)
| Fs

]]
= 0.

The last equality comes from the fact that E[(Ỹ z
t − Yt) | Fs] is

zero almost surely. �
Remark V.2: We call (24) the general BML criterion. While

the special BML criterion focuses solely on the Z part, its
generalization takes the Y part into account as well. We do this
by replacing EY z

t with ṽs. Moreover, (24) introduces a measure
on the time space [t, T ]. The left-hand side of (24) actually
describes the distance between Ỹ z and ṽ on the product space
(Ω× [t, T ],P⊗ ν). On the other hand, this practical objective
function can also be interpreted as the distance between (ṽ, z)
and (Y, Z) using this product measure. Under this generaliza-
tion, we are given the freedom of choosing ν when comparing
the trial solution with the true solution. In particular, if ν is set
to the Dirac measure centered on t and ṽ to E[Ỹ z

s | Fs], then it
comes to the special BML criterion. It is also possible to choose
different settings of ν and (ṽ, z). It will be discussed shortly how
the general BML criterion degenerates into existing methods.

Remark V.3: It is worth noting that if the choice of ṽ does
not rely on z, then the two terms in (24) are decoupled. This
means that the gradient with respect to ṽ is independent of the
gradient with respect to z. Therefore, z and ṽ can be optimized
independently. In this case, our estimation of Z does not affect
the estimation of Y , and vice versa. One advantage of this
property is that even if z is actually far from the true solution
Z, it is still possible to have a good estimation of Y that is
fairly accurate. As an application, we could fix z ≡ 0 and focus
solely on estimating of Y by optimizing only ṽ. According to
our analysis, this simply results in the distance between z and
Z remaining constant, and we may still be able to obtain a
reasonable estimation of Y if the general BML criterion reaches
its minimum.

By choosing ν = δt and ṽ(s, ω) ≡ y0, we recover the popular
deep BSDE method proposed in [24]. There, δt is the Dirac
measure centered at t and y0 ∈ R does not change along with
time s and the sample event ω. The general BML criterion is

then reduced to E |Ỹt − y0|2, which can be interpreted as

E

∣∣∣∣ξ − (y0 − ∫ T

t

fs ds+

∫ T

t

〈zs, dWs〉
)∣∣∣∣2

= E

∫ T

t

‖zs − Zs‖2 ds+ E |Yt − y0|2 (25)

by Theorem 6. The original motivation of the deep BSDE
method is to examine the process

Ỹ z,y0
s = y0 −

∫ s

t

fτ dτ ,+

∫ s

t

〈zτ , dWτ 〉.

In fact, this is a forward SDE. One can relate it to BSDE (21)
by requiring Y z,y0

T = ξ holds almost surely, i.e., forcing E |ξ −
Y z,y0

T |2 = 0. This is exactly the criterion used in the deep BSDE
method. If the choices of y0 and z do not depend on each other,
Remark V.3 reveals that this criterion is equivalent to E |Yt −
y0|2 when one is only interested in estimating the value of Yt.
We should also mention that the deep BSDE method applies for
a wider class of BSDEs other than the simple form (21). There,
the generator fs is coupled with (Ys, Zs) by a nonlinear function
f . In that case, (22) and (24) are no longer valid. We will briefly
discuss that topic at Section V-D.

By choosing ν(ds) = ds and z ≡ 0, we recover the martin-
gale approach proposed in [22]. The general BML criterion is
then reduced to

E

∫ T

t

∣∣∣∣(ξ + ∫ T

t

fτ dτ

)
−
(
ṽs +

∫ s

t

fτ dτ

)∣∣∣∣2 ds

= E

∫ T

t

∫ T

s

‖Zτ‖2 dτ ds+ E

∫ T

t

|Ys − ṽs|2 ds

by Theorem 6. In the martingale approach, one takes no care of
the Z part of the solution and just sets the trial solution z to zero.
This treatment is permitted by Remark V.3 as well. Minimizing
the distance between Ỹ z and ṽ with z ≡ 0 is, indeed, equivalent
to minimizing the distance between ṽ and the true solution Y .
A similar result is reported along with the martingale approach
in [22], but there is no discussion about its connection to the
deep BSDE method.

