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Abstract
This article investigates resilient distributed online estimation (DOE) in unre-
liable directed networks with differential privacy requirements. In the network
considered, some agents are subject to Byzantine attacks and thus could send
arbitrary incorrect messages to their neighbors. The remaining agents aim to
collaboratively estimate the value of an unknown vector parameter while pro-
tecting their private data. In this article, by adding private noises to mask
the estimate, a stochastic approximation-type resilient differentially private
DOE algorithm is proposed to protect the privacy of sensitive information. A
time-varying step size is introduced to attenuate the divergence caused by the
private noise, and furthermore, guarantees the convergence of the algorithm.
When the directed graph is (2F+1)-robust, the algorithm is shown to be both
mean square and almost sure convergence in the sense of 𝜖-differential privacy.
A simulation example is given to verify the effectiveness and superiority of the
algorithm.
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1 INTRODUCTION

Distributed online estimation (DOE) is a fundamental problem in many practical complex distributed systems includ-
ing cyber-physical systems, sensor networks, social and economic networks. In this problem, each distributed unit
cooperatively estimates or learns the unknown parameter of the system based on its own noisy measurements and
the interaction information from its neighbor. Compared with the centralized estimation, DOE has two advantages:
scalability and reliability. Specifically, DOE does not require to transmit all the data to a fusion center. This not
only avoids the potential computation and communication burden with the increasing scale of the network but also
enhances the robustness against attackers. Due to parallel information processing, DOE algorithms have been developed
and widely applied in industrial monitoring, multi-agent systems, smart grid.1-6 Among the existing DOE algorithms,
consensus-based distributed estimation algorithms are important and popular, since it contains a consensus scheme
to implement the coordination among sensors. In fact, due to its wide applications in distributed control and dis-
tributed estimation, distributed consensus problem of multi-agent systems has obtained deep and comprehensive
results.7-11
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But in practical application, DOE algorithms are vulnerable to the attack from an adversary, which can easily result
in a failure of estimation. According to its ability, the adversary can be divided into the active adversary and the passive
adversary. The active adversary acts arbitrarily and causes the original algorithm to no longer be applicable. Recently, DOE
algorithms under the active adversary have been studied. For example, when the attackers can directly manipulate the
sensor measurement, resilient distributed parameter estimation algorithms have been given in the work of Chen et al.12-14

When the attackers are Byzantine, resilient distributed parameter estimation algorithms have been given in the work of
Chen et al15 and LeBlanc and Hassan.16 As a special case of the active adversary, Byzantine attackers hijack a subset of the
agents and drive them to spread the incorrect information to the network, which have been intensively studied in recent
papers,15-22 including distributed consensus, distributed optimization and distributed estimation. Unlike the active adver-
sary, the passive adversary is only curious about the sensitive information of agents. If there is a passive adversary in the
network, the information interaction among agents brings a privacy crisis. For example, by collecting interactive informa-
tion, adversarial agents can obtain the sensitive information from their neighbors.23 In medical prediction systems, each
hospital wants to infer a regression model for medical treatment prediction. A good model requires the training data of
patients as much as possible, however, data publication and sharing among hospitals may leak the medical records of indi-
viduals. In cooperative guidance systems, interactions may expose the positions of other missiles and the launch stations.
In biological networks, animals are interested in moving toward a target (such as a nutrition source). The “home” of the
animals is sensitive for hunters/predators. Therefore, there is a great need of privacy preserving algorithm to protect the
sensitive information in control systems.24 In the realm of distributed algorithms, several privacy preserving approaches
have been recently proposed, such as adding artificial noises,25 homomorphic encryption,23,26 state decomposition,27 and
so forth.

Fortunately, differential privacy is widely used to protect the privacy28 and has applications in many domains, such
as social networks,29 machine learning,30-33 distributed optimization,34,35 and so on. Differential privacy is to add noises
to the message before delivering. However, noise addition disrupts the learning process and heavily degrades the per-
formance of the trained model in the existing studies,31-33 especially when large amounts of noises are considered to
guarantee a small loss of privacy.

Differential privacy also has some results in the area of distributed consensus. For example, the differentially pri-
vate iterative synchronous consensus problem has been studied in the work of Huang et al.,36 where agents are required
to achieve convergence to the average of the initial values while protecting the privacy of their initial values from
honest-but-curious adversaries. In the work of Nozari et al.,37 by properly designing the private noise, a privacy preserv-
ing algorithm has been proposed to guarantee the almost sure convergence to the average of agents’ initial values while
allowing agents to choose their own privacy level. When there are faulty agents and the graph topology is directed, an
algorithm has been proposed to guarantee the consensus of non-faulty agents with differential privacy requirements in
the work of Fiore and Russo.38 However, the private noise used in the above literature37,38 is exponentially decaying. By
using noise with time-invariant variances, a differentially private consensus algorithm for continuous-time heterogeneous
high-order multi-agent systems has been proposed in the work of Liu et al.39 Recently, differentially private estimation
has been developed via centralized methods40,41 and distributed methods.42,43 By adding noise to the private data (input
perturbation), a differentially private distributed stochastic gradient algorithm under gossiping communication has been
given by Liu et al.42 However, the convergence for the proposed algorithm cannot be guaranteed, and the convergence
error is inversely proportional to the privacy level. The differentially private distributed estimation problem under an
undirected graph topology has been investigated by Liu et al.43 Up to now, the design and analysis for DOE with the
unknown subset of faulty agents and privacy requirement remains open. This is a challenging issue to discuss because it
is much more practical and useful.

In this article, the differentially private DOE problem is considered over a directed graph under Byzantine attacks.
The agents under attack are unknown, and the sensitive data of every non-faulty agent are required to be protected.
First, we propose a stochastic approximation-type Byzantine-resilient differentially private DOE algorithm, which can
achieve distributed parameter estimation under differential privacy requirement and Byzantine attack. Then, we prove
that the algorithm is 𝜖-differentially private and guarantees both mean square and almost sure convergence. Finally, a
simulation example is given to verify the effectiveness and superiority of the algorithm. The contributions of this article
are summarized as follows.

We apply the stochastic approximation-type algorithm to study the resilient differentially private distributed param-
eter estimation problem for the first time. We consider a certain number of faulty agents and privacy protection of
non-faulty agents’ sensitive information simultaneously while guaranteeing the convergence of estimation states. Com-
pared with the previous work on distributed parameter estimation,1-6,12-16 the algorithm in this article is differentially
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private. Compared with the work of Katewa et al.41 and Liu et al.,42 the convergence of the algorithm both in mean square
and almost sure is established. Compared with the work of Ny and Pappas40 and Katewa et al.,41 the algorithm in this
article is distributed, robust and has less computation and communication resources.

Instead of using adaptive sequential composition theorem, we explicitly give a method to determine the noise variance
for 𝜖-differential privacy. This method is more general than the exponential decay Laplace noise given in advance.36-38

Compared with the work of Han et al.,34 the private noise 𝜎k in this article can be O( 1
k𝛾

), 1
2
< 𝛾 ≤ 1. Moreover, different

from the work of Fiore and Russo,38 the faulty agents studied in this article do not affect the differential privacy of the
non-faulty agents.

Compared with the existing differentially private distributed consensus algorithm,36-39 the estimation errors of this
article converge to zero. Different from that only directly manipulates sensor measurements12-14 and some agents know
the parameter value in advance,16 the attacker in this article has stronger attack ability and all the agents do not know
the parameter value a priori.

