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a b s t r a c t

Designing privacy-preserving distributed algorithms for stochastic aggregative games is urgent due
to the privacy issues caused by information exchange between players. This paper proposes two
differentially private distributed algorithms seeking the Nash equilibrium in stochastic aggregative
games. By adding time-varying random noises, the input and output-perturbation methods are given
to protect each player’s sensitive information. For the case of output-perturbation, utilizing mini-batch
methods, the algorithm’s mean square error is inversely proportional to the privacy level ϵ and the
number of samples. For the case of input-perturbation, a differentially private distributed stochastic
approximation-type algorithm is developed to achieve almost sure convergence and (ϵ, δ)-differential
privacy. Under suitable consensus time conditions, the algorithm’s convergence rate is rigorously
presented for the first time, where the optimal convergence rate O(1/k) in a mean square sense is
obtained. Then, utilizing mini-batch methods, the influence of added privacy noise on the algorithm’s
performance is reduced, and the convergence rate of the algorithm is improved. Specifically, when
the batch sizes and the number of consensus times at each iteration grow at a suitable rate, an
exponential rate of convergence can be achieved with the same privacy level. Finally, a simulation
example demonstrates the algorithms’ effectiveness.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Game theory is a standard tool for studying the interaction
ehavior of self-interested players and has attracted consider-
ble attention due to its broad applicability and technical chal-
enge (Hao & Cheng, 2021; Li & Marden, 2013; Liu & Krstic,
011; Pang & Hu, 2021; Salehisadaghiani & Pavel, 2016, 2018;
e & Hu, 2017). In several practical situations, the player’s ob-
ective function depends on its strategies and the sum-total of
he other players’ strategies, e.g., Cournot competition in eco-
omics, charging control of plug-in electric vehicles (Grammatico
t al., 2016) and route choice on a road network (Paccagnan
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et al., 2019). This game type is known as an aggregative game.
Due to its broad applicability, recently distributed algorithms for
aggregative games have attracted increasing attention (Koshal
et al., 2016; Paccagnan et al., 2019; Parise et al., 2015; Shokri
& Kebriaei, 2020). When the players’ objective functions are un-
certain and stochastic, distributed algorithms for stochastic game
problems have been provided (Franci & Grammatico, 2020; Lei &
Shanbhag, 2020; Lei & Shanbhag, 2020; Yousefian et al., 2016). In
particular, a distributed variable sample-size scheme for stochas-
tic aggregative games has been developed in Lei and Shanbhag
(2020). However, the communication among players in such a
distributed manner raises privacy issues when players contain
sensitive information.

Privacy issues in stochastic aggregative games can be encoun-
tered in various domains. For example, in a Cournot oligopoly,
firms, i.e., players, compete to supply a product in a market
with a price-responsive demand aiming to maximize profit. The
firm’s profit depends on its production cost and the market price,
whereas the latter depends on all firms’ aggregative quantity of
the product offered in the market. Both production cost and mar-
ket price are uncertain in practical applications (Yousefian et al.,
2016). The production cost information is business sensitive, and
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dversaries can exploit information sequence transmitted among
irms to infer the production cost information. In the electric
ehicles market, coordinating the charging schedules can provide
ervices beneficial to the grid’s operation. Since the electricity
rice depends on the aggregate consumption, the electric vehicle
harging problem is formulated as an aggregative game (Gram-
atico et al., 2016). However, when an adversary has potential
ccess to all communications in distributed schemes, the sen-
itive information will leak to the adversary (Han et al., 2017).
n the traffic congestion case, every driver pursues its interest,
.g., minimizing traveling time, and is affected by the others’
hoices via congestion, and then the traffic congestion problem
s formulated as an aggregative game (Paccagnan et al., 2019).
ote that the origins and destinations of the drivers can easily be
sed as the basis for inferring their activities. Hence, it is sensitive
nformation that urgently needs to be protected (Dong et al.,
015). Based on the above discussion, there is a great need to
evelop privacy-preserving algorithms for stochastic aggregative
ames.
A systematic and comprehensive view on privacy-preserving

f control systems is presented in Zhang et al. (2021), which high-
ights that the system’s privacy-preserving method should not
ose its original control goal. Some privacy-preserving approaches
or the systems have been recently proposed (Altafini, 2020; Lu
Zhu, 2018; Mo & Murray, 2017; Zhang et al., 2019), relying on

ime-varying transformation (Altafini, 2020), homomorphic en-
ryption (Lu & Zhu, 2018; Zhang et al., 2019), and adding artificial
oise (Mo & Murray, 2017). To achieve homomorphic encryption,
he public and private keys should be generated and distributed
n advance, allowing for computations performed on encrypted
ata without requiring access to a decryption key. The computa-
ion results are encrypted and can be revealed only by the private
ey owner, e.g., a player or a third party. The computation in-
reases greatly as the number of iterations and players increases.
omomorphic encryption methods often require a large amount
f computation. While time-varying transformation-based meth-
ds have small computation loads, they are only suitable for spe-
ific systems. Among others, differential privacy is a well-known
rivacy notion and has applications in many domains (Dwork,
006; Dwork & Roth, 2014). So far, differential privacy has at-
racted substantial attention throughout computer, control and
ommunication science, including areas like distributed learn-
ng (Abadi et al., 2016; Huang et al., 2019; Li et al., 2018; Zhou
Tang, 2020), data mining (Liang et al., 2020), and control and

stimation (Han et al., 2017; Huang et al., 2012; Liu et al., 2020;
ozari et al., 2017; Ny & Pappas, 2014). In particular, the differen-
ially private stochastic gradient descent is studied in Song et al.
2013). Generally, the added privacy noise causes a significant
erformance loss on the stochastic gradient descent algorithm.
o improve the algorithm’s performance, the differentially private
ariance with reduced stochastic gradient descent is presented
n Bassily et al. (2019) and Lee (2017). However, the convergence
nalysis is not provided in Lee (2017) and Song et al. (2013).
In the study of networked games, several privacy-preserving

ethods have been proposed to seek the Nash equilibrium and
rotect the sensitive information (Alshehri et al., 2019; Dong
t al., 2015; Gade et al., 2020; Hsu et al., 2013; Shakarami
t al., 2019; Ye et al., 2021). For aggregative games, a privacy-
reserving distributed algorithm is designed to seek the Nash
quilibrium (Gade et al., 2020; Ye et al., 2021). However, the
lgorithm cannot protect the privacy of the players’ sensitive
nformation when all their neighbors are hostile or there exist
avesdroppers (Gade et al., 2020). A differentially private dis-
ributed algorithm for aggregative games is given in Ye et al.
2021). The above literature only focus on the privacy-preserving

lgorithm for deterministic aggregative games. Since stochastic

2

aggregative games play an important role in both theory and ap-
plications, it is essential to develop privacy-preserving distributed
algorithms against potential malicious attackers, which however
has not been well studied in the literature.