Corollary 3: Let the condition of Theorem 5 hold and use the
same notation. For any y0 ∈ R and z ∈ H

2, let Ŷ z,y0
s denote the

process

Ŷ z,y0
s = y0 −

∫ s

t

fτ dτ +

∫ s

t

〈zτ , dWτ 〉 ∀s ∈ [t, T ].

Then, it holds that

min
y0∈R

E |Ŷ z,y0

T − ξ|2 = E |Ỹ z
0 − E Ỹ z

0 |2.

Proof: This is a direct consequence of Theorem 5 and
(25). �

Remark V.4: In general, the criterion E |Ŷ z,y0
s − ξ|2, used in

the deep BSDE method, depends on both z and y0. If y0 is
optimized with fixed z, it comes to the special BML criterion.

C. Optimize With the Proposed Criterion

In this section, we illustrate how to solve a BSDE by op-
timizing the proposed criterion. As discussed at the end of
Section V-B, the general BML criterion is a class of objective
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TABLE I
FOUR SPECIAL CASES OF THE GENERAL BML CRITERION

functions, and choosing different (ν, ṽ, z) leads to different
specific objective functions. We summarize four sets of (v, ṽ, z)
in Table I and refer to them as Sets (a)–(d). It should be noted
that Sets (a) and (c) are used in the deep BSDE method and
the martingale approach, respectively. Set (b) corresponds to
the special BML criterion proposed in Theorem 5 while Set
(d) is considered here to show the general form helps us in
finding new objective functions. It should be pointed out that
ṽs = E[Ỹ z

s | Fs] in Set (b) is merely provided for completeness
and is not required for calculations. We stress that these four
sets cover only a small part of the general BML criterion, and
it is always possible to design appropriate forms of ν, ṽ, and z
based on specific requirements. In order to focus on ideas, we
test these four criteria on the following toy example. A more
involved example will be discussed in Section VI.

Example 1: Solve the BSDE (21) with t = 0, T = 1,
f(s, ω) ≡ −1, ξ = 〈WT ,WT 〉/n, where n is the dimension of
the Brownian motion and is set to 100.

We parameterize the trial processes in Table I as ṽs =
W ᵀ

s θyWs, zs = 2θzWs. Additionally, Set (a) involves optimiz-
ing a standalone variable y0. The Brownian motion is simulated
with time step Δt = 0.01. The expectation is estimated via
Monte Carlo simulation with sample size M = 16. Integra-
tion is approximated with the Euler method. The optimization
method is chosen as the standard stochastic gradient descent
(SGD) method with different learning rates: 1.0× 10−1 for y0,
1.0× 10−3 for θz , and 1.0× 10−5 for θy . The initial values of
y0, θy, and θz are set to 1.0,−1.0, and − 1.0, respectively. For
each set, we perform 200 gradient steps and repeat the whole
procedure 10 times with different random seeds. The true value
of these variables is obtained via a theoretical analysis. It can be
verified by Itô’s formula that Ys = 〈Ws,Ws〉/n, Zs = 2Ws/n
is a pair of adapted solutions. This solution is also unique
because ξ ∈ L2

FT
and f ∈ H

2. Thus, the optimal values are
θ∗y = θ∗z = 1/n. Additionally, y0 in Set (a) is used to estimate
the value of Y0 and, thus, has the optimal value y∗0 = 0. Results
are reported in Fig. 2.

Fig. 2 plots the absolute errors of θy, θz, and y0 at each
gradient step in four subplots, corresponding to the four sets in
Table I. It can be seen that all variables in these sets converge to
their true values with fairly high accuracy in 200 gradient steps.
There are two interesting phenomena of convergence trends. The
first one is that θz converges very quickly in Sets (a) and (b) with
almost the same rate but is slightly slower in Set (d). The second
one is that θy in Set (d) converges to a better value than that in
Set (c). We can explain them with the help of Theorem 6.