The rest of this article is organized as follows. In Section 2, graph theory is introduced, and the DOE problem is
formulated. In Section 3, a DOE algorithm is proposed and shown to be 𝜖-differentially private. Besides, both mean square
and almost sure convergence are established. In Section 4, a numerical example is given to demonstrate the theoretical
results. In Section 5, concluding remarks and further research topics are drawn.

The notations throughout this article are standard. X ≥ 0 (X > 0) means that X is symmetric and semi-positive def-
inite (positive definite). 1N stands for the N-dimensional vector with all elements being one. Rn and Rm×n denote the
n-dimensional Euclidean space and the set of all m × n real matrices, respectively. ||x||2 refers to Euclidean norm of the
vector x. ||x||1 denotes the 1-norm of the vector x ∈ Rn, that is, ||x||1 =

∑n
i=1|xi|. I, 0 are identity matrix and zero matrix with

appropriate dimensions, respectively. In addition, diag {A1, … ,An} stands for a (block) diagonal matrix with A1, … ,An
in order on the diagonal. || denotes the number of elements in the set. The probability, expectation, and variance of
a random variable X are denoted by P[X], E[X], and V[X], respectively.

2 PRELIMINARIES

2.1 Graph theory

A graph  = ( , ) consists of a set of agents  = {1, 2, … ,N}, and a set of edges  ⊆  ×  . The graph is said to be
undirected if (i, j) ∈  ⇔ (j, i) ∈  , and directed, otherwise. The set of in-neighbors and out-neighbors of agent i is denoted
by  in

i = {j ∈ |(j, i) ∈ } and  out
i = {j ∈ |(i, j) ∈ }, respectively.  is called a balanced digraph if

∑N
j=1aij(k) =

∑N
j=1aji(k),∀i ∈  . A directed tree is a directed graph where every agent has exactly one parent except the root, and the

root has directed paths to every other agent. A directed spanning tree of a directed graph is a directed tree that contains
all agents of the directed graph. A directed graph contains a directed spanning tree if there exists a directed spanning
tree as a subset of the directed graph. A = [aij(k)] is the adjacency matrix of , where aij(k) > 0 if (i, j) ∈  and aij(k) = 0,
otherwise.  is called strongly connected if for any pair agents (i1, il), there exists a path from i1 to il consisting of edges
(i1, i2), (i2, i3), … , (il−1, il). For a digraph  = ( , ), a nonempty subset  ⊂  is r-reachable set if there exists an agent
i ∈  such that | in

i ⧵ | ≥ r. That is, the subset  has at least r in-neighbors in in
i ⧵  .

First, the concept of r-robustness for the digraph  = ( , ), as well as a useful lemma, is given as follows.

Definition 1 (38). A digraph  = ( , ) is r-robust if for every pair of non-empty, disjoint subsets of  , at least one of
the subsets is r-reachable.

Lemma 1 (21). Suppose a graph  = ( , ) is r-robust. Let ′ be a graph obtained by removing r − 1 or fewer incoming
edges from each agent in . Then, ′ contains a directed spanning tree.

2.2 Observation model

The observation model of each agent i is governed by:

yi(k) = Hi𝜃
∗ + 𝜔i(k),
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where yi(k) ∈ Rmi is the measurement vector, 𝜔i(k) ∈ Rmi is the zero-mean independent and identically distributed mea-
surement noise with covariance Ri, and Hi ∈ Rmi is the constant measurement matrix, 𝜃∗ ∈ R is an unknown parameter
to be estimated.

To identify the system parameter 𝜃∗, a consensus-based distributed estimation algorithm1,3-6 can be designed in the
form of

xi(k + 1) = xi(k) − 𝛼(k)
∑

j∈i

aij(k)(xi(k) − xj(k)) + 𝛼(k)HT
i (yi(k) −Hixi(k)), i ∈  , (1)

where xi is the estimate state of agent i, and 𝛼(k) is a positive step size. However, in the traditional distributed estimation
algorithm (1), each agent transmits its estimate to its neighbors, which may expose the sensitive information. Moreover,
the algorithm is vulnerable to attacks and may lead to failure if adversarial agents deliver incorrect information to the
network.

2.3 Fault/adversary model

Under the Byzantine attacks, agents can be divided into two subsets:17-19,21,22,38 a set of adversarial (faulty) agents, denoted
as , and a set of non-faulty agents, denoted as ∕. The faulty agents can send different falsified massages to differ-
ent neighbors at each time-step. Mathematically, denote 𝜁

j
i (k) ∈ R as the message sent from a faulty agent i ∈  to a

non-faulty agent j ∈ ∕ at time k. Then, faulty agent allows that 𝜁 j
i (k) ≠ 𝜁

j′
i (k) for j ≠ j′ and j, j′ ∈ ∕. Although faulty

agents can deliver completely arbitrary, malicious, and possibly conflicting messages into the network, the non-faulty
agents aim to estimate the unknown parameter collaboratively regardless of the incorrect information.

Remark 1. Different from the previous work,12-14 instead of manipulating the sensor measurement, the Byzantine attacker
hijacks a subset of agents to spread the incorrect information in the network, which is more general and realistic.

Definition 2 (F-total vs. F-local17). For F ∈ N, we say that the set of faulty agents is an F-total set if || ≤ F, and an
F-local set if | in

i ∩| ≤ F, for all i ∈ ∕.

F-total model indicates that there are no more than F faulty agents in the entire network, whereas the F-local model
indicates that there are no more than F faulty agents in the in-neighbors of any non-faulty agents.

Assumption A1. The graph  = ( , ) is directed and (2F + 1)-robust.
Assumption A1 is fairly standard as seen in the work of Fiore and Russo.38 Note that F-total model is a special case of

F-local model under Assumption A1. Hence, we will focus on the F-local model in this article.

2.4 Differential privacy

Besides the Byzantine attacks, there is potential eavesdropper that has access to the information in the communication
network. In order to protect the privacy of non-faulty agents, the definition of 𝜖-differential privacy is introduced. Inspired
by the work of Ny and Pappas,40 the definition of 𝛿-adjacent is given first.

Definition 3 (𝛿-Adjacent). Given 𝛿 > 0 and k ∈ N, two signal sets Dk = {yi(k), i ∈ ∕} and D′
k = {y′i(k), i ∈ ∕}, Dk

and D′
k are 𝛿-adjacent if there exists i0 ∈ ∕ such that

yi(k) = y′i(k), ∀i ≠ i0, ||yi0(k) − y′i0
(k)||1 ≤ 𝛿. (2)

Definition 4 (Differential privacy33). Given 𝜖 > 0, a randomized algorithm  is 𝜖-differentially private if for all
𝛿-adjacent datasets D = {Dk, k ∈ N} and D′ = {D′

k, k ∈ N}, and for any set of outputs Υ ⊆ Range(),

P{(D) ∈ Υ} ≤ P{(D′) ∈ Υ} × exp(𝜖 × |D ⊕ D′|),

where ⊕ denotes symmetric difference, and |D ⊕ D′| denotes the number of different elements in datasets D and D′.

