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Abstract: The system under consideration is the discrete time stochastic system A(z)y, = zB(z)u, +w, driven by a martingale
difference sequence {w,}, where A(z) and B(z) are polynomials in backward shift operator z with unknown coefficients and both
A(z) and B(z) may be unstable. With the purpose of demonstrating theoretical possibility rather than designing a practically
applicable control law, this paper constructs an adaptive control that stabilizes the system and simultaneously guarantees strong
consistency of the least squares estimates for unknown coefficients.
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1. Introduction
Consider the single-input single-output stochastic system
A(z)y,=zB(z2)u, +w,, ¥Ynz=0, y,=u,=0, Vn<0, (1.1)

where y,, u, and w, are the system output, input and unknown disturbance, respectively, and A(z) and
B(z) are polynomials in backward shift operator z:

A(z):1+alz+‘“+apz‘”, p}(], ap;t(]’ (12)
B(z)=b,+ -+ +b,277", q=1, b,#0. (1.3)
Set
i
gz[_al Ty _ap bl bq] : (14)

which is the unknown parameter of the system.

In adaptive control, to stabilize a nonminimum-phase and unstable system is a problem important in
practice and appealing in theory. In the case where w, = 0 (Vn > 0) in (1.1), this problem is considered in
[16,7,12,1). In the case where w, # 0, this problem is the research topic of many papers, where, besides
the standard coprimeness assumption on A(z) and zB(z), some additional conditions are usually
required. For example, in [15, 8,9,14] a lower bound of controllability (and observability) degree of the
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systems is assumed to be known; in [6] it is required that a positive constant & > 0 is available so that
|det(B, 4,B, -+ AS"'B,1| >8>0, where

n n

aq
n bln
A, =1 ' . B,=| |, s=max(p,q)
. 1 :
bj'ﬂ
a!?'l 0
and 0,=[a,, -~ a,, b, - b,]" is the estimate at time n for unknown parameter 6, a;, =0,

b,,=0for i > p, j > g, while in [11,2-5] stability is imposed either on A(z) or on B(z) when an adaptive
control problem is solved, while controlling the system in the sense of adaptive LQ or adaptive tracking.

It is worth mentioning that Giri, M’Saad, Dugart and Dion [10] have introduced a robust adaptive
stabilization method for time-varying and ill-modelled systems with minimal priori knowledge. They
assume that the system noise {w,} consists of unmodelled dynamics and uniformly bounded external
disturbances.

In this paper, as in [10], except coprimeness we assume no additional condition on A(z) and B(z).
For the case where lim sup, _,,, n™ 'L w? < =, we give an adaptive control that stabilizes the system in
the long run average sense, i.e.

1 n
limsup — Y (u?+y?) <= as. (1.5)
n—e i=1

and simultaneously leads to strong consistency of the least squares estimate for 6. Unlike [10], we do not
assume that the external disturbance {w,} is uniformly bounded. For example, it may be a Gaussian white
noise process. The key techniques used in the paper are ‘explosive excitation’ [13], ‘diminishing
excitation’ [2] and ‘random truncations’ [3,4]. The purpose of this work is to show the ability of adaptive
control by exposing the minimum condition under which the system can adaptively be stabilized. To
design a practically applicable control law is beyond the task we aim at.

2. Definition of adaptive control

In this paper, for a polynomial X(z)=X* ,x,z’, the norm is defined as follows:
i=0"%i

172

IX(Z)H=(Z |-,
i=0

For estimating the unknown parameter 8 we use the LS algorithm by which the estimate 6, is recursively
defined as follows:

B 41 =Bn+#’npn¢'n(y:+l_d)16n)’ (2.1)
P =P~ 1, P $7 P, = (1+ &1 P,) (22)
=l % Yagr W Y Bl (2.3)
with P, =1 and arbitrary initial value
63‘=[—a10 T Tap by bqO]'
For any n = 0 write 8, in the component form

4 | .
Bn_[ a1y apn bln

byn|- (24)
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If A(z) and zB(z) are coprime, then there exist two polynomials