According to (24), the objective functions in these four sets
can be interpreted as follows. Set (a) minimizes E

∫ T

t ‖zs −
Zs‖2 ds, which also is the term to be minimized in Set (b) plus
an additional term E |y0 − Y0|2. Therefore, the gradients for θz
computed in Sets (a) and (b) should be identical except for the

Fig. 2. Absolute errors of θy , θz , and y0 at each gradient step for
Example 1. From left to right and from top to bottom, the subplots
correspond to Sets (a), (b), (c), and (d). The solid lines and shaded
areas indicate the mean and standard deviation of absolute errors for
10 runs.

noise introduced by Monte Carlo sampling. This is the reason
why the convergent behavior of θz is similar in these two sets. On
the other hand, the θz in Set (d) appears in a double integration
E
∫ T

t

∫ T

s ‖zτ − Zτ‖2 dτ ds due to the choice of ν. In order to
explain the second phenomenon, we need to review the proof
of Theorem 6. There, the cross-term is eliminated by taking
expectation. However, in practice, this term does not vanish if
we use Monte Carlo estimation. A simple analysis shows that its
variance is proportional to |Ys − ṽs|2, which is also minimized
in Set (d) but not in Set (c). Therefore, a slight performance
improvement in Set (d) compared to Set (c) is expected.

In addition, Theorem 6 gives us the hint of choosing better
learning rates. Take y0 as an example at first. In Set (a), y0
appears in the term E |y0 − Y0|2. In optimization theory, the
optimal learning rate for quadratic function a‖x− x∗‖2 is 1

2a ;
see, for example, Nesterov et al. [41]. Thus, the optimal learning
rate for y0 is 0.5. Considering the noise effect, we select a much
smaller and, thus, safer value 0.1. For θy , the analysis becomes
a little more complicated. Equation (24) tells us that θy appears

in the term E
∫ T

t |Ys − ṽs|2 ds. Substituting Ys = θ∗y‖Ws‖2 and

ṽs = θy‖Ws‖2 into it yields (θy − θ∗y)
∫ T

t E ‖Ws‖4 ds. By in-

tegrating on a sphere, we can calculate that
∫ T

t E ‖Ws‖4 ds =
n(n+ 2)(T − t)3/3. Thus, the optimal learning rate for θy is in
the order of 10−4. Based on this, we select the value 1× 10−5.

D. Other Types of BSDEs

The BSDE (21) considered before is only a basic type of gen-
eral BSDEs. In many applications, for example, in our off-policy
subroutine, the generator f may be unknown and is expressed
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as f(s, Ys, Zs)with a deterministic (or even random) coefficient
f(·, ·, ·). Elementary extensions of Theorems 5 and 6 in this line
are provided ahead.

Consider the following BSDE:

Ys = ξ +

∫ T

s

f(τ, Zτ ) dτ −
∫ T

s

〈Zτ , dWτ 〉 ∀s ∈ [t, T ] (26)

where the generator f is only coupled with Z. For any z ∈ H
2,

we can still introduce the process Ỹ z by replacing Z with z.
Sadly, (23) fails to hold because f(s, zs) may be not equal
to f(s, Zs). As a result, Theorems 5 and 6 no longer hold.
Nevertheless, The general BML criterion for trial solutions (ṽ, z)
can still be calculated and optimized, and obviously, the true
(Y, Z) is a global minimum of this criterion. Thus, the proposed
criterion equals zero is a necessary condition for solving such
a BSDE. Moreover, we are able to say it is also a sufficient
condition to some extent.

Proposition 7: Suppose that ξ ∈ L2
FT

and f : Ω× [t, T ]×
R

d → R satisfies the following conditions: 1) For any z ∈ R
d,

f(s, z) is adapted; 2) f(s, 0) ∈ H
2; 3) there exists a constant L

such that for any z1, z2 ∈ R
d

|f(s, z1)− f(s, z2)| ≤ L|z1 − z2|, ds⊗ dP-a.e.

on [t, T ]× Ω. Then, BSDE (26) admits a unique adapted solu-
tion (Y, Z) ∈ S

2 ×H
2. For any adapted process z ∈ H

2, let Ỹ z
s

denote the process (not necessarily adapted)

Ỹ z
s = ξ +

∫ T

s

f(τ, zτ ) dτ −
∫ T

s

〈zτ , dWτ 〉 ∀s ∈ [t, T ].