Remark 2. By actively adding noise, the estimate is randomized so that the eavesdropper cannot tell from the estimate with
high probability whether the measurement corresponding to the agent in the network has changed. Thus, the sensitive
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information Dk = {yi(k), i ∈ ∕} is protected. The index 𝜖 measures the privacy level of the randomized algorithm ,
and a small 𝜖 implies a high privacy level. As pointed out in the work of Ny and Pappas,40

𝜖 is generally settled by a small
constant, for example, 𝜖 ≈ 0.1.

In the following, the sensitivity of the output map is introduced, which is a key quantity determines how much noises
should be added in each iteration for achieving differential privacy.

Definition 5 (Sensitivity40). For the adjacency relation (2), the sensitivity of an output map m at time k is
defined as

Δ(k) = sup
Dk ,D′

k∶Adj(Dk ,D′
k)
||m(Dk) −m(D′

k)||1,

where Dk and D′
k are input datasets at time k.

Remark 3. The sensitivity of an output map m captures a magnitude by which a single agent’s data can change
the output map m in the worst case. For our proposed algorithm, m refers to the output map from yi(k) to xi(k),
i ∈ ∕.

In this article, we will design an 𝜖-differentially private resilient distributed algorithm to achieve DOE with an
unknown subset of faulty agents over a digraph.

3 MAIN RESULT

3.1 Algorithm design

A Byzantine-resilient differentially private distributed parameter estimation algorithm is proposed in Algorithm 1. The key
steps of the algorithm are summarized as: (i) each agent actively adds random noise into the message before sharing it
with its neighbors; (ii) each agent discards part of messages from neighbors before updating; (iii) each agent updates its
estimate state based on the reserved messages.

Algorithm 1. Byzantine-resilient differentially private distributed parameter estimation algorithm

Input: F
Initialization: Set xi(0) randomly for each agent i ∈ 
for k = 1,… , do
Obtain a new measurement yi(k);
Transmit phase
Generate noise ni(k); and send x̃i(k) = xi(k) + ni(k) to each out-neighbor.
Receive phase
Get x̃j(k) from in-neighbors, and store the values in the vector ri(k) of size | in

i |.
Update phase
If there are less than F values strictly greater than x̃i(k) in ri(k), then agent i removes all values strictly greater than x̃i(k)
from ri(k). Otherwise, agent i removes the F largest values from ri(k). In addition, if there are less than F values strictly
less than x̃i(k) in ri(k), then agent i removes all values strictly less than x̃i(k) from ri(k). Otherwise, agent i removes the F
smallest values from ri(k).
Let i be the set stores the agent indexes whose state valueswere removed from ri(k), and denote the remaining agent
index set as ∗

i =
in
i ∕i. Then, each non-faulty agent updates its estimate as follows.

xi(k + 1) = x̃i(k) − 𝛼(k)
∑

j∈ ∗
i

aij(k)(x̃i(k) − x̃j(k)) + 𝛼(k)HT
i (yi(k) −Hix̃i(k)).

end



6 WANG et al.

Transmit phase: Each agent i ∈ ∕ transmits its current noisy estimate x̃i(k) to its neighbors j ∈ out
i . Specifically,

each agent broadcasts

x̃i(k) = xi(k) + ni(k), (3)

where xi(k) is the estimate of agent i at time k ≥ 1 for the unknown parameter 𝜃∗, and ni(k) ∈ R is a zero-mean Laplacian
noise with the variance of 2𝜎2

k , that is, ni(k) ∼ Lap(0, 𝜎k).
Update phase: At each time step k, each agent i gets x̃j(k) from the in-neighbors and stores the values in the vector ri(k).

If there are less than F values strictly greater than x̃i(k) in ri(k), then agent i removes all values strictly greater than x̃i(k)
from ri(k). Otherwise, agent i removes the F largest values from ri(k). In addition, if there are less than F values strictly
less than x̃i(k) in ri(k), then agent i removes all values strictly less than x̃i(k) from ri(k). Otherwise, agent i removes the F
smallest values from ri(k). Then, each non-faulty agent updates its estimate as follows.

xi(k + 1) = x̃i(k) − 𝛼(k)
∑

j∈ ∗
i

aij(k)(x̃i(k) − x̃j(k)) + 𝛼(k)HT
i (yi(k) −Hix̃i(k)), (4)

where 𝛼(k) is the step size of the algorithm. The selection of 𝛼(k) to ensure the convergence and 𝜖-differential privacy of
the algorithm simultaneously will be discussed in more details later.

Remark 4. Different from the existing distributed parameter estimation algorithms,1-6,12-16 to ensure 𝜖-differential
privacy requirement, we add a Laplacian noise to the estimate xi(k) before broadcasting. Moreover, different from
the previous work,1-6,40-43 the algorithm addresses distributed parameter estimation when a subset of agents are
Byzantine.

The algorithm cannot definitely eliminate the values generated by faulty agents. However, by the fact that the net-
work topology is (2F + 1)-robust, it is always possible to express the value xj(k) of any faulty agent in  ∗

i by a convex
combination of the non-faulty agents in in

i ∪ {i}.21,38 In the following, a mathematically equivalent representation of
(4) is presented.

Lemma 2. For each agent i ∈ ∕, if Assumption A1 holds, then the update rule (4) for the multi-agent system (3) is
mathematically equivalent to the following form

xi(k + 1) = xi(k) − 𝛼(k)
∑

j∈ in
i ∩(∕)

aij(k)(xi(k) − xj(k)) + ni(k) − 𝛼(k)
∑

j∈ in
i ∩(∕)

aij(k)(ni(k) − nj(k))

+ 𝛼(k)HT
i (yi(k) −Hix̃i(k)), (5)

where the nonnegative weights āij(k) satisfy the following property at each time-step k,

aii(k) + 𝛼(k)
∑

j∈ in
i ∩(∕)

aij(k) = 1.

Proof. Without loss of generality, we suppose the first N − || agents are non-faulty. This is because we can reindex the
agents, and the communication topology is still (2F + 1)-robust. This lemma can be proved by using arguments similar
to the work of Sundaram and Gharesifard,21 where an analogous result with the noise-free case (i.e., ni(k) = 0, ∀i ∈ )
was proved.

From (4), it follows that

xi(k + 1) = (1 − 𝛼(k)
∑

j∈ ∗
i

aij(k))x̃i(k) + 𝛼(k)
∑

j∈ ∗
i

aij(k)x̃j(k) + 𝛼(k)HT
i (yi(k) −Hix̃i(k))

= aii(k)x̃i(k) + 𝛼(k)
∑

j∈ ∗
i

aij(k)x̃j(k) + 𝛼(k)HT
i (yi(k) −Hix̃i(k)). (6)

Note that the set  ∗
i in (6) may contain values coming from faulty agents. For example, faulty agents might generate

values between the F largest and the F smallest values received by a non-faulty agent, and hence, those values would not
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be eliminated by the algorithm. In this case, as shown in the work of Sundaram and Gharesifard,21 under the assumption
that the network topology is (2F + 1)-robust, it is always possible to express the value x̃j(k) from any faulty agent in ∗

i
as the convex combination of the non-faulty agents in {i} ∪ in

i . By combining (3) and (6), we have

xi(k + 1) = aii(k)x̃i(k) + 𝛼(k)
∑

j∈ ∗
i

aij(k)x̃j(k) + 𝛼(k)HT
i (yi(k) −Hix̃i(k))

= aii(k)x̃i(k) + 𝛼(k)
∑

j∈ in
i ∩(∕)

aij(k)x̃j(k) + 𝛼(k)HT
i (yi(k) −Hix̃i(k))

= x̃i(k) − 𝛼(k)
∑

j∈ in
i ∩(∕)

aij(k)(x̃i(k) − x̃j(k)) + 𝛼(k)HT
i (yi(k) −Hix̃i(k)),

where the last equality holds since

aii(k) = 1 − 𝛼(k)
∑

j∈ in
i ∩(∕)

aij(k).