This paper proposes two privacy-preserving distributed algo-
rithms seeking the equilibrium solution in stochastic aggregative
games and achieving (ϵ, δ)-differential privacy. By adding ran-
dom noise, both the input and output-perturbation methods are
given to protect each player’s sensitive information. The main
contributions of this paper are summarized as follows:
(i) By utilizing the technique of differential privacy, privacy-
preserving distributed algorithms are proposed to seek the Nash
equilibrium in stochastic aggregative games. To the best of our
knowledge, this is the first attempt to use the input and output-
perturbation methods to consider privacy issues in stochastic
aggregative games.
(ii) For the case of output-perturbation, i.e., adding the privacy
noise to each player’s estimate, we prove that the mean square
error is uniformly upper bounded by a finite scalar which is
proportional to step size α and inversely proportional to the
privacy level ϵ, the number of samples.
(iii) For the case of input-perturbation, with stochastic
approximation-type step-size conditions, rigorous convergence
and privacy analysis of the algorithm are provided, showing that
the algorithm is noise-resilient and provably convergent. To the
best of our knowledge, this is the first result of a stochastic
approximation-type algorithm for stochastic aggregative games
even without privacy-preserving. Moreover, when the number of
consensus times at each iteration grows suitably, the convergence
rate with stochastic approximation-type step sizes is also given
for the first time, where the optimal convergence rate O(1/k) in
a mean square sense is displayed. Utilizing the adaptive batch
sizes method to reduce the influence of added privacy noise on
the algorithm’s performance, the exponential convergence rate
of the algorithm is given for the same privacy level, which is the
same order as in Lei and Shanbhag (2020).

The results of this paper are significantly different from the
literature. Compared with Gade et al. (2020) and Ye et al. (2021),
stochastic objective functions are considered. Compared with Lei
and Shanbhag (2020), two privacy-preserving distributed algo-
rithms are proposed to seek the equilibrium solution in stochastic
aggregative games.

Notations. Throughout this paper, the following standard nota-
tions are used. 1 stands for the appropriate-dimensional vector
with all elements being one. ⌈x⌉ denotes the smallest integer
greater than x for x ∈ R. Rn denotes the set of n-dimensional real-
valued vectors. xT the transpose of x, where x is either a matrix
or a vector. ∥x∥ refers to Euclidean norm of the vector x. I , 0
re identity matrix and zero matrix with appropriate dimensions,
espectively. The expectation of a random variable X is denoted
y E[X]. For sequences f (k) and g(k) with k = 1, 2, . . ., O(·) is

defined as f (k) = O(g(k)) if there exists a positive number A and
c such that |

f (k)
g(k) | ⩽ A for any k > c.

2. Preliminaries and problem formulation

2.1. Game theory

Definition 2.1 (Ye et al., 2021, A Normal Form Game). A game
in a normal form is defined as a triple Γ = {V,X , f̃ }, where
V = {1, 2, . . . ,N} is the set of players, X = X1×X2 · · ·×XN , with
Xi denoting the strategy set of player i, and f̃ = (f̃1, f̃2, . . . , f̃N ),
with f̃ referring to the loss function of player i.
i
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efinition 2.2 (Franci & Grammatico, 2020, Stochastic Nash Equi-
librium). Stochastic Nash equilibrium is a set of strategies on
which no player can reduce its loss function by unilaterally devi-
ating from its strategy, assuming that the strategies of the other
players are fixed, i.e., a set of strategies x∗

= (x∗

i , x
∗

−i) ∈ X is
a stochastic Nash equilibrium if for all i ∈ V , E[f̃i(x∗

i , x
∗

−i, ξi)] ⩽

E[f̃i(xi, x∗

−i, ξi)], ∀xi ∈ Xi, where x−i = [x1, . . . , xi−1, xi+1, . . . , xN ]
T

and ξi : Ω → Rmi is the random vector.

Throughout this paper, we consider there exist functions
fi(xi, x, ξi) such that f̃i(xi, x−i, ξi) = fi(xi, x, ξi), where x =

∑N
i=1 xi

denotes the aggregate of all players’ strategies.

2.2. Problem formulation

Suppose there are N players in a stochastic aggregative game,
where player i tries to solve

min
xi∈Rn

E[fi(xi, x, ξi)],

subject to xi ∈ Xi

where Xi is a non-empty, compact and convex set for i ∈ V .
Instead of relying on a central authority, players exchange the in-
formation via a communication graph modeled as an undirected
time-varying graph Gk = (V, Ek) comprising a non-empty player
set V = {1, 2, . . . ,N} and an edge set Ek ⊆ V × V . Ni,k = {j ∈

V, (j, i) ∈ Ek} denotes the neighborhood of player i at time k
and player i is assumed to be a neighbor of itself. Gk is called
connected if for any pair of players (i1, im), a path exists from i1
to im consisting of edges (i1, i2), (i2, i3), . . . , (im−1, im).

The following assumptions are needed in this paper.

ssumption 2.1 (Joint Connectivity). There exists a positive inte-
er z such that (V,

⋃z
t=1 Et+k) is connected for all nonnegative

integer k, where Gt = (V, Et ) is the undirected communication
graph at time t and Et is the corresponding edge set at time t .

Assumption 2.2. Let Ak = [aij,k]i,j∈V be the weight matrix asso-
ciated with Gk, which satisfies the following conditions: (i) There
exists a positive constant η such that aij,k > η for j ∈ Ni,k, aij,k = 0
for j ̸∈ Ni,k; (ii) Ak is doubly stochastic, i.e., 1TAk = 1T , Ak1 = 1.

Setting Fi(xi, z) = E[gi(xi, z, ξi)], gi(xi, z, ξi) = ∇xi fi(xi, z, ξi),
for all z ∈ Rn, the following assumptions from Lei and Shanbhag
(2020) are also needed.

Assumption 2.3. Fi(xi, z) is Lipschitz continuous w.r.t. z for each
i ∈ V and any fixed xi ∈ Xi, i.e., there exists a positive constant Li
such that for all z1, z2 ∈ Rn, ∥Fi(xi, z1) − Fi(xi, z2)∥ ⩽ Li∥z1 − z2∥.