G(z)=1+q21gjzj, H(z)=p):lhjzf (2.5)
j=1 i=0
such that
A(z)G(z) —zB(z)H(z) = 1. (2.6)
Set
1 a a, 0 0
0 1 . . e :
M= _ 5 ) 0 (p+abyaqg), (2.7)
0 0 1 a a,
0 b ~b, 0 0
0 0 " R i :
R g | e 29
0 0 0 —b —h,
M=[M, M,], (2.9)
WT=[1 & - g1 ho - h,_i], (2.10)
and
e"=[1 0 -+ Olixp+ar (2.11)

Replacing a;, b;, g,, h, by their estimates a,,, b,,, g, and h,, respectively in (1.2), (1.3), (2.5),
27N-2.10),i=1,...,p, j=1,...,q, k=1,...,g—1,5=0,..., p— 1, we correspondingly denote A(z),
B(z), G(z), H(z), M, M,, M and ¢ by A,(z), B,(z), G(z), H(z), M,,, M,,, M, and i, respectively;
for example, A4,(z)=1+E’ a,,2', G(2)=1+LI_/g;,z' and G(2u,=u, + XIZlg;u,_;

We state the following simple fact as a lemma.

Lemma 1. If A(z) and zB(z) are coprime and 6, — 8 a.s. as n — =, then there is an integer-valued n,,
possibly depending on sample path such that for any n = n, the equation

A4,(2)G,(z) —zB,(z)H,(z) =1 (2.12)
has a unigue solution (G,(z), H (z)) satisfying

deg(G,(z))<qg—1, deg(H,(z))<p-1 (2.13)
and

IG(2) 1P+ 1 H,(2) IP< 1+ 1G(2) 1P+ | H(2) Il %. (2.14)

Proof. It is easy to see that (2.6) has a unique solution (G(z), H(z)) if and only if the equation My = ¢
has a unique solution or det(M) # 0. Therefore, under the conditions of the lemma, det(M,) = 0 for
sufficiently large n, and (2.10) has a unique solution with (2.13) satisfied.

Noticing that lim, _ ., = limn_,mM,,"e =M le=3y we conclude that for any sample path (with
possible exception of set of probability 0) there exists an integer n, such that for any n >n,, (2.14) is
fulfilled. O
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From (2.6) it is clear that
y.=A(2)G(2)y, —zB(2)H(2)y,
— G(2)[A(2)y, — 2B(2)u,] +2B(2)[G(2)u, — H(2)y,]
— G(2)w, +2B(2)[G(2)u, — H(z)y,] (2.15)
and
u,=H(z)w,+A(2)[G(2)u,—H(z)y,]. (2.16)
Therefore, if @ is known and u,, is defined from
G(z)u,—H(z)y,=0, (2.17)

then by (2.15) and (2.16) we get y, = G(z)w, and u, = H(z)w,. In this case, the system will be stabilized
by controller (2.17) provided that lim sup, ,.n~ 'L/ w} <,
The ‘certainty equivalence principle’ suggests us to define adaptive control from

G(z)u,—H/(z)y,=0. (2.18)

However, in the present case the closeness of §, to # is not guaranteed. Consequently, it is not clear if
(2.12) is solvable or not. Even if G,(z) and H,(z) can be defined from (2.12) we still do not know
whether or not they are close to G(z) and H(z) respectively. So it is important that 8, somehow
approximates 6. If this is the case, then adaptive control defined by (2.18) may hopefully stabilize the
system, and a stabilized system will in turn lead to a better estimate for 6 if the diminishing excitation
technique is applied. For first step of approximating # we apply an explosive excitation input, by which
we mean such an input that yields A2 /n— o as. as n— o, where A} denotes the minimum
cigenvalue of P, =1+ X" ,b;¢;. To explain why an explosive excitation input will lead to an
appropriate estimate for 8 we need the following lemma.