The proof is completed. ▪

3.2 Privacy analysis

In this subsection, we investigate 𝜖-differential privacy of the algorithm. As explained previously, to protect the privacy,
each non-faulty agent generates a noisy signal and adds the noise to the estimate xi(k), that is, x̃i(k) = xi(k) + ni(k). In
order to satisfy 𝜖-differential privacy, the output of the mechanism should satisfy Definition 4. In the context of differential
privacy, the corresponding mechanism of the algorithm maps D = {yi(k), i ∈ ∕}k∈N to a sequence of messages Υ =
{x̃i(k), i ∈ ∕}k∈N. This method is known as output perturbation.28,40

Definition 6 (L1-sensitivity). For any given 𝛿-adjacent datasets Dk and D′
k, the L1-sensitivity of the algorithm at k is

defined as

Δ(k) = sup
Dk ,D′

k∶Adj(Dk ,D′
k)
||xi(k) − x′i (k)||1,

where x′i (k) corresponds to the estimate of agent i ∈ ∕ of the adjacent datasets.

Lemma 3. Let Hmax = maxi∈∕ ||Hi||1. Then, for the adjacency relation (2), the L1 sensitivity of the algorithm at k satisfies

Δ(k) ≤ 𝛼(k − 1)𝛿Hmax.

Proof. For two adjacent datasets Dk and D′
k, from (2) and (5), it follows that

Δ(k) = max
i∈∕

||xi(k) − x′i (k)||1

= max
i∈∕

||𝛼(k − 1)HT
i (yi(k − 1) − y′i(k − 1))||1

≤ 𝛼(k − 1)𝛿Hmax.

Recall that 𝜎k is the scale parameter of the noise ni(k). We derive the following theorem on the scale parameter with
respect to 𝜖-differential privacy requirement. ▪

Theorem 1 (Differential privacy). For a given 𝜖 > 0, Algorithm 1 is 𝜖-differentially private for i ∈ ∕ if 𝜎k satisfies

𝜎k ≥
Δ(k)
𝜖

. (7)
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Proof. Consider any pair of 𝛿-adjacent datasets Dk and D′
k and any observation sequence Υ = {x̃i(k), i ∈ ∕}k∈N. From

(5), the observation sequence depends on Dk, D′
k, and the noise sequence {ni(k), i ∈ ∕}k∈N. We introduce (Dk) =

{x̃i(k), i ∈ ∕}, (D′
k) = {x̃′i(k), i ∈ ∕} to represent the injective map from the sensitive information to the obser-

vation sequence. In order to preserve 𝜖-differential privacy, Dk and D′
k generate identical observation, that is, for any

k ∈ N, x̃i(k) = x̃′i(k), i ∈ ∕. Note that  = {𝜒(Dk,(Dk))} and  ′ = {𝜒(D′
k,(D

′
k))} are the set of possible state evolu-

tion sequences under the adjacent datasets Dk and D′
k in the observation set Υ, with the probability density functions

f (Dk, 𝜒(Dk,(Dk))) and f (D′
k, 𝜒(D

′
k,(D

′
k))), respectively. Then, it can be derived that

P[(D) ∈ Υ]
P[(D′) ∈ Υ]

= lim
k→∞

∫
𝜒(Dk ,(Dk))∈

f (Dk, 𝜒(Dk,(Dk))) d𝜏

∫
𝜒(D′

k ,(D
′
k))∈

′ f
(

D′
k, 𝜒(D

′
k,(D

′
k))

)
d𝜏′

. (8)

In the following, we prove that there exists a bijection g(⋅) ∶  →  ′, such that for any pair of 𝜒(Dk,(Dk)) ∈  and
𝜒(D′

k,(D
′
k)) ∈ 

′, it has g(𝜒(Dk,(Dk))) = 𝜒(D′
k,(D

′
k)). From (5), when we use the sensitivity given in Lemma 3, we

have the same observation over time horizon T, and there exists a bijection g(⋅) ∶  →  ′, such that for any pair of
𝜒(Dk,(Dk)) ∈  and 𝜒(D′

k,(D
′
k)) ∈ 

′, it has g(𝜒(Dk,(Dk))) = 𝜒(D′
k,(D

′
k)). Then, from (8) one can get

P[(D) ∈ Υ]
P[(D′) ∈ Υ]

= lim
k→∞

∫
𝜒(Dk ,(Dk))∈

f (Dk, 𝜒(Dk,(Dk))) d𝜏

∫g(𝜒(Dk ,(Dk)))∈ ′
f
(

D′
k, g(𝜒(Dk,(Dk)))

)
d𝜏

= lim
k→∞

∫
𝜒(Dk ,(Dk))∈

f (Dk, 𝜒(Dk,(Dk))) d𝜏

∫
𝜒(Dk ,(Dk))∈

f
(

D′
k, g(𝜒(Dk,(Dk)))

)
d𝜏

. (9)

Note that we can write the probability density function of (D) as follows

f (Dk, 𝜒(Dk,(Dk)) = f (x̃(0), x̃(1), …)

=
∏

k∈N

f (x̃(k)|x̃(0), x̃(1), … , x̃(k − 1))

=
∏

k∈N

f (x̃(k)|x̃(k − 1))

=
∏

k∈N,i∈∕
f (x̃i(k)|x̃(k − 1))

=
∏

k∈N,i∈∕
f𝜎k (x̃i(k) − xi(k)),

where the third equation holds since the randomness comes from the additive noise (3) and x̃(k) conditioned on x̃(k − 1)
is independent of all the previous (x̃(0), … , x̃(k − 2)) of the algorithm. The added noise of each agent is independent of
each other, which implies the fourth equation. In the fifth equation, f𝜎k (x) is the probability density function at x in term
of Lap(0, 𝜎k).

In the context of this problem, adjacent datasets differ at most one agent, denoted by i0 ∈ ∕. Besides, since we do
not know how many faulty messages are removed by the algorithm at each step, the worst case where the noise coming
from all faulty agents has effect on each non-faulty agent is considered. Then, for single one iteration k ∈ N, from the
property of Laplace distribution, we have

f {(Dk) = x̃(k)}
f {(D′

k) = x̃(k)}
=

∏

i∈∕

f𝜎k (x̃i(k) − xi(k))
f𝜎k (x̃i(k) − x′i (k))

=
∏

i∈∕

exp
(

− |x̃i(k)−xi(k)|
𝜎k

)

exp
(

− |x̃i(k)−x′i (k)|
𝜎k

)

≤

∏

i∈∕
exp

(
|x̃i(k) − xi(k) − x̃i(k) + x′i (k)|

𝜎k

)
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= exp

(
|xi0(k) − x′i0

(k)|

𝜎k

)

≤ e
Δ(k)
𝜎k ,

and hence,

∏

k∈N

f {(Dk) ∈ Υ} =
∏

k∈N

f {(D′
k) ∈ Υ} ×

∏

k∈N

exp
((

Δ(k)
𝜎k

)

× |Dk ⊕ D′
k|

)

,

which together with (7) gives

∏

k∈N

f {(Dk) ∈ Υ} ≤
∏

k∈N

f {(D′
k) ∈ Υ} ×

∏

k∈N

exp
((

Δ(k)
𝜎k

)

× |Dk ⊕ D′
k

)

≤

∏

k∈N

f {(D′
k) ∈ Υ} × exp(𝜖 × |D ⊕ D′|). (10)

From (9) and (10), it follows that

P{(D) ∈ Υ} ≤ P{(D′) ∈ Υ} × exp(𝜖 × |D ⊕ D′|).