Then, E
∫ T

t ‖Zs − zs‖2 ds equals zero if and only if E |Ỹ z
t −

E Ỹ z
t |2 equals zero.

Proof: The uniqueness and existence are standard results for
BSDEs; see [40, Ch. 6] for example.

Let E
∫ T

t ‖Zs − zs‖2 ds = 0 be true. Noting the assumptions
on f , for any s ∈ [t, T ], we have

E

[∫ T

s

f(τ, Zτ ) dτ −
∫ T

s

f(τ, zτ ) dτ

]2
≤ (T − s)E

∫ T

s

|f(τ, Zτ )− f(τ, zτ )|2 dτ

≤ L2(T − s)E

∫ T

s

‖Zτ − zτ‖2 dτ = 0.

Furthermore, according to Itô’s isometry, there is

E

[∫ T

s

〈Zτ , dWτ 〉 −
∫ T

s

〈zτ , dWτ 〉
]2

= E

∫ T

s

‖Zτ − zτ‖2 = 0.

Hence, Ỹ z
s = Ys holds almost surely for any s ∈ [t, T ]. In par-

ticular, E |Ỹ z
t − E Ỹ z

t |2 = E |Yt − EYt|2 = 0. This proves the
“only if” part.

In order to prove the “if” part, we consider the BSDE

Ŷs = ξ +

∫ T

s

f̂τ dτ −
∫ T

s

〈
Ẑτ , dWτ

〉
∀s ∈ [t, T ] (27)

where f̂τ := f(τ, zτ ). This is the type of BSDE studied in
Section V-A to V-C previous sections. By assumptions on f , the
process f̂ ∈ H

2. Applying Theorem 5 to BSDE (27) concludes
that the solution (Ŷ , Ẑ) ∈ S

2 ×H
2 uniquely exists and

E

∫ T

t

‖Ẑs − zs‖2 ds = E |Ỹ z
t − E Ỹ z

t |2 = 0.

Therefore, zs = Ẑs holds ds⊗ dP almost everywhere.
In view of BSDE (26) and BSDE (27), we denote

Y := Y − Ŷ , Z := Z − Ẑ, f̄s := f(s, Zs)− f̂s.

Let γ be a positive constant such that γ > 2L2. By applying
Itô’s formula to eγs|Y s|2, we obtain

E eγt|Y t|2 + E

∫ T

t

eγs
(
γ|Y s|2 + ‖Zs‖2

)
ds

= 2E

∫ T

t

eγsY sf̄s ds− 2E

∫ T

t

eγsY s〈Zs, dWs〉. (28)

A standard analysis based on Burkholder–Davis–Gundy in-
equality shows that the second term vanishes; see the proof
of [40, Th. 6.2.1]. On the other hand, for any s ∈ [t, T ]

2Y sf̄s ≤ γ|Y s|2 + 1

γ
|f̄s|2 ≤ γ|Y s|2 + L2

γ
‖Zs − zs‖2. (29)

Noting L2/γ < 1/2, (28) and (29), there is

E

∫ T

t

eγs‖Zs − Ẑs‖2 ds ≤ 1

2
E

∫ T

t

eγs‖Zs − zs‖2 ds

=
1

2
E

∫ T

t

eγs‖Zs − Ẑs‖2 ds.

The last equality comes from the fact that zs = Ẑs holdsds⊗ dP

almost everywhere. Hence, E
∫ T

t eγs‖Zs − Ẑs‖2 ds = 0. Re-

placing Ẑs with zs again finishes our proof. �
Remark V.5: Under Assumptions 1, the BSDE in the off-

policy subroutine satisfies the conditions here.
Proposition 8: Let the condition of Proposition 7 hold and

use the same notation. Let ṽs be an adapted process in S
2 and ν

be a σ-finite measure on [t, T ]. Then

E

∫ T

s

‖Zτ − zτ‖2 dτ = E |Ys − ṽs|2=0, ν-a.e. ∀s ∈ [t, T ]

if and only if E
∫ T

t |Ỹ z
s − ṽs|2 ν(ds) = 0.

Proof: The sketch of this proof is similar to that of Propo-
sition 7 except for a few minor differences concerning the
additional ṽ andν. A brief description of it is provided ahead, and
readers may refer to Proposition 7’s proof for more explanations.