Assumption 2.4. The mapping φ(x) is Lφ-Lipschitz continuous,
i.e., ∥φ(x)− φ(y)∥ ⩽ Lφ∥x− y∥, where φ(x) = [F T

1 (x1, x), F
T
2 (x2, x),

. . , F T
N (xN , x)]T .

Assumption 2.5 (Strong Monotonicity). There exists a positive
constantm such that for x, y ∈ X , (x−y)T (φ(x)−φ(y)) ⩾ m∥x−y∥2.

A common approach for seeking the Nash equilibrium in
stochastic aggregative games is employing a synchronous it-
erative gradient-based algorithm. Specifically, every player ex-
changes information with its neighbors and subsequently updates
its iterative state and the estimate of the aggregative decisions si-
multaneously. The time-varying jointly connected network graph
models the player’s communications in time. Due to incomplete
information at each time-step, a player i only has an estimate of
x in contrast to the actual value. At the beginning of the (k+1)th
iteration, player i receives the estimates v̂ from its neighbors
j,k

3

j ∈ Ni,k. Using this information, player i aligns its intermediate
estimate according to vi,k =

∑
j∈Ni,k

aij,kv̂j,k and repeats this
consensus step τk = k + 1 times, where aij,k is the nonnegative
weight that player i assigns to player j′s estimate. Then, using
the average estimate vi,k and its own iterative state xi,k, player i
updates its iterative state and estimate as follows:

xi,k+1 = ΠXi

(
xi,k −

α

Sk

Sk∑
ι=1

gi(xi,k,Nvi,k, ξ
ι
i )

)
,

v̂i,k+1 = vi,k + xi,k+1 − xi,k,

where α is the constant step size corresponding to the influence
of the sampling gradients on the state update rule at each time-
step, Sk is the number of the sampling gradients used at time k
and ξ ι

i , ι = 1, . . . , Sk denote the realizations of ξi.
The above result demonstrates that the update rule allows

players in the network to solve the Nash equilibrium seeking
problem distributively. Players are required to exchange and ex-
pose information with their neighbors, leading to undesirable
privacy leakages of their sensitive information. For example, if an
adversary can access all shared information by eavesdropping on
the communications among players and has arbitrary auxiliary
information, then the adversary can perform attacks to infer the
sensitive information of each player.

2.3. Attack model

This paper considers two types of passive adversaries: semi-
honest players and eavesdroppers defined as follows.
Semi-honest (i.e., honest-but-curious) players are assumed to
follow the Nash equilibrium seeking algorithm and perform the
correct computations. However, they may collect all intermedi-
ate and input/output information to learn sensitive information
about other players.
Eavesdroppers are external adversaries who steal information
through wiretapping all communication channels and intercept-
ing exchanged information between players.

2.4. Privacy leakage in the above algorithm

In the above algorithm, the adversary can always collect v̂i,k
and vi,k at each time k. Recall that the goal of differential pri-
vacy is to provide a strong privacy guarantee in the presence
of any auxiliary information that an adversary may have. In the
worst case, the adversary has the knowledge of any auxiliary
information, such as Ak, α, Sk and the structure of cost func-
tion fi(·). Then, with the help of all the information, if there is
no privacy-preserving mechanism, the adversary can infer the
players’ sampled gradient. Next, we show that the leakage of
sampled gradient information can lead to privacy issues. For
example, in the Cournot competition model, each player seeks to
maximize its profit, or equivalently, minimize its cost. Player i’s
cost function is fi(xi, x, ξi) = ci(xi)−xi(a−bx+ξi), where ci(xi) is its
roduction cost-information (business sensitive) which is worth
rotecting, xi is the amount of goods that player i produces, and
i is the uncertainty that is fixed for each sampling point ι. For
ach sampling point ι, the gradient of player i’s cost function is
i(xi, x, ξ ι

i ) = c ′

i (xi) − (a − bx + ξ ι
i ) − bxi. If the sampled gradient

is leaked, then the observation of (xi, c ′

i (xi)) allows adversary to
infer the private production cost-information ci(xi) since it has
known the structure of fi(·). Therefore, direct communication of
the intermediate results can lead to severe privacy leakage in the
above algorithm. It is imperative to provide a theoretical privacy
guarantee on the sensitive information in distributed algorithms
for stochastic aggregative games.
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.5. Differential privacy

Before introducing the privacy-preserving distributed algo-
ithm for stochastic aggregative games, we first present some
reliminaries of differential privacy. The basic idea of differential
rivacy is to ‘‘perturb’’ the exact result before delivering. In this
ase, an adversary cannot tell from the output information with
high probability of whether the player’s sensitive information
as changed. Differential privacy-preserving is equivalent to hid-
ng changes in the datasets. Formally, changes in the datasets
an be defined by a symmetric binary relation between two
atasets called adjacency relation, which is denoted by Adj(·, ·).

Two datasets Dk and D′

k that satisfy Adj(Dk,D′

k) are called adjacent
datasets. Inspired by Bassily et al. (2019), we first define adjacent
relation, which indicates the specific sensitive information that
needs to be protected.

Definition 2.3 (Adjacent Relation).: Two different samples of gra-
dient information are recorded as Dk = {ξ ι

i , ι = 1, . . . , Sk}, D′

k =

{ξ ι′

i , ι′ = 1, . . . , Sk}, where ξ ι
i and ξ ι′

i denote two realizations of
ξi, if only one of the sampling points is different, then Dk and D′

k
are called adjacent datasets.

Definition 2.4 (Differential Privacy, Ny & Pappas, 2014). Given
ϵ, δ ⩾ 0, a randomized algorithm R is (ϵ, δ)-differentially private
if for all adjacent datasets Dk and D′

k, and for any subsets of
outputs Υ ⊆ Range(R), such that

P{R(Dk) ∈ Υ } ⩽ eϵP{R(D′

k) ∈ Υ } + δ.

Remark 2.1. The constant ϵ measures the privacy level of the
randomized algorithm R, i.e., a small ϵ implies a high privacy
level. ϵ is taken to be a small constant, e.g., ϵ ≈ 0.1, or perhaps
even ln 2 or ln 3.

Definition 2.5 (Han et al., 2017, Sensitivity). The sensitivity of an
output map q at the kth iteration is defined as ∆k =

supDk,D′
k:Adj(Dk,D′

k)
∥q(Dk) − q(D′

k)∥, where Dk and D′

k are input
datasets at time k.