Therefore, according to Definition 4, the statement of Theorem 1 is obtained. ▪

Remark 5. Compared with the previous work on differentially private distributed algorithm,34,36,37,43 we consider differ-
entially private distributed algorithm with unknown subset of faulty agents, which is closer to the reality of distributed
network. Furthermore, different from the work of Fiore and Russo,38 the faulty agents studied in Theorem 1 do not affect
the differential privacy of non-faulty agents.

Remark 6. Note that when |D ⊕ D′| = T, T > 0, the differentially private distributed parameter estimation algorithm
satisfies T𝜖-differential privacy, which reduces to the general adaptive sequential composition.34 According to adaptive
sequential composition, we know that the privacy level of the algorithm (3) and (5) will degrade after T-iteration adaptive
composition. From Theorem 1, it follows that the privacy level after T iterations is the sum of that in single iteration.

Based on Theorem 1 and Lemma 3, we give the following corollary directly.

Corollary 1. For given 𝜖 > 0, if 𝜎k satisfies

𝜎k ≥
𝛼(k − 1)

𝜖

𝛿Hmax, (11)

then the algorithm (3) and (5) is 𝜖-differentially private for ∀i ∈ ∕.

Remark 7. In Corollary 1, a relationship between scale parameter 𝜎k and the step size 𝛼(k) is derived. From (11), it follows
that the scale parameter 𝜎k of the added noise is inversely proportional to privacy level 𝜖. In other words, each agent pro-
tects stronger privacy when the added noise is more dispersive. In order to preserve 𝜖-differential privacy and meanwhile
make the parameter estimation error as accurate as possible, we will take 𝜎k = 𝛼(k−1)

𝜖

𝛿Hmax in the following.

3.3 Convergence analysis

Privacy comes with a price, the noise term in Algorithm 1 makes the convergence rate slower than the noise-free case.
However, in this subsection, both mean square and almost sure convergence of the algorithm are proved. Without loss of
generality, we suppose the indexes {1, 2, … ,N − ||} are non-faulty agents. This is because we can reindex the agents,
and the communication topology is still (2F + 1)-robust. The stacked vectors of the dynamics (5) are given as follows.

Θ∗ = 1N−|| ⊗ 𝜃
∗
,
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X(k) =
[

xT
1 (k), … , xT

N−||(k)
]T
,

Y (k) =
[

yT
1 (k), … , yT

N−||(k)
]T
,

H = diag{HT
1 , … ,HT

N−||},

𝜔(k) =
[

𝜔
T
1 (k), … , 𝜔

T
N−||(k)

]T
,

n(k) =
[

nT
1 (k), … ,nT

N−||(k)
]T
. (12)

From (5) and (12), the closed-loop system can be described in the following compact form:

X(k + 1) = X(k) − 𝛼(k)′X(k) + 𝛼(k)HHT(Θ∗ − X(k)) + 𝛼(k)H𝜔(k) + n(k)
− 𝛼(k)(′ +HHT)n(k), (13)

where ′ is the Laplacian matrix of the reduced graph.
There are some commonly used assumptions, which we encapsulate below.

A1′. The graph  = ( , ) is directed and (2F + 1)-robust. The reduced graph ′ is balanced.
A2. The matrix G =

∑
i∈∕ HT

i Hi is of full rank.
A3. {𝜔(k), k ≥ 0} is with bounded second moments 𝜎2

𝜔
≜ supk≥0 E[||𝜔(k)||2] < ∞.

A4. The step size {𝛼(k), k ≥ 0} satisfies

𝛼(k) > 0,
∑

k≥0
𝛼(k) = ∞,

∑

k≥0
𝛼

2(k) < ∞, 𝛼(k) = O(𝛼(k − 1)).

Assumptions A1′–A4 are standard in practice, as seen in existing literature.1,3,21 Before giving the main result of this
article, the following definition and lemmas are introduced.

Definition 7 (44,45). Let Zm ⊂ Rm×m denote the set of all square matrices of dimension m with non-positive off-diagonal
entries. A matrix U ∈ Rm×m is a nonsingular M-matrix if U ∈ Zm and all eigenvalues of U have positive real parts.

Lemma 4 (44,45). For a matrix U ∈ Zm, U is a nonsingular M-matrix if and only if there exists a diagonal matrix D =
diag{d1, … , dm} with di > 0, i = 1, … ,m such that Q = DU + UTD is a symmetric positive definite matrix.

Lemma 5. Under Assumptions A1′ and A2, (Φ′ + T
′
Φ) + 2ΦHHT is a positive definite matrix. Furthermore, there exists

a positive definite matrix M ∈ R(N−||)×(N−||) and a sufficiently large integer T, such that for any k > T,

𝛼(k)M < 𝛼(k)((Φ′ + T
′Φ) + 2ΦHHT),

where Φ = diag{𝜉1, … , 𝜉N−||}, with
∑N−||

i=1 𝜉i = 1, 𝜉i > 0, i = 1, … ,N − ||.

Proof. When  is (2F + 1)-robust, from Lemma 1, it follows that the reduced graph ′ consisting of non-faulty agents con-
tains a directed spanning tree after removing 2F or fewer edges from each non-faulty agent. Note that a balanced digraph
is strongly connected if and only if it has a directed spanning tree. Then, we have ′ is strongly connected. Furthermore,
similar to the proof of Theorem 3.1 in the work of Mei and Ren,6 the result can be obtained. ▪

Lemma 6 (46). Let {V(k), k = 0, 1, …}, {p(k), k = 0, 1, …}, and {q(k), k = 0, 1, …} be real sequences, satisfying

0 < q(k) ≤ 1, p(k) ≥ 0, k = 0, 1, … ,

∑∞
k=0q(k) = ∞,

p(k)
q(k)

→ 0, as k →∞, and V(k + 1) ≤ (1 − q(k))V(k) + p(k). Then,

lim supk→∞V(k) ≤ 0. Particularly, if V(k) ≥ 0, k = 0, 1, … , then limk→∞ V(k) = 0.

For convenience analysis, when private noises exist, we need to properly choose the step size. In the following,
we establish the mean square and almost sure convergence of Algorithm 1 by using the stochastic approximation-type
conditions under two different graph topology conditions, that is, Assumption A1′ and A1, respectively.
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Theorem 2. If Assumptions A1′–A4 hold, then for any 𝜖 > 0 and 𝜎k = 𝛼(k−1)
𝜖

𝛿Hmax, the estimate xi(k) given by (5) is
convergent to 𝜃

∗ in mean square, that is,

lim
k→∞

E
[
||𝛿(k)||2

]
= 0.