We prove the “only if” part at first. By the assumption on f ,
we are able to show that Ỹ z

s = Ys holds dν × dP-a.e. Hence

E

∫ T

t

|Ỹ z
s − ṽs|2 ν(ds)

≤ 2E

∫ T

t

|Ỹ z
s − Ys|2 + |Ys − ṽs|2 ν(ds)

which equals zero by assumptions.
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Then we prove the “if” part. Consider BSDE (27) with f̂τ :=
f(τ, zτ ). Applying Theorem 6 to that BSDE, we conclude that
the solution (Ŷ , Ẑ) ∈ S

2 ×H
2 uniquely exists and that for any

s ∈ [t, T ]

E

∫ T

s

‖Ẑτ − zτ‖2 dτ = E |Ŷs − ṽs|2 = 0, ν-a.e. (30)

Moreover, in view of BSDE (26) and BSDE (27), we have

E e4L2 s|Ys − Ŷs|2 + E

∫ T

s

e4L2τ‖Zτ − Ẑτ‖2 dτ

≤ 1

4
E

∫ T

s

e4L2τ‖Zτ − zτ‖2 dτ.

Integrating on ([t, T ], ν) and noting (30) yield

E

∫ T

t

∫ T

s

e4L2τ‖Zτ − Ẑτ‖2 dτ ν(ds)

≤ 1

2
E

∫ T

t

∫ T

s

e4L2τ‖Zτ − Ẑτ‖2 dτ ν(ds).

Hence, for any s ∈ [t, T ]

E

∫ T

s

e4L2τ‖Ẑτ − Zτ‖2 dτ

= E e4L2 s|Ŷs − Ys|2 = 0, ν-a.e.

Using (30) again finishes our proof. �
The BSDE encountered in the off-policy subroutine is a

special case of the BSDE considered in this section, where the
generator f(s, Z) is linear to Z. While Propositions 7 and 8
provide general treatments for nonlinear generator, a generator
linearly coupled in Z can also be transformed into a decou-
pled generator by absorbing the linear coupling term into the
Brownian motion using Girsanov’s transformation. However,
this treatment involves a change of probability measure [42]
and is left for future discussion.

In order to verify our theory, we test the four realizations of
the proposed general criterion listed in Table I by the following
example, which is modified based on Example 1.

Example 2: Solve the BSDE (26) with t = 0, T = 1,
f(ω, s, z) = −1 + 〈b0Xs, Zs〉, ξ = 〈XT , XT 〉/n, where n =
100 is the dimension of the process X and Brownian motion
W . The process X satisfies the SDE: Xs = Ws −

∫ s

t b0Xs ds
with b0 = −0.1.

We parameterize the trial processes as ṽs =
Xᵀ

s θyXs and zs = 2θzXs. Other treatments remain unchanged
from Example 1. The true values can be verified by Itô’s formula
as well: θ∗y = θ∗z = 1/n. Results are reported in Fig. 3.

VI. SIMULATION RESULTS

In this section, we test our on-policy and off-policy subrou-
tines on a 100-dimensional optimal control problem. We obtain
the z function in these subroutines via optimizing the general
BML criterion discussed in Section V. Specifically, we consider
the four cases listed in Table I.

Fig. 3. Absolute errors of θy , θz , and y0 at each gradient step for
Example 2. From left to right and from top to bottom, the subplots
correspond to Sets (a), (b), (c), and (d). The solid lines and shaded
areas indicate the mean and standard deviation of absolute errors for
10 runs.

Example 3: Consider the following stochastic optimal control
problem, which is an extension of the example in [43]:

minimize E

[
log

1 + ‖XT ‖2
2

+

∫ T

t

‖αs‖2 ds
]

subject to Xs = x+

∫ s

t

σ0(b̂0ατ dτ + dWτ ), s ∈ [t, T ]

where W is a standard 100-dimensional Brownian motion with
Wt = 0, and σ0, b̂0 ∈ R are positive constants. Determine the
optimal cost when x = 0, t = 0, T = 1, b̂0 = 1, and σ0 =

√
2.