Remark 2.2. A randomized algorithm R is normally defined in
conjunction with some query q of interest. The sensitivity of an
output map q captures the magnitude by which a single individ-
ual’s data can change the output map q in the worst case, and it
is a key quantity that determines where and how much noise is
added in each iteration for achieving (ϵ, δ)-differential privacy.

Problem. In this paper, we use two different perturbation meth-
ods to design privacy-preserving distributed algorithms for
stochastic aggregative games, which protects each player’s sen-
sitive information in the sense of (ϵ, δ)-differential privacy and
guarantees the convergence to a unique Nash equilibrium.

3. Differentially private distributed algorithms for stochastic
aggregative games: output-perturbation

We propose a differentially private distributed algorithm for
stochastic aggregative games via output-perturbation, i.e., Algo-
rithm 1.

Remark 3.1. Different from the existing distributed algorithms for
stochastic games (Lei & Shanbhag, 2020; Yousefian et al., 2016),
to ensure (ϵ, δ)-differential privacy of Algorithm 1, we add the
Gaussian noise to the estimate vi,k when broadcasting it.

Next, we analyze the (ϵ, δ)-differential privacy and conver-

gence property of Algorithm 1.

4

Algorithm 1 Differentially private distributed algorithms for
stochastic aggregative games via output-perturbation
Initialization: Let k = 0, and vi,0 = xi,0 ∈ Xi for any i ∈ V . Let
α > 0 and {Sk} be deterministic sequences.
Message passing. Player i sends the noisy estimate pi,k = vi,k+ni,k
o its neighbors, where vi,k is the estimate of player i at time k,
nd each element of ni,k ∈ Rn is the zero-mean independent and
dentically distributed (i.i.d.) Gaussian noise with variance σ 2

i,k, i.e.
nl
i,k ∼ N (0, σ 2

i,k), l = 1, 2, . . . , n.
Consensus. Player i receives the noisy estimate pj,k = vj,k + nj,k
rom its neighbors and conducts the following step by one time:
ˆ i,k =

∑
j∈Ni,k

aij,kpj,k, ∀i ∈ V.

Strategy update. For every i ∈ V:

xi,k+1 = ΠXi

(
xi,k −

α

Sk

Sk∑
ι=1

gi(xi,k,Nvi,k, ξ
ι
i )

)
, (1)

vi,k+1 = v̂i,k + xi,k+1 − xi,k. (2)

where Sk is the number of the sampling gradients used at time k
and ξ ι

i , ι = 1, . . . , Sk denote the realizations of ξi.

3.1. Privacy analysis of Algorithm 1

In this subsection, we will prove the (ϵ, δ)-differential privacy
of Algorithm 1. As explained above, to protect privacy each player
i generates a noisy estimate by adding a noise vector to the local
estimate vi,k, i.e., pi,k = vi,k + ni,k. This method guaranteeing dif-
ferential privacy is known as output-perturbation (Ny & Pappas,
2014). Next, we derive conditions on the noise variances under
which Algorithm 1 satisfies (ϵ, δ)-differential privacy.

Assumption 3.1. gi(xi,Nvi, ξ
ι
i ) are uniformly bounded, i.e., there

exists a positive constant C such that for each fixed sampled point
ι, ∥gi(xi,Nvi, ξ

ι
i )∥ ⩽ C .

Remark 3.2. Assumption 3.1 is a technical requirement for pri-
vacy analysis. A similar assumption is also used in the liter-
ature (Li et al., 2018). If privacy protection is not considered,
then Assumption 3.1 can be removed. For given xi and Nvi, if
ξi is uniformly bounded, then, by the characteristics of compact
set, Assumption 3.1 holds. For instance, if we choose fi(·) as the
simulation example of this paper, then Assumption 3.1 holds. If
gi(·) itself is a bounded function, e.g., gi(·) = sin(xi,Nvi, ξi), then
Assumption 3.1 holds.

Lemma 3.1. The sensitivity of Algorithm 1 at the kth iteration
satisfies

∆k ⩽
2αC
Sk−1

. (3)

Proof. Recall in Definition 2.3, that Dk and D′

k are any two data
vectors differing in one entry. vi,k is computed based on dataset
Dk, while v′

i,k is computed based on the dataset D′

k. For adjacent
datasets Dk and D′

k, we have

∥vi,k − v′

i,k∥

= ∥v̂i,k−1 + xi,k − xi,k−1 − v̂′

i,k−1 − x′

i,k + x′

i,k−1∥

= ||

∑
j∈Ni,k

aij,kpi,k−1 + xi,k − xi,k−1

−

∑
aij,kpi,k−1 − x′

i,k + x′

i,k−1||
j∈Ni,k
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=

∥xi,k − xi,k−1 − x′

i,k + x′

i,k−1∥

⩽
α

Sk−1
|| − gi(xi,k−1,Nvi,k−1, ξ

ι
i )

+ gi(xi,k−1,Nvi,k−1, ξ
ι′

i )|| ⩽
2αC
Sk−1

.

he proof is completed. □

emark 3.3. Motivated by Li et al. (2018), we use the mini-batch
ethod to process multiple samples at the same iteration. Most

mportantly, the mini-batch method has a significant advantage
n guaranteeing differential privacy for Algorithm 1. Observing
he proof of Lemma 3.1, we find that the parameter 1

Sk
has an

ffect on the sensitivity of Algorithm 1.

heorem 3.1. Let ϵ ∈ (0, 1] be arbitrary, ni,k be the noise sampled
rom Gaussian mechanism with variance σ 2

i,k where

i,k =
2αC

√
2 ln(1.25/δ)
ϵSk−1

, (4)

Then, each iteration of Algorithm 1 is (ϵ, δ)-differentially private.
Specially, for any adjacent datasets Dk, D′

k, and any output pi,k, the
following inequality holds:

P{pi,k|Dk} ⩽ eϵP{pi,k|D′

k} + δ.