Proof. Let 𝛿(k) = X(k) − Θ∗ and V(k) = 𝛿
T(k)Φ𝛿(k). Then, from (13), it follows that

V(k + 1) = 𝛿
T(k)IT

0 ΦI0𝛿(k) + 2𝛿T(k)IT
0 ΦW(k) +W T(k)ΦW(k), (14)

where I0 = I − 𝛼(k)( ′ +HHT), W(k) = n(k) + 𝛼(k)H𝜔(k) − 𝛼(k)(′ +HHT)n(k).
From Assumption A1′, Assumption A2, and Lemma 5, it follows that there exists a constant b0 > 0 such that 1

2
(Φ′ +


T
′
Φ) + ΦHHT ≥ b0I. Thus, we have

𝛿
T(k)

[1
2
(Φ′ + T

′Φ) + ΦHHT
]

𝛿(k) ≥ b0𝛿
T(k)𝛿(k) ≥ b0

𝜉max
V(k), (15)

where 𝜉max = maxi=1,… ,N−|| 𝜉i. Note that

(Φ′ + T
′Φ) + 2ΦHHT = (′ +HHT)TΦ +Φ(′ +HHT) > 0. (16)

Then, ′ +HHT is nonsingular. Otherwise, there exists a nonzero vector 𝜓 ∈ RN−|| such that
𝜓

T
[

(Φ′ + T
′
Φ) + 2ΦHHT

]

𝜓 = 0, which is contrary to (16). ′ +HHT is positive semi-definite, thus it is positive
definite. Let 𝜆 be the maximum eigenvalue of ′ +HHT and k = 𝜎{X(0), 𝜔(l),n(l), 0 ≤ l ≤ k − 1}. Then, we have

E
[
𝛿

T(k)IT
0 ΦI0𝛿(k)|k

]
≤

[

1 − 2 b0

𝜉max
𝛼(k) + 𝜆

2
𝛼

2(k)
]

V(k). (17)

From E[𝜔(k)] = 0 and E[n(k)] = 0, we have E
[
𝜔(k)|k

]
= E

[
n(k)|k

]
= 0, which further implies that

E
[
𝛿

T(k)IT
0 ΦW(k)|k

]
= 0. (18)

In addition, from the independence of 𝜔(k) and n(k), it follows that

E[W T(k)ΦW(k)|k] ≤ 𝜉max(E[||n(k)||2|k] + 𝛼
2(t)||H||2E[||𝜔(k)||2|k]

+ 𝛼
2(k)||′ +HHT||2E[||n(k)||2|k]).

This together with (14)–(18) gives

E
[
V(k + 1)|k

]
≤

[

1 − 2 b0

𝜉max
𝛼(k) + 𝜆

2
𝛼

2(k)
]

V(k) + 𝜉max
(
E[||n(k)||2|k] + 𝛼

2(k)||H||2E[||𝜔(k)||2|k]

+𝛼2(k)||′ +HHT||2E[||n(k)||2|k]
)

(19)

and furthermore, by Assumption A3 and 𝜎k = 𝛼(k−1)
𝜖

𝛿Hmax, implies that

E
[
V(k + 1)|k

]
≤

[

1 − 2 b0

𝜉max
𝛼(k) + 𝜆

2
𝛼

2(k)
]

V(k) + 𝜉max
(
2(N − ||)𝜎2

k

+𝛼2(k)(||H||2𝜎2
𝜔
+ 2||′ +HHT||2(N − ||)𝜎2

k)
)

≤

[

1 − 2 b0

𝜉max
𝛼(k) + 𝜆

2
𝛼

2(k)
]

V(k) + 𝜉max

(

2(N − ||)𝜎2
k

+𝛼2(k)(||H||2𝜎2
𝜔
+ 2||′ +HHT||2(N − ||)𝜎2

k)
)
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≤

[

1 − 2 b0

𝜉max
𝛼(k) + 𝜆

2
𝛼

2(k)
]

V(k) + 𝛼
2(k)𝜉max

(
||H||2𝜎2

𝜔

+
2(N − ||)𝛿2H2

max

𝜖
2 + 𝛼

2(k)||′ +HHT||2
2(N − ||)𝛿2H2

max

𝜖
2

)

. (20)

Note that b0 > 0, 𝜉max > 0, limk→∞ 𝛼(k) = 0. Then, there exists k0 > 0 such that 𝜆2
𝛼(k) ≤ b0

𝜉max
and 2 b0

𝜉max
𝛼(k) ≤ 1, ∀k > k0.

Thus, from Assumption A4, it follows that

0 ≤ 1 − 2 b0

𝜉max
𝛼(k) + 𝜆

2
𝛼

2(k) < 1, ∀k > k0,

∞∑

k=k0

[

2 b0

𝜉max
𝛼(k) − 𝜆

2
𝛼

2(k)
]

≥
b0

𝜉max

∞∑

k=k0

𝛼(k) = ∞,

lim
k→∞

𝛼(k)𝜉maxΠ
2 b0
𝜉max

− 𝜆
2
𝛼(k)

= 0,

whereΠ = 2(N−||)𝛿2H2
max

𝜖
2 + ||H||2𝜎2

𝜔
+ 𝛼

2(k)||′ +HHT||2
2(N−||)𝛿2H2

max
𝜖

2 . By (20) and Lemma 6, it has limk→∞ E
[
V(k)

]
= 0.

From 0 ≤ 𝛿
T(k)𝛿(k) ≤ V(k)

mini=1,… ,N−|| 𝜉i
, it is further obtained that limk→∞ E

[
||𝛿(k)||2

]
= 0. ▪

Most existing literature on multi-agent systems with noises/attacks only focuses on the mean square conver-
gence. However, almost sure convergence and mean square convergence does not imply each other. Generally, the
analysis of mean square convergence is easier than that of almost sure convergence since taking mean square
yields a deterministic system. Besides, in many applications, the analysis of almost sure convergence is much
more reasonable since people can only observe the trajectory of the network in one random experiment. In the
following, based on nonnegative supermartingale convergence theorem, we establish the almost sure convergence
of Algorithm 1.

Theorem 3. If Assumptions A1′–A4 hold, then for any 𝜖 > 0 and 𝜎k = 𝛼(k−1)
𝜖

𝛿Hmax, the estimate xi(k) given by (5) is
convergent to 𝜃

∗ almost surely, that is,

lim
k→∞

xi(k) = 𝜃
∗ a.s., i ∈ ∕. (21)

In addition, if 𝛼(k) ↓ 0, k →∞, then

1
k

k∑

𝜌=0
||𝛿(𝜌)|| = o((𝛼(k)k)−1∕2) a.s., k → ∞.