Lemma 2. Let {w,} in (1.1) be any disturbance (deterministic or stochastic) satisfying the following
condition:

H

1
lim sup — ) w7 <. (2.19)

n—om i=1
Then the accuracy of the LS estimate 8, for 8 is expressed by

I8, —8l*=0(n/A,)

min

1

where A denotes the minimum eigenvalue of P, ! =1+ LI b, b}

min

Proof. We will complete the proof with a similar argument used in Lemma 1 of [2]. Denote the
estimation error by 6,, i.e. 6, = 8 — 6,. Then from (1.1), (2.1) and (2.2) it follows that

n?
érr+1 - én S R:‘f’n(g:rﬁ—ld)n + wn+])= (220)
and P!, =P '+ ¢, &;. Thus, we have
. _ s 2 o B p . 2 2
Of s 1 P11 = [H;Tcﬂﬁbk] + 0P8, — z(ng+1¢k + Wk+1)ag g ¥ d’;crpkd’k[egﬂd’k =E ch+1] .
(2.21)
By (2.20) we get

ék = B-k+] +Pk(}5k(é;(r+ld)k = wk+l)'
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Substituting this into the third term on the right hand side of (2.21) leads to
M ST Z . FTn-17 T oy 2
O+ 1Pp 10k i1 = [9k+1¢k] + 0P 0, + ‘?5kPk¢k[9k+1€bk + Wk+1]
- 2(§kT+l¢k + Wk+l)[9~;{+l + (é;cr+1¢k + Wk+1)¢-/£Pk]¢k
STp-17 ;T 2 ST T g1 2
=0, P 0, — [9k+1¢k] = 2Wy10p 1P — ¢J<Pk¢k[9k+l¢'k i wk+l]
I Tp-1g9 3T A 0T
<O P 0, — [Bk+1¢’k] = 2wy 01Dy
Summing up both sides and using (2.19) an noticing 2 | ab| = 2(a/ V2 Xv2b) < 1a* + 2b* we have

" - L 2 s -
6:+]Pf:+]13n+l < 0(1) - E Hg;rﬂ‘f)i” -2 Z Wi+|9iT+1¢’i
i=0 i=0

<O(1) =2 X |65 ] +2 X wi, = O(n),
i={ i=0

which implies the desired result. O

Lemma 2 tells us that under an explosive excitation input the LS estimate is consistent. However, the
stabilization purpose (1.5) does not allow us to apply such an input for a period longer than finite. Thus
we need to define stopping times o; at which we turn off the explosive excitation input and switch on the
control defined by the certainty equivalence principle until 7; at which the accuracy of the LS estimate 6,
becomes unsatisfactory and we have to apply the explosive excitation input again. After defining stopping
times

O=r1 <o, <7, <oy <7y < -

it is most important to show that there is some integer i such that o; <o and 7, = %, because otherwise
the requirement (1.5) will never be met.
Let {¢,} be a real sequence with the following properties:

0<e, <1, €,—0, gn*—>x forsomeac(0,3). (2.22)

(For example, &, =[log(10 + n)] !, ¥n > 0.) We now define stopping times o; and 7, for any i > I:
n—1

o, = min{n >7,_1: Y, ;6 — (log s,)’e, *1 > 0; det M, # 0;
j=0

G ()17 + 1 H(2)I*<

max( p, q)s”;
1 n—1 5 1 n—1 ) 5
— L (y;'_ ;‘—16’”) Y (yf_ }—191') <2e;, (2.23)
Sn Jj=0 S j=0
] 1 n—1 - 2 1 n—1 " 2 ) 5
7 =minjn >0 | — X (v—¢16,) ey Y (yi—o18) | > +en), (2.24)
n j=0 n j=0
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where s, is given by s, = 1,

1 k-1
s, =n max{1, T .):U(nyruf), k=1,...,n}), VYn=1. (2.25)
e

Let {¢,} be independent of {w,} and be mutually independent with the property

Ev,=0, Ev’=1, |lv,| <o, ¥Yr=0,v,=0, ¥Yn<0 (2.26)

ol
with o > 0 being a constant.
The explosive excitation signal {u} is defined from
D(2)u, =v,, u,=0, (2.27)
where D(z) =1+ E£F*d,z" is an unstable polynomial of degree p + g, i.e.
D(z)#0, |z|>1 and d,,, +0. (2.28)

We now show that {u/} really is explosive.