We run the GPI equipped with Algorithms 2 and 3. The
initial policy is chosen to be α0(t, x) = −0.1x and the behavior
policy αb is fixed to α0. In order to satisfy Assumption 1.2,
we manually force control to set A = [−amax, amax]

100 ⊂ R
100

with amax = 100. The Euler–Maruyama method with time step
size Δt = 0.01 [44] is used for time discretization. The pro-
posed criterion is optimized with SGD on the PyTorch plat-
form [45]. Table I is implemented with ṽs = ṽ(s,Xs; θy) and
zs = z(s,Xs; θz), where functions ṽ and z are feed-forward
neural networks with a single hidden layer with 16 neurons.
The SGD optimizer uses the Nesterov acceleration technique
with momentum 1× 10−3 [46]. The optimization procedure is
terminated after 75 gradient steps, and in each gradient step, the
standard Euclidean norm of the total gradient is clipped to 10,
and the learning rates are multiplied by a factor of 0.99. Learning
rates for y0, θy, and θz are 0.5, 0.1, and 0.1, respectively. The
sample size for estimating expectations is 16. For each criterion,
we call the on-policy subroutine or the off-policy subroutine nine
consecutive times starting at α0. Results are reported in Fig. 4 .
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Fig. 4. Absolute error between the optimal cost and ith policy’s cost
for Example 3. From left to right and from top to bottom, the subplots
correspond to Sets (a), (b), (c), and (d). Each subplot, except for Set
(c), contains two lines representing the on-policy and the off-policy
subroutines. The data points and error bars represent the mean and
standard deviation of five independent runs.

Fig. 5. Absolute error between the optimal cost and ith policy’s cost
for Example 4. See Fig. 4 for the explanations of elements in figures.

Fig. 4 plots the absolute error between the theoretical optimal
cost and ith policy’s cost. The theoretical optimal cost is [24]

v∗(t, x) = − 2

b̂20
logE

[
exp

(
− b̂20

2
log

1 + ‖x+ σ0ε‖2
2

)]

where ε ∈ R
100 and is normally distributed with mean 0 and

covariance matrix (T − t)I . We estimate this expectation by
Monte Carlo with sample size M = 12800. Fig. 4 shows that
both the on-policy and off-policy subroutines and the four
specific criteria can produce a good enough policy after nine
PI steps. It is worth noting that there is no suitable off-policy
method for the criterion of Set (c). This is due to the fact that the
generator of the BSDE in Algorithm 3 is explicitly coupled with
Z, and thus, the optimization of z and ṽ is not independent, cf.
Remark V.3. Despite this, we construct the improved policy by
setting zα = σ0∂xṽ(·, ·; θy) in the on-policy subroutine for Set
(c).

Example 4: Determine the optimal cost of Example 3 with
σ0 = 20.

Compared with the previous example, this only changes the
system dynamics. Benefiting from the data-driven nature of our
algorithms, we can rerun the program with the only difference
that trajectories are now sampled from this new system. Results
are reported in Fig. 5.

APPENDIX A
PROOF TO THEOREM 4

Proof: Throughout this proof, we fix the forward state to Xb,
and use Fs to denote F (s,Xb

s) for any function F (·, ·).
The admissibility is a direct consequence of Remark III.2.

According to Lemma 3, for n ≥ 1, we have

Y n
s =g(Xb

T )+

∫ T

s

fαn

τ +
(
b̂α

n

τ − b̂α
b

τ

)ᵀ
Zn
τ dτ −

∫ T

s

(Zn
τ )

ᵀdWτ

where Y n
s = vα

n
(s,Xb

s), Z
n
s = σᵀ∂xvα

n
(s,Xb

s). Similarly

Y ∗s = g(Xb
T ) +

∫ T

s

fα∗
τ +(b̂α

∗
τ − b̂α

b

τ )ᵀZ∗τ dτ −
∫ T

s

(Z∗τ )
ᵀdWτ

where Y ∗s = v∗(s,Xb
s), Z

∗
s = σᵀ∂xv∗(s,Xb

s).
Define h : Ω× [0, T ]× R

d × R
d → R by

h(s, z, Z) := fμs(z)
s +

〈
b̂μs(z)
s − b̂α

b

s , Z
〉
.