Proof. From Assumption A3 and the monotone convergence theorem,47 we have

E

∞∑

k=0
E[||n(k)||2|k] =

∞∑

k=0
E[||n(k)||2] <∞,

E

∞∑

k=0
𝛼

2(k)E[||𝜔(k)||2|k] =
∞∑

k=0
𝛼

2(k)E[||𝜔(k)||2] < ∞,

E

∞∑

k=0
𝛼

2(k)E[||n(k)||2|k] =
∞∑

k=0
𝛼

2(k)E[||n(k)||2] < ∞,

which implies that
∑∞

k=0E[||n(k)||2|k] < ∞, a.s.,
∑∞

k=0𝛼
2(k)E[||𝜔(k)||2|k], a.s.,

∑∞
k=0𝛼

2(k)E[||n(k)||2|k], a.s. Thus, by
(19) in the proof of Theorem 3 and nonnegative supermartingale convergence theorem,46 V(k) converges almost surely
as k →∞, and
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∞∑

k=0
𝛼(k)V(k) < ∞, a.s., (22)

which together with Theorem 3 leads to (21). Moreover, by (22), Kronecker lemma47 and Cauchy inequality, it follows
that 𝛼(k) → 0 and 1

k

∑k
𝜌=0||𝛿(𝜌)|| ≤ (𝛼(k)k)−1∕2(𝛼(k)

∑k
𝜌=0||𝛿(𝜌)||2)1∕2 = o((𝛼(k)k)−1∕2) a.s., k →∞. ▪

Remark 8. Theorems 2 and 3 guarantee that any set of faulty agents that satisfies the F-local model has limited influence
on the estimation errors of non-faulty agents whenever Algorithm 1 is used. This indicates the resilience of the algorithm
to adversaries.

Theorems 2 and 3 are established based on Assumption A1′, which requires the reduced graph is balanced. To relax
the requirement, Theorems 4 and 5 are given below.

Theorem 4. If Assumptions A1–A4 hold, for any 𝜖 > 0 and 𝜎k = 𝛼(k−1)
𝜖

𝛿Hmax, then the estimate xi(k) given by (5) is
convergent to 𝜃

∗ in mean square, that is,

lim
k→∞

E
[
||𝛿(k)||2

]
= 0.

Proof. From Assumption A1 and Lemma 1, it follows that the reduced graph ′ consisting of non-faulty agents contains
a directed spanning tree after removing 2F or fewer edges from each non-faulty agent. Without loss of generality, we
assume that the Laplacian matrix ′ has the following form

′ =

[
L11 0
L21 L22

]

,

where Lii ∈ Rri×ri , i = 1, 2, and r1 + r2 = N − ||. Since ′ contains a spanning tree, the agents associated with L11 are
all the roots in the graph, which implies that the directed subgraph associated with L11 ∈ Rr1×r1 is strongly connected
and L22 ∈ Rr2×r2 is a nonsingular M-matrix. Set 𝜉i > 0,∀i = 1, … , r1, 𝜉i = 0,∀i = r1 + 1, … ,N − ||, and

∑r1
i=1𝜉i = 1. Let

Δ1(k) be the column stack vector of 𝛿i(k), i = 1, … , r1. Then, from Theorem 2, it follows that limk→∞ E
[
||Δ1(k)||2

]
= 0.

Let Δ2(k) be the column stack vector of 𝛿i(k), i = r1 + 1, … ,N − ||. Then, from (13), it follows that

Δ2(k + 1) = Δ2(k) − 𝛼(k)[(22 +HH
T
)Δ2(k) + 21Δ1(k)

−H𝜔(k) + (22 +HH
T
)n2(k) + 21n1(k)] + n2(k), (23)

where

H = diag{HT
r1+1, … ,HT

N−||},

𝜔(k) =
[

𝜔
T
r1+1(k), … , 𝜔

T
N−||(k)

]T
,

n1(k) =
[

nT
1 (k), … ,nT

r1
(k)

]T
,

n2(k) =
[

nT
r1+1(k), … ,nT

N−||(k)
]T
.

By Lemma 4 and the fact that 22 is a nonsingular M-matrix, there exists D = diag{dr1+1, … , dN−||} with di > 0, i =
r1 + 1, … ,N − ||, such that Q = DL22 + LT

22D is positive definite.
Let V2(k) = ΔT

2 (k)DΔ2(k). Then, from (23), it follows that

V2(k + 1) = ΔT
2 (k)Ψ

TDΨΔ2(k) +W
T
(k)DW(k) + 𝛼

2(k)ΔT
1 (k)

T
21D21Δ1(k)

− 2𝛼(k)ΔT
2 (k)Ψ

TD21Δ1(k) + 2ΔT
2 (k)Ψ

TDW(k) − 2𝛼(k)ΔT
1 (k)

T
21DW(k), (24)

where Ψ = I − 𝛼(k)(22 +HH
T
), W(k) = 𝛼(k)

[

H𝜔(k) − (22 +HH
T
)n2(k) − 21n1(k)

]

− n2(k).
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From E[𝜔(k)] = 0 and E[n(k)] = 0, we have E
[
𝜔(k)|k

]
= E

[
n1(k)|k

]
= E

[
n2(k)|k

]
= 0, which further implies that

E

[

2ΔT
2 (k)Ψ

TDW(k)|k

]

= E

[

2𝛼(k)ΔT
1 (k)

T
21DW(k)|k

]

= 0. (25)

From Q > 0 and HH
T

D ≥ 0, it follows that Q + 2HH
T

D > 0. By (T
22 +HH

T
)D(22 +HH

T
) ≥ 0, we have

E
[
ΔT

2 (k)Ψ
TDΨΔ2(k)|k

]
≤

(

1 − 𝛼(k)𝜆min(Q)
dmin

+ 𝛼
2(k)𝜆max(22)

dmin

)

V2(k), (26)

where dmin = minr1+1≤i≤N−|| di, 𝜆min(Q) is the smallest eigenvalue of Q + 2HH
T

D, 𝜆max(L22) is the maximum eigenvalue
of (T

22 +HH
T
)D(22 +HH

T
).

Similar to Theorem 2, there exists a positive constant C, such that

E

[

W
T
(k)DW(k)|k

]

≤ 𝛼
2(k)C. (27)

From T
21D21 ≥ 0, we have

E
[
𝛼

2(k)ΔT
1 (k)

T
21D21Δ1(k)|k

]
≤ 𝛼

2(k)𝜆max(L21)E
[
||Δ1(k)||2

]
, (28)

where 𝜆max(L21) is the maximum eigenvalue of T
21D21. By using T

21DTΨΨTD21 ≥ 0 and Young’s inequality, we have

E
[
−2𝛼(k)ΔT

2 (k)Ψ
TD21Δ1(k)|k

]

≤ 𝛼(k)
[
𝜆min(Q)

2
ΔT

2 (k)Δ2(k) +
2

𝜆min(Q)
ΔT

1 (k)
T
21DTΨΨTD21Δ1(k)

]

≤ 𝛼(k)

[
𝜆min(Q)
2dmin

V2(k) +
2𝜆max(21)
𝜆min(Q)

||Δ1(k)||2
]

, (29)

where 𝜆max(21) is the maximum eigenvalue of T
21DTΨΨTD21.

From (24)–(29), it follows that

E
[
V2(k + 1)|k

]
≤

(

1 − 𝛼(k)𝜆min(Q)
2dmin

+ 𝛼
2(k)𝜆max(22)

dmin

)

V2(k)

+ 𝛼
2(k)C + 𝛼(k)2𝜆max(21)

𝜆min(Q)
||Δ1(k)||2

+ 𝛼
2(k)𝜆max(L21)E

[
||Δ1(k)||2

]
.