’
n?

Lemma 3. If A(z) and zB(z) are coprime, lim, _,.n" " log ©7'_w? =0 and u, = u',, then

(n)
lim inf — =¢c>0 a.s. (2.29)
a

n—oe

for some constant a > 1.

Proof. ﬁcp[acing —b, by b, i=1,...,q, in M, given by (2.8) we denote it by M;. Set &, = A(z)¢, and
D= [ﬁr ]. From (1.1) it is easy to see that

&, =DU, + W

"’

where U, =[u, " t,_ 15+ and W, =[w, == w,_,., 0 --- 01" (g zeros).

By coprimeness of A(z) and zB(z) we know that det(D) = 0.
From (2.26)-(2.28) and Theorem 2 of [13] (see (A.2) in the Appendix) it follows that

lim infp“)lmin{ Y u.q.T) >c>0 as. (2.30)

Tgr=hes: i=0

where ¢ possibly depends on sample path, u =max{| z;|: D(z)=0,i=1,...,p+q} <1, and A, (X)
denotes the minimum eigenvalue of a matrix X.
It is not difficult to see that for any n € R?*9 with || n] =1,

n n n
2
Y 0", >t X In"pul - X 2w,
i=0 i=0 i=0

which implies that

/\min( E q):(pl-r) = é/\min( E DIJI[]!TDT) . Amax( 2 er”/:T]

i=0 i=0 i=0

> %Aminwm)amm( X U,U,-T) ¥ T (231)
=0 =0
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On the other hand, noticing that ¢, =0 for any i <0 we have

n n n P 2
)‘min( EQ(P,T) = mf Y. (quf’,-)2= inf Y, (de)i-‘l* N aj.qub‘j)

i) lxll=1;—¢ Ixll=1 ;=9 j=1

<(p+1)

P n
1+ Eaf) inf Z(xT¢E)2<(p+1)

j=1 lxll=1;_g

P n
1+ E af)’\min[ E qbl(f);l)

i=1 i=0
(2.32)

Combining (2.30)-(2.32), we find that A, (X7 ,é,é7) diverges exponentially fast and (2.29) is true. O

Finally, we define adaptive control u, at time #n is given by

u if n €[, 0,,,) for some i >0,

n

u,= Un . : (2.33)
n H.(z)y,— (G, (z) " 1Nu,+ ——— iftne|c,r,) forsomeix=1,
(299 = (Gof2) = ity + Tt (7. )

where £ €[0, 1/4(p + g)).

We note that in the interval [o;, 7;) we add a diminishing signal v, /(n + 1)* to the control defined by
the certainty equivalence principle. The purpose of this is to make the LS estimate for @ strongly
consistent without damaging asymptotic behavior of the system. In contrast to [8,9,15] the upper bound
of |G(2)||*+ | H(2)|* is not assumed to be available in this paper. So in (2.23) we use a sequence
{1/max(p, g)e,} diverging to infinity to dominate the estimated values of { || G,(z)|* + || H (z) I *}.

3. Main results

For convenience we formulate some known results on LS estimates as Theorem 1. For its proof we
refer to [2,13].

Theorem 1. If A(z) and zB(z) are coprime, {w

n?

.} is a martingale difference sequence with

supE[w?2, | 7,| <= and Y w?=0(n), {3.1)

nzl i=0

and u,, is ¥, -measurable, then for any v > 1,

n=1 log r,(log log r,)”
Y. £} =0(log r,(log log r,)"), e, —0l*= O( (A"” ) , (3:2)
ji=0 min
where
n—1
gnzyn_ n—IBH_wn! rn=1+ 2 ” (F’)_;’”zﬂ (33)
Jj=0

and {F,} is a family of nondecreasing o-algebras.