Proof. In the context of differential privacy, the corresponding
mechanism for Algorithm 1 maps {vi,k, i ∈ V} to {pi,k, i ∈ V}.
Since the Jacobian matrix of the linear transformation from pi,k
to ni,k is the identity matrix, the privacy loss from pi,k is given as
follows

| ln
P{pi,k|Dk}

P{pi,k|D′

k}
| = | ln

P{ni,k|Dk}

P{ni,k|D′

k}
|. (5)

Furthermore, the entries of ni,k denoted by nl
i,k are independent

f each other and for any entry l, we have

ln
P{ni,k|Dk}

P{ni,k|D′

k}
| = | ln

P{nl
i,k|Dk}

P{nl
i,k|D

′

k}
|. (6)

rom (5) and (6) it follows that

ln
P{pi,k|Dk}

P{pi,k|D′

k}
| = | ln

P{nl
i,k|Dk}

P{nl
i,k|D

′

k}
|

= | ln
exp

(
−

1
2σ2

i,k
(nl

i,k)
2
)

exp
(
−

1
2σ2

i,k
(nl

i,k + ∆k)2
) |

⩽
1

2σ 2
i,k

|nl
i,k∆k| +

∆2
k

2σ 2
i,k

. (7)

From Lemma 3.1, and substituting (3) and (4) into (7), it is ob-
tained that | ln P{pi,k|Dk}

P{pi,k|D′
k}

| ⩽
Sk−1ϵ2

4αC ln(1.25/δ) |n
l
i,k +

αC
Sk−1

|. When |nl
i,k| ⩽

αC
Sk−1

(4ϵ−1 ln(1.25/δ) − 1), | ln P{pi,k|Dk}

P{pi,k|D′
k}

| is bounded by ϵ. Next, we
rove that

{|nl
i,k| > r} ⩽ δ, (8)

here r =
αC
Sk−1

(4ϵ−1 ln(1.25/δ) − 1). Furthermore, (8) is equiva-
ent to

{nl
i,k > r} ⩽

δ

2
. (9)

Using the tail bound of the normal distributionN (0, σ 2
i,k), we have

P{nl
i,k > r} ⩽

σi,k
√ exp(− r2

2 ). When δ is small (⩽ 0.01) and

2πr 2σi,k

5

0 < ϵ ⩽ 1, it is obtained that σi,k
r < 1, −

r2

2σ2
i,k

< ln(
√
2π δ

2 ).

Therefore, (9) holds, which further implies that (8) holds.
Setting

P1 = {nl
i,k : |nl

i,k| ⩽
αC
Sk−1

(4ϵ−1 ln(1.25/δ) − 1)},
P2 = {nl

i,k : |nl
i,k| > αC

Sk−1
(4ϵ−1 ln(1.25/δ) − 1)},

we have

P{pi,k|Dk} = P{vl
i,k + nl

i,k : nl
i,k ∈ P1}

+P{vl
i,k + nl

i,k : nl
i,k ∈ P2}

⩽ eϵP{pi,k|D′

k} + δ.

Hence, the statement of this theorem is obtained. □

3.2. Converge analysis of Algorithm 1

To facilitate the convergence analysis of Algorithms 1–2, we
define ei,k =

1
Sk

∑Sk
ι=1 gi(xi,k,Nvi,k, ξ

ι
i ) − Fi(xi,k,Nvi,k), and the

following stacked vectors:

Vk = [vT
1,k, . . . , v

T
N,k]

T , Pk = [pT1,k, . . . , p
T
N,k]

T ,

nk = [nT
1,k, . . . , n

T
N,k]

T , ek = [eT1,k, . . . , e
T
N,k]

T ,

F (xk,Nvk) = [F T
1 (x1,k,Nv1,k), . . . , F T

N (xN,k,NvN,k)]T ,

Xk = [xT1,k, . . . , x
T
N,k]

T , X∗
= [(x∗

1)
T , . . . , (x∗

N )
T
]
T . (10)

Then we rewrite (1)–(2) in the following form:

xi,k+1 = ΠXi

(
xi,k − α(Fi(xi,k,Nvi,k) + ei,k)

)
,

Vk+1 = AkPk + Xk+1 − Xk. (11)

Before discussing the convergence property of Algorithm 1, we
give the following lemmas:

Lemma 3.2 (Koshal et al., 2016). If Assumptions 2.1–2.2 hold, then
there exists a constant θ > 0 and ρ ∈ (0, 1) such that ∥[Ψk,s]i,j −
1
N ∥ ⩽ θρk−s, where Ψk,s = AkAk−1 · · ·As+1As, and [Ψk,s]i,j denotes
the (i, j)th entry of the matrix Ψk,s, ∀k ⩾ s ⩾ 0.

Lemma 3.3. If Assumption 2.2 holds, and Sk = ⌈q−k
⌉, q ∈ (0, 1),

then

E[∥1TVk − 1TXk∥] ⩽
2CNα

√
2 ln(1.25/δ)(1−qk)

ϵ(1−q) .

Proof. From the strategy update of Algorithm 1, for t = 0, . . . , k,
e have

1TVt+1
N∑
i=1

vi,t+1

=

N∑
i=1

(v̂i,t + xi,t+1 − xi,t )

=

N∑
i=1

( ∑
j∈Ni,t

aij,t (vj,t + ni,t ) + xi,t+1 − xi,t
)

=

N∑
i=1

(
∑
j∈Ni,t

aij,tvj,t +

∑
j∈Ni,t

aij,tnj,t ) +

N∑
i=1

xi,t+1 −

N∑
i=1

xi,t

=

N∑
i=1

vi,t +

N∑
i=1

ni,t +

N∑
i=1

xi,t+1 −

N∑
i=1

xi,t

= 1TV + 1Tn + 1TX − 1TX . (12)
t t t+1 t
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⩽
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ote that xi,0 = vi,0, i ∈ V . Then, from (12) and running iterations,
e have

E[∥1TVk+1 − 1TXk+1∥]

E[∥1TVk − 1TXk∥] + E[∥1Tnk∥]

E[∥1TV0 − 1TX0∥] +

k∑
t=0

E[∥1Tnt∥]

k∑
t=0

E[∥1Tnt∥]. (13)

rom (4) and (13) it follows that E[∥1TVk+1 − 1TXk+1∥] ⩽
2CNα

√
2 ln(1.25/δ)(1−qk+1)

ϵ(1−q) . The proof is completed. □

emma 3.4. If Assumptions 2.1–2.2 hold, and Sk = ⌈q−k
⌉, ρ < q ∈

0, 1), then for each positive integer k, we have

E[Vk −
1
N 11

TXk||]

⩽ NθM +
2
√
2 ln(1.25/δ)CNnαθq

ϵ(q−ρ) +
2CN

√
Nαθ

(1−ρ)

+ C
√
Nα +

2
√
2 ln(1.25/δ)CNα

ϵ(1−q) .