Note that 𝜆min(Q) > 0, dmin > 0, limk→∞ 𝛼(k) = 0. Then, there exists k0 > 0 such that 𝜆max(22)
dmin

𝛼(k) ≤ 𝜆min(Q)
4dmin

, and
𝜆min(Q)
2dmin

𝛼(k) ≤ 1, ∀k > k0. Thus, from Assumption A4, it follows that

0 ≤ 1 − 𝛼(k)𝜆min(Q)
2dmin

+ 𝛼
2(k)𝜆max(22)

dmin
< 1, ∀k > k0,

∞∑

k=k0

[

𝛼(k)𝜆min(Q)
2dmin

− 𝛼
2(k)𝜆max(22)

dmin

]

≥
𝜆min(Q)
4dmin

∞∑

k=k0

𝛼(k) = ∞,

lim
k→∞

Ξ
𝛼(k) 𝜆min(Q)

2dmin
− 𝛼

2(k) 𝜆max(22)
dmin

= 0,

where Ξ = 𝛼(k) 2𝜆max(21)
𝜆min(Q)

||Δ1(k)||2 + 𝛼
2(k)(C + 𝜆max(L21)E

[
||Δ1(k)||2

]
). From Lemma 6, it follows that limk→∞

E
[
||Δ2(k)||2

]
= 0. Thus, limk→∞ E

[
||𝛿(k)||2

]
= limk→∞ E

[
||Δ1(k)||2 + ||Δ2(k)||2

]
= 0. ▪
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F I G U R E 1 The topology of the sensor network. (A) (2F + 1)-robust and (B) not (2F + 1)-robust

Remark 9. In Theorem 4, we prove that the algorithm converges in mean square to an unbiased estimate of the unknown
parameter. Different from the exponential decay Laplace noise,36-38 the private noise in this article only needs to satisfy
𝜎k = 𝛼(k−1)

𝜖

𝛿Hmax, for example, 𝜎k = 1
k𝛾

,
1
2
< 𝛾 ≤ 1. Moreover, in contrast to the private noise 𝜎k being O( 1

k
),34 the private

noise in this article is more general.

Theorem 5. If Assumptions A1–A4 hold, then for any 𝜖 > 0 and 𝜎k = 𝛼(k−1)
𝜖

𝛿Hmax, the estimate xi(k) given by (5) is
convergent to 𝜃

∗ almost surely, that is,

lim
k→∞

xi(k) = 𝜃
∗ a.s., i ∈ ∕.

In addition, if 𝛼(k) ↓ 0, k →∞, then

1
k

k∑

𝜌=0
||𝛿(𝜌)|| = o((𝛼(k)k)−1∕2) a.s., k → ∞. (30)

Proof. Based on the nonnegative supermartingale convergence theorem and Theorem 4, the proof is similar to Theorem 3,
and thus, is omitted here. ▪

Remark 10. Theorem 5 implies that parameter estimates of agents converge asymptotically to their true values with prob-
ability one. This is different from the differentially private consensus.36-39 In the differentially private consensus, the
consensus value of agents is not deterministic but within a range with respect to the initials of agents. In contrast to the
strongly connected directed graph and the row-stochastic weight matrix,48,49 our article only needs the graph contains a
directed spanning tree.

4 SIMULATION EXAMPLE

In this section, a numerical simulation is given to verify the effectiveness of the algorithm. A multi-agent system of N = 7
is considered with one faulty agent over a digraph topology, as shown in Figure 1. The square(red) agent is the faulty
agent, which sends the message x̂j

3(k) = cos(k) + n̂j
3(k), where j ∈ out

3 and n̂j
3(k) ∼ Lap(𝜎3,j(k))with 𝜎3,j(k) = 1. Different

from the simulation cases in existing literature,38 x̂j
3(k) is not required to be exponentially decaying.

The true parameter is set as 𝜃∗ = 0.5, the observation matrices and the initial parameter estimates of agents are given
in the following forms:

H1 = H3 = H4 = H5 = H7 = 0, H2 =
[

0 1
]T
, H6 =

[

1 0
]T
, xi(0) = −1.4, i = 1, … , 7.
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F I G U R E 2 The estimate of seven agents under the step-size given in Algorithm 1. The evolution of the faulty agent is depicted in solid
green line. (A) (2F + 1)-robust and (B) not (2F + 1)-robust

F I G U R E 3 The estimate of seven agents under the step-size given in the work of Fiore and Russo.38 (A) (2F + 1)-robust and (B) not
(2F + 1)-robust

𝜔i(k) are independent white noises with uniform distribution on [−0.2, 0.2], and the step size is 𝛼(k) = 5∕(2k + 2). The
privacy level in Algorithm 1 is selected as 𝜖 = 0.1, 𝛿 = 0.1. Then, by the theoretical requirement, the scale parameter 𝜎k
of the private noise ni(k) is 5∕(2k), k ≥ 1.

Under the above setting, we use Algorithm 1 to estimate the unknown parameter 𝜃∗. If the communication topology is
directed and 3-robust, then the estimate of non-faulty agents is mean square and almost sure convergence to the unknown
parameter, which is confirmed in Figure 2A. However, when the directed graph is not 3-robust (see Figure 1B), as shown
in Figure 2B, we cannot recover an unbiased estimate of the unknown parameter in mean square by using the algorithm.
Thus, the simulation results are consistent with the theoretical analysis.

In addition, we compare the algorithm with different step sizes. If we use the step-size in the work of Fiore and Russo,38

that is, the step size of the consensus term is a small constant, the simulation result is given in Figure 3. From Figure 3,
it follows that the estimate of non-faulty agents does not converge to the unknown parameter. Thus, it shows that the
step size in the work of Fiore and Russo38 cannot be used to solve the problem considered in this article. Moreover, if we
use the step-size in the work of Chen et al.,15 that is, 𝛼(k) = 3.1 × 10−2, the simulation result is given in Figure 4. From
Figure 4, it also follows that the estimate of non-faulty agents does not converge to the unknown parameter. Thus, the
algorithm used in this article is more general.
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F I G U R E 4 The estimate of seven agents under the step-size given in the work of Chen et al.15 (A) (2F + 1)-robust and (B) not
(2F + 1)-robust

F I G U R E 5 Outputs x1(k) and x′1(k) related to the adjacent relations

In the following, we verify the differential privacy properties of the algorithm. When {yi(k), i = 1, 2, 4, 5, 6, 7} and
{y′i(k), i = 1, 2, 4, 5, 6, 7} are 𝛿-adjacent, two outputs x1(k) and x′1(k) related to the adjacent relations are given in Figure 5.
Figure 5 describes that the two outputs are fully fitted, which are almost indistinguishable from the eavesdropper. In this
case, the sensitive information is protected, which is consistent with the theoretical analysis.

5 CONCLUSION

In this article, the differentially private resilient DOE over digraphs has been studied. To protect the private data of each
agent, the differentially private method is used. We design a differentially private resilient distributed online algorithm
to estimate the unknown parameter, where additional noise is introduced by privacy protection. Moreover, we charac-
terize the 𝜖-differential privacy and convergence of the algorithm. Specifically, the differential privacy of the non-faulty
agents is independent of the incorrect information that faulty agents deliver to the network. By using the stochastic
approximation-type conditions, both mean square and almost sure convergence are proved regardless of the actions taken
by the faulty agents and the introduced private noise. Finally, a simulation result is provided to verify the effectiveness
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and advantage of the algorithm. Future work will focus on how to design the optimal private noise and privacy budgets
while guaranteeing the convergence of the algorithm.
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