Further, if, in addition, u, = u;, + v, /(n + 1)*, e €[0, 1 /4(p + q)), where v, is given by (2.26) and u® is
measurable with respect to F,/_=a{w, 0<i<n, v, 0<j<n—1} with Lo Nui)? = O(n), and if the
system output satisfies LI'_'(y,)* = O(n), then

log n(log log n)y
nI~Ze(p+q] 2

||,9n_9||2=0( Yy > 1. (3.4)
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Theorem 2. If A(z) and zB(z) are coprime, {w,, %} is a martingale difference sequence with (3.1) satisfied,
then the adaptive control (2.33) stabilizes the closed-loop system (1.1) and the LS estimate 6, given by
(2.1)—(2.3) is strongly consistent, precisely,

1 1

lim sup — Y (yszruf) <w® qg.s., (3.5)
n—w Mg

(log n)(log log n)”

pl2e(pta)

le,—al? forany y> 1. (3.6)

Proof. The first step is to show that there exists an integer i such that ¢; < and 7, = o.
By (2.25) it is clear that s, /n is nondecreasing,

5,=0(nr,) and r,=0(s,). (3.7)

We now show that it is impossible that 7, <o and o;,, = » for some i > 0. If it were not true, i.e. if

there were an i > 0 such that 7; <« and o;,, = o, then u, = u,, Vn > 7,. Noticing that {v,} is bounded, it
is easy to see that there exists b > 1 such that

r,=0(b"), (3.8)

which together with (3.7) leads to log s, = O(n). Thus, from (2.22) and (2.29) it follows that for some
integer N, > 0 and all n > N, the first inequality in the definition (2.23) is true.
By Lemmas 2 and 3,

lle,—6ll>=0(n/a") as. (3.9)

From this and Lemma 1 we see that for some integer N, = N, > 0 and all n > N,, the second and third
inequalities in the definition (2.23) hold.
By (1.1), (3.1)-(3.3), (3.7)-(3.9) and Schwarz inequality we have

1 n—1 n—1 2
\kz(w LT (-e10)
n j=0 Sn j=0
n—1 ) | n—1 2
o ):0|w (/10— _16,)| + — _}:0( 10— 6,)
H j n f=

n—1 n—1

= T ik |+f Y & (by(1.1) and (33))

n j=0 n) 0
2 =1 1/2 n—1
<—| T w 1/2|i9—a||+—|\9—0\| Zfz
8, i=0 Sy n_; 0

n—1

20, 4 (172
Z w; ) ( Y 513] (by Schwarz inequality)
i=0

n

n log'n
( p ) Vy>1 (by(3.1),(3.2), (3.7)-(3.9)). (3.10)

From this and (2.22) it follows that there exists an integer N, = N, = 0 such that for any n > N,,

1 n—1 n—1

— X (y-¢L )__Z( f)z

gle?, (3.11)
Sn j=0 Sn j=0

i.e. the last inequality in the definition (2.23) is true.
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Therefore, we have o;,; < N,. This contradicts g, , = =.
We now prove that 7, = o for some . By (3.2) it follows that

16,61 =0((log 5,,)° /45",
which incorporating the definition of ¢; implies that
16, —61%=0(es ).

Similar to (3.10), by (3.2) we obtain that

%Z(Yf JT1,;) - g,( )’=O(_||BU,_—BII+IT;°;S”),

n

By (3.12), (3.13) and s, > n we know that there exists and i, such that for any i >, and any n >

1 =1 n—1

—Z(yj"jlg)**z( J)

Sn j:[) n Jj=0

..<_£(2T_ o i s;‘:.

Thus 7; = oo, For simplicity of notations we write i, as I, i.e. g; <%, 7,=® a..
By (2 12) we have

=G,(2)[A,(2)y,~2B,(2)u,]| +2B,(2)[G,(2)u, — H,(2)¥,]
u,= Hai(z)[AU,(z)y,, —zBUi(z)un] +AU{(Z)[GUE(z)un — Hgi(z)yn] )

Hence, from (3.14), (3.15) and (2.33) we get, for any n > n, = o + max( p, g),

=G,(2)[A4,(2)y,—zB,(2)u, ]+zB(,,(z)( il)

ty = Hy((2)[ As(2)3, = 2Bo( )] *Am(“ﬁ'