roof. From (11) it follows that

k+1 = AkPk + Xk+1 − Xk. (14)

y iterating computation (14), we have

k+1 = Ak
(
Ak−1Pk−1 + Xk − Xk−1 + nk

)
+ Xk+1 − Xk

= Ψk,k−1Pk−1 + Ψk,k(Xk − Xk−1)
+ Ψk,knk + Xk+1 − Xk

= · · ·

= Ψk,0V0 +

k∑
s=1

Ψk,s(Xs − Xs−1)

+

k∑
s=0

Ψk,sns + Xk+1 − Xk, (15)

here Ψk,s are defined in Lemma 3.2. Then, from (15) it follows
hat

k = Ψk−1,0V0 +

k−1∑
s=1

Ψk−1,s(Xs − Xs−1)

+

k−1∑
s=0

Ψk−1,sns + Xk − Xk−1. (16)

urthermore, from (14) it follows that

1TVk

1T (Ak−1Pk−1 + Xk − Xk−1)
1T (Vk−1 + nk−1 + Xk − Xk−1)

1TV0 +

k∑
s=1

1T (Xs − Xs−1) +

k−1∑
s=0

1Tns. (17)

hen, from (16) and (17) it follows that

E[∥Vk −
1
N
11TXk∥]

⩽ E[∥Vk −
1
N
11TVk∥] + E[∥

1
N
(11TVk − 11TXk)∥]

E[||(Ψk−1,0 −
1
N
11T )V0 +

k−1∑
(Ψk−1,s −

1
N
11T )ns
s=0

6

+

k−1∑
s=1

(Ψk−1,s −
1
N
11T )(Xs − Xs−1)

+ (I −
1
N
11T )(Xk − Xk−1)||]

+E[∥
1
N
(11TVk − 11TXk)∥]

⩽ Nθρk−1
∥V0∥ +

k−1∑
s=1

Nθρk−1−s
∥Xs − Xs−1∥

+ ∥Xk − Xk−1∥ +

k−1∑
s=0

Nθρk−1−sE[∥ns∥]

+
2CNα

√
2 ln(1.25/δ)(1 − qk)

ϵ(1 − q)
, (18)

here the first inequality follows from the Cauchy–Schwarz in-
quality, while the last inequality holds since ∥Ψk,s −

1
N 11

T
∥ ⩽

θρk−s, ∀k ⩾ s ⩾ 0. Then, we estimate ∥Xs − Xs−1∥. From (1) it
follows that

∥xi,s+1 − xi,s∥

=∥ΠXi

(
xi,s −

α

Ss

Ss∑
ι=1

gi(xi,s,Nvi,s, ξ
ι
i )

)
− ΠXi (xi,s)∥

⩽∥xi,s −
α

Ss

Ss∑
ι=1

gi(xi,s,Nvi,s, ξ
ι
i ) − xi,s∥

where the last inequality holds by using the standard non-
expansiveness property, i.e. ∥ΠX

(
x
)

− ΠX
(
y
)
∥ ⩽ ∥x − y∥ for

any x and y. Then, from Assumption 3.1 it follows that for ∀i ∈ V ,
∥xi,s+1 −xi,s∥ ⩽ ∥−

α
Ss

∑Ss
ι=1 gi(xi,s,Nvi,s, ξ

ι
i )∥ ⩽ Cα. Thus, we have

Xs − Xs−1∥ ⩽ C
√
Nα. (19)

From (4), (18) and (19) it follows that

E[∥Vk −
1
N
11TXk∥]

⩽ Nθρk−1
∥V0∥ +

2
√
2 ln(1.25/δ)CNnαθ (qk−1

− ρk−1)
ϵ(q − ρ)

+
CN

√
Nαθ (1 − ρk−1)
1 − ρ

+ C
√
Nα

+
2
√
2 ln(1.25/δ)CNα(1 − qk)

ϵ(1 − q)

NθM +
2
√
2 ln(1.25/δ)CNnαθq

ϵ(q − ρ)
+

CN
√
Nαθ

1 − ρ

+ C
√
Nα +

2
√
2 ln(1.25/δ)CNα

ϵ(1 − q)
. (20)

ote that V0 = X0 ∈ X . Then, there exists a constant M =∑N
i=1 maxxi∈Xi ∥xi∥ such that the last inequality in (20) holds. □

Define the σ -algebra Fk = σ {Xt , nt , 0 ⩽ t ⩽ k}. We need the
following assumption on ek.

Assumption 3.2. There exist positive constants ci,1 and ci,2 such
that for any k ⩾ 0, i ∈ V , E[ei,k|Fk] = 0, E[∥ei,k∥2

|Fk] ⩽
c2i,1∥xi,k∥2+c2i,2

Sk
.

Remark 3.4. When Sk = 1, there exists some ν > 0 such that
E[∥ek∥2

|Fk] ⩽ ν2, ∀k ⩾ 0, which is also used in Yousefian et al.
(2016).
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Next, we establish the mean square error of Algorithm 1,
which is given as follows.

Theorem 3.2. If Assumptions 2.1–2.5 and 3.1–3.2 hold, Sk = ⌈q−k
⌉,

ρ < q ∈ (0, 1), and the constant step size α satisfies 0 < 2αm −

α2(1+ 4L2φ) < 1, then for any ϵ, δ > 0 and σi,k in (4), the sequence
Xk generated by Algorithm 1 satisfies the following form:

lim
k→∞

E[∥Xk − X∗
∥
2
] ⩽

Ξ

2αm − α2(1 + 4L2φ)
, (21)

here Ξ = 4α2N2 maxi∈V{L2i }κ+4αNM maxi∈V{Li}β+(1+2α2)c21.

Proof. From Lemma 1 in Lei and Shanbhag (2020), we know that
x∗

∈ X is a Nash equilibrium if and only if x∗ satisfies x∗
=

ΠX (x∗
− αφ(x∗)). From (11) and the non-expansiveness property

of the projection operator, we have

∥xi,k+1 − x∗

i ∥
2

⩽ ∥xi,k − x∗

i − α(Fi(xi,k,Nvi,k) − φi(x∗) + ei,k)∥2

= ∥xi,k − x∗

i ∥
2
+ α2

∥Fi(xi,k,Nvi,k) − φi(x∗)∥2

− 2α(xi,k − x∗

i )
T (Fi(xi,k,Nvi,k) − φi(x∗))

+ α2
∥ei,k∥2

+ 2α2(Fi(xi,k,Nvi,k) − φi(x∗))T ei,k
− 2α(xi,k − x∗

i )
T ei,k. (22)

By using ±2ab ⩽ a2 + b2, it is obtained that

∥xi,k+1 − x∗

i ∥
2

⩽ (1 + α2)∥xi,k − x∗

i ∥
2
+ (1 + 2α2)∥ei,k∥2

+ 2α2
∥Fi(xi,k,Nvi,k) − φi(x∗)∥2

− 2α(xi,k − x∗

i )
T (Fi(xi,k,Nvi,k) − φi(x∗)).