Then, we can verify that under Assumption 1 there is a constant
L such that for any (s, z, Z) ∈ [t, T ]× R

d × R
d

|h(s, z, Z)− h(s, 0, 0)| ≤ L‖z‖+ L‖Z‖, P-a.s.

and thatE
∫ T

t ‖h(s, 0, 0)‖2 ds <∞. Moreover, it can be proved
that ‖Z∗s‖ ≤ L‖∂xv∗(s,Xb

s)‖ can be further bounded by some
constant K [30, Proposition 4.3.1]; see also [47, Ch. 4] for more
general discussions on the properties of ∂xvα. Hence, we have∣∣h (s, zn−1s , Zn

s

)− h (s, Z∗s , Z
∗
s)
∣∣

≤
∣∣∣∣fμs(zn−1

s )
s − fμs(Z

∗
s)

s

∣∣∣∣+ ∣∣∣∣〈b̂μs(zn−1
s )

s − b̂α
b

s , Zn
s − Z∗s

〉∣∣∣∣
+

∣∣∣∣〈b̂μs(zn−1
s )

s − b̂μs(Z
∗
s)

s , Z∗s

〉∣∣∣∣
≤ L

∥∥μs(z
n−1
s )− μs(Z

∗
s)‖+ 2L‖Zn

s − Z∗s
∥∥

+K‖b̂μs(zn−1
s )

s − b̂μs(Z
∗
s)

s ‖
= (L2 +KL)

∥∥zn−1s − Z∗s‖+ 2L‖Zn
s − Z∗s

∥∥ .
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To this end, all conditions of [15, Lemma A.5] are verified, and
thus, the following estimation holds for any n ≥ 1:

E |Y n
t − Y ∗t |2 + E

∫ T

t

eγ(s−t)‖Zn
s − Z∗s‖2 ds

≤ q̃ E

∫ T

t

eγ(s−t)‖zn−1s − Z∗s‖2 ds (31)

where γ > 0 and q̃ ∈ (0, 1/2) depend only on the Lipschitz
constant in Assumption 1. Introducing the following notations:

an := E |Y n
t − Y ∗t |2 = |vαn

(t, x)− v∗(t, x)|2

bn := E

∫ T

t

eγ(s−t)‖Zn
s − Z∗s‖2 ds

cn := E

∫ T

t

eγ(s−t)‖zns − Zn
s ‖2 ds ≤ eγ(T−t)εn

we further relax the inequality (31) to (letting q = 2q̃)

an + bn ≤ q(bn−1 + cn−1) ∀n ≥ 1. (32)

Noting that an ≥ 0, we substitute bn ≤ q(bn−1 + cn−1) into the
right-hand side of (32) repeatedly

an + bn ≤ qcn−1 + q2(bn−2 + cn−2)

≤ qcn−1 + q2cn−2 + q3(bn−3 + cn−3)

≤ qcn−1 + · · ·+ qn−1c1 + qn(b0 + c0) =: Sn. (33)

Without loss of generality, we assume limsup εn <∞. Oth-
erwise, the equality to be proved holds trivially. Then, we
have limsup cn ≤ eγ(T−t) limsup εn <∞. This means there is
a positive integer M such that cn is bounded by some c <∞
for any n ≥M . Hence

Sn = qcn−1 + · · ·+ qn−McM + · · ·+ qnc0 + qnb0

≤ (q + q2 + · · ·+ qn−M
)
c

+ qn−M+1 max {ck : 0 ≤ k ≤M − 1}+ qnb0

≤ q

1− q
c+ qn−M+1 max {ck : 0 ≤ k ≤M − 1}+ qnb0.

This implies that Sn is also bounded for sufficiently large n,
i.e., limsupSn <∞. Observing that Sn satisfies the recur-
rence equation Sn = q(Sn−1 + cn−1), we can conclude that
limsupSn < q

1−q limsup cn by taking limsup on both sides.
Noting an ≤ Sn, we have

limsup
n→∞

an ≤ q

1− q
limsup
n→∞

cn.

Expanding the definitions of an and cn finishes the proof. �
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