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

By noticing |v;| <o and the elementary inequality (a +8)* < (1 +v)a’ + (1 +v)/v)B?, Yv >0, Va,

Vg, from (3.16) and (3.17) it follows that for any »n > n,,

n—1 17— 1 o1
;E(yf 7) = ;Z( +“f)+; X (v +ui)

j=0 =n J=0

1+v 2 el 2

< —— max(p, )1 G, () I* + I Hy(2)IP) T (v~ #]-18,,)

j=0
n—1 U?
I 4,(z) 12+ 1B (2)I*) ¥ ——
(14 + 1B 1) &

ng—1
+% Y (yf—&-u}) (by (3.16) and (3.17))
j=0
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1+¢1n-!1 2
- Y (v —d]-16,) +0(1) (by (2.23) and |1;| <o)
a; J=0
1+v Sy 1 &= 2 1 n-1 2
< = g — T 9.
s A CRUE DR ORE )
1+p 1121
+ — 3 (3—- o8 ) +0(1)
80_! nj:O
(log s,)°
<(I+w)|e,+—=|= +0|—=—| +0(1), (3.18)
og, | n

where for the last inequality we have used (2.24) and 7, = .
Since ¢, <1 and g, — 0, we can take v>0 small enough and n, sufficiently large so that
(1+vXe, + £r/€,) <P <1 for all n = n,. Therefore, for any n =n,,

= | =

n—1 s
Y (yjz+uf)<B;" +gy, (3.19)
i=0

where ¢, < is independent of .
Noticing that s,/r is nondecreasing from (3.19) we get for any n > n, and any / € [n,, n],

!

|

1

sy

S S
(v} +u?) B e <B— ey,
0

i

which together with (2.25) yields

s 1/-1 5
= <max{1; — 2pu), 1=1,...,.0—1: B— +¢ ),
n { 150(% ,) 1 ﬁn 1
or
SP’! S?’!
oy 6 (3.20)
n 7
where

1 1-1
cz=1+cl+max{7 3 (yjz%—uf),[:l,...,n,l}.
j=0

Consequently, s, /n < (1 —B)~'c,, ie., (3.5) follows, while (3.6) implied by Theorem 1. O

4. Conclusion

For the stochastic system, which possibly is of nonminimum-phase and open-loop unstable, we
basically use the adaptive control constructed by the certainty equivalence principle and excited by a
diminishing signal, but with explosive inputs applied at some random time intervals of finite length. As
results, both adaptive stabilization and consistent parameter estimate are achieved.
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Appendix
Consider the autoregressive AR( p) model

Pn=-81-’_]n—l+ +Bp3‘)n—p+gn! (Al)

where y, is the observation and £, is the random disturbance at stage n, and B,,...,B, are the
parameters of the model.

Let
f(2) =22 =Bz = - =B,
Yn:[in,...,in_pH]T, JL”=[E,I,O,...,O]T (p —1 zeros)
B]:"':.Bp—l 18[; T
F= I 0 and Xn=[Yp,Yp+1,...,Y,,_1] .
p—1

Then Lai and Wei [13] obtain the following results.

Theorem A. Suppose that in the AR( p) model (A1), {g,} is a martingale difference sequence with respect to
an increasing sequence of o-fields {%,} such that

lim infE(g;1%,_,) >0 a.s.
n— o

Assume that the roots z; of the characteristic polynomial f(z) lie outside the unit circle, i.e., | z J-I >1 for
j=1,...,p. Lt m=min, _;_ |zl andM=maxl<jgp|zj\. Then we have
(i) F7"Y,,, converges a.s. to Z:=Y,+ L;_F™'D,, ,. Moreover, x'Z has a continuous distribution for
all x = R? —{0}. _ . _

(i) F7"XJX (F~")" converges a.s. to X=X  F (ZZ"XF™)'. Moreover, 3 is positive definite
with probability 1. Consequently,

lim n ' log Api( X,/ X,)=21log @ a.s., (A.2)

H—o0

limn~!log Ay X X,)=2log M a.s. (A.3)
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