Then, summing the above inequality over i = 1, . . . ,N leads to

∥Xk+1 − X∗
∥
2

⩽ (1 + α2)∥Xk − X∗
∥
2
+ (1 + 2α2)∥ek∥2

+ 2α2
∥F (xk,Nvk) − φ(x∗)∥2

− 2α(Xk − X∗)T (F (xk,Nvk) − φ(x∗)). (23)

By (a + b)2 ⩽ 2(a2 + b2), setting yk =
∑N

i=1 xi,k, from Assump-
tions 2.3–2.4, we have

2α2
∥F (xk,Nvk) − φ(x∗)∥2

⩽ 4α2(∥F (xk,Nvk) − F (xk, yk)∥2

+ ∥F (xk, yk) − φ(x∗)∥2)

⩽ 4α2N2 max
i∈V

{L2i }∥Vk −
1
N
11TXk∥

2

+ 4α2L2φ∥Xk − X∗
∥
2. (24)

oreover, we have

−2α(Xk − X∗)T (F (xk,Nvk) − φ(x∗))
−2α(Xk − X∗)T (F (xk, yk) − φ(x∗))
+2α(Xk − X∗)T (F (xk, yk) − F (xk,Nvk)).

From Assumption 2.5 it follows that

−2α(Xk − X∗)T (F (xk,Nvk) − φ(x∗))
⩽ −2αm∥Xk − X∗

∥
2

+2α(Xk − X∗)T (F (xk, yk) − F (xk,Nvk)).

Furthermore, from Assumption 2.3, and using the Cauchy–
Schwarz inequality it follows that

−2α(Xk − X∗)T (F (xk,Nvk) − φ(x∗))
⩽ −2αm∥Xk − X∗

∥
2

+2αN max{Li}∥Xk − X∗
∥∥Vk −

1
11TXk∥. (25)
i∈V N
7

From (23)–(25) it follows that

E[∥Xk+1 − X∗
∥
2
|Fk]

⩽ (1 + α2)∥Xk − X∗
∥
2
+ (1 + 2α2)E[∥ek∥2

|Fk]

+ 2α2E[∥F (xk,Nvk) − φ(x∗)∥2
|Fk]

− 2αE[(Xk − X∗)T (F (xk,Nvk) − φ(x∗))|Fk]

⩽ (1 − 2αm + α2
+ 4α2L2φ)∥Xk − X∗

∥
2

+ 4α2N2 max
i∈V

{L2i }E[∥Vk −
1
N
11TXk∥

2
|Fk]

+ 4αNM max
i∈V

{Li}E[∥Vk −
1
N
11TXk∥|Fk]

+ (1 + 2α2)E[∥ek∥2
|Fk]. (26)

Similar to the proof of Lemmas 3.3 and 3.4, we have

E[∥Vk −
1
N
11TXk∥

2
]

⩽ 4N2θ2M2
+

32 ln(1.25/δ)C2N2n2α2θ2q2

ϵ2(q2 − ρ2)
+ 16C2Nα2

+
32C2N3α2θ2

(1 − ρ)2
+

32 ln(1.25/δ)C2N2α2

ϵ2(1 − q2)
. (27)

rom Assumption 3.2, Sk ⩾ q−k ⩾ 1 and Xi is a compact set, it
ollows that

[∥ek∥2
|Fk] ⩽

c21
Sk

⩽ c21, (28)

here c21 = max1⩽i⩽n(c2i,1∥xi,k∥
2

+ c2i,2). From (26)–(28) and
emma 3.4 it follows that

E[∥Xk+1 − X∗
∥
2
]

⩽ (1 − 2αm + α2(1 + 4L2φ))E[∥Xk − X∗
∥
2
]

+ 4α2N2 max
i∈V

{L2i }κ + 4αNM max
i∈V

{Li}β + (1 + 2α2)c21.

where κ = 4N2θ2M2
+

32 ln(1.25/δ)C2N2n2α2θ2q2

ϵ2(q2−ρ2)
+ 16C2Nα2

+

32C2N3α2θ2

(1−ρ)2
+

32 ln(1.25/δ)C2N2α2

ϵ2(1−q2)
, β = NθM +

2CN
√
Nαθ

1−ρ
+

2
√
2 ln(1.25/δ)CNnαθq

ϵ(q−ρ) + C
√
Nα +

2
√
2 ln(1.25/δ)CNα

ϵ(1−q) . Based on the step
size condition and iterating the above process, (21) is obtained.
The proof is completed. □

Remark 3.5. In Theorem 3.2, the convergence to a neighborhood
of the Nash equilibrium is achieved. From (21) it follows that the
mean square error of Algorithm 1 is proportional to the step size
α and inversely proportional to the privacy level ϵ (the number
of samples), revealing a trade-off between accuracy and privacy.
A tighter upper bound of the mean square error can be obtained
by optimizing the right-hand side of (21) over constants α, q and
.

. Differentially private distributed algorithms for stochastic
ggregative games: input-perturbation

Different from Algorithm 1, we present differentially private
istributed algorithms for stochastic aggregative games via the
nput-perturbation method, i.e., gradient-perturbation. As shown
elow, the algorithm achieves privacy-preserving of the player’s
ensitive information with guaranteed convergence.

.1. Privacy analysis of Algorithm 2

In Algorithm 2, the privacy noise ni,k is added directly to the
radient. Thus, we compute the sensitivity based on Adj (Dk,D′

k).
rom Assumption 3.1 it follows that the sensitivity of Algorithm 2
s ∆k = ∥gi(xi,k,Nvi,k, ξ

ι
i )−gi(xi,k,Nvi,k, ξ

ι′

i )∥ ⩽ 2C . Then, we have
the following theorem.
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Algorithm 2 Differentially private distributed algorithms for
stochastic aggregative games via input-perturbation
Initialization: Set k = 0, and v̂i,0 = xi,0 ∈ Xi for any i ∈ V . Let
α > 0, {τk} and {Sk} be deterministic sequences.
Consensus. vi,k := v̂i,k for any i ∈ V and repeat the following
update by τk times: vi,k =

∑
j∈Ni,k

aij,kvj,k, ∀i ∈ V.

Strategy update. For every i ∈ V:

xi,k+1 = ΠXi

(
xi,k −

αk
Sk
(
Sk∑

ι=1
gi(xi,k,Nvi,k, ξ

ι
i ) + ni,k)

)
,

v̂i,k+1 = vi,k + xi,k+1 − xi,k,

where Sk is the number of the sampling gradients used at time k
and ξ ι

i , ι = 1, . . . , Sk denote the realizations of ξi.

Theorem 4.1. Let ϵ ∈ (0, 1] be arbitrary, ni,k be the noise sampled
rom Gaussian mechanism with variance σ 2

i,k where

i,k =
2C

√
2 ln(1.25/δ)

ϵ
. (29)

hen, each iteration of Algorithm 2 is (ϵ, δ)-differentially private.

Proof. Similar to the proof process of Theorem 3.1, we have the
randomized mechanism R(Dk) =

∑Sk
ι=1 gi(xi,k,Nvi,k, ξ

ι
i ) + ni,k

is (ϵ, δ)-differential privacy. Then, from the strategy update of
Algorithm 2 it follows that v̂i,k+1 = vi,k − xi,k + ΠXi

(
xi,k −

αk
Sk
(
∑Sk

ι=1 gi(xi,k,Nvi,k, ξ
ι
i )+ni,k)

)
. Therefore, the estimate v̂i,k+1 is a

function of R(Dk) and accesses the private dataset only indirectly
via the output of a differentially private mechanism. As shown in
Theorem 1 of Ny and Pappas (2014), differential privacy is robust
to post-processing. Therefore, the privacy guarantee cannot be
weakened, and further, (ϵ, δ)-differential privacy is preserved.

4.2. Convergence analysis of algorithm 2

Next, we establish the almost sure convergence of Algorithm 2
by using the following stochastic approximation-type conditions.

Assumption 4.1. The step size {αk}k⩾0 satisfies the following
conditions: (i) (non-increasing) 0 ⩽ αk+1 ⩽ αk ⩽ 1, ∀k ⩾

0; (ii) (non-summable)
∑

k⩾0 αk = ∞; (iii) (square-summable)∑
k⩾0 α2

k < ∞.

For example, Assumption 4.1 is satisfied for the step size of
the form αk = (k + 1)−γ , where 1

2 < γ ⩽ 1.
For stochastic approximation-type sizes, instead of Assump-

ion 2.5, we consider the following assumption.

ssumption 4.2 (Strictly Monotonicity). For x, y ∈ X , x ̸= y,

(x − y)T (φ(x) − φ(y)) > 0.

Lemma 4.1 (Koshal et al., 2016). Let ςk be a non-negative scalar se-
quence. If

∑
∞

k=0 ςk < ∞ and 0 < ρ < 1, then
∑

∞

k=0(
∑k

s=0 ρk−sςs)
∞.

emma 4.2 (Koshal et al., 2016). If Assumptions 2.1–2.2 hold,
1T V̂k = 1TXk for all k ⩾ 0.

Lemma 4.3. If Assumptions 2.1–2.2 and consensus times τk = 1∑
∞ 1 11TX ∥|F ] < ∞ for all k ⩾ 0.
hold, then k=0 αkE[∥Vk − N k k

8

Proof. Similar to (16) and (17), from Lemmas 3.2 and 4.2 it
follows that

∥Vk −
1
N
11TXk∥

⩽ ∥Vk −
1
N
11T V̂k∥ + ∥

1
N
(11T V̂k − 11TXk)∥

⩽ ∥(Ψk,0 −
1
N
11T )V̂0 +

k∑
s=1

(Ψk,s −
1
N
11T )(Xs − Xs−1)∥

⩽ ∥Ψk,0 −
1
N
11T

∥∥V̂0∥ +

k∑
s=1

∥Ψk,s −
1
N
11T

∥∥Xs − Xs−1∥

⩽ θρk
∥V̂0∥ +

k∑
s=1

θρk−s
∥Xs − Xs−1∥. (30)

Utilizing the strategy update of Algorithm 2, we obtain

E[∥Vk −
1
N
11TXk∥|Fk]

⩽ θρk
∥V̂0∥ +

k∑
s=1

θρk−sE[∥Xs − Xs−1∥|Fk]

⩽ θρk
∥V̂0∥ + (

2CNnθ
√
2 ln(1.25/δ)
ϵ

+ CNθ )
k∑

s=1

ρk−sαs−1

θρkM + (
2CNnθ

√
2 ln(1.25/δ)
ϵ

+ CNθ )
k∑

s=1

ρk−sαs−1. (31)

ote that V̂0 = X0 ∈ X . Then, there exists a constant M =∑N
i=1 maxxi∈Xi ∥xi∥ such that the last inequality in (31) holds.

Next, we establish the convergence of∑
∞

k=0 αkE[∥Vk −
1
N 11

TXk∥|Fk]. From (31) it follows that
∞∑
k=0

αkE[∥Vk −
1
N
11TXk∥|Fk]

⩽ (
2
√
2 ln(1.25/δ)CNnθ

ϵ
+ CNθ )

∞∑
k=0

αk

k∑
s=1

ρk−sαs−1

+ θM
∞∑
k=0

αkρ
k. (32)

ow, we show that each term on the right side of (32) is
ummable, hence

∑
∞

k=0 αkE[∥Vk −
1
N 11

TXk∥|Fk] < ∞.
Noting that αk ⩽ α0, k ∈ N, 0 < ρ < 1, we have

∑
∞

k=0 αkρ
k ⩽

α0
∑

∞

k=0 ρk < ∞. Moreover, since αk ⩽ αs, ∀k ⩾ s, for the series∑
∞

k=0 αk
∑k

s=1 ρk−sαs−1, we have
∞∑
k=0

αk
( k∑
s=1

ρk−sαs−1
)

=

∞∑
k=0

k∑
s=1

ρk−sαkαs−1

⩽

∞∑
k=0

k∑
s=1

ρk−sα2
s−1.

From Lemma 4.1 and
∑

∞

k=0 α2
k < ∞, it is obtained that∑

∞

k=0 αk
(∑k

s=1 ρk−sαs−1
)

< ∞. Hence, the proof is completed. □

Lemma 4.4 (Polyak, 1987). Let Zk, uk, βk, ζk be non-negative random
variables adapted to σ -algebra Fk. If

∑
∞

k=0 uk < ∞,
∑

∞

k=0 βk < ∞,
and E[Zk+1|Fk] ⩽ (1+uk)Zk−ζk+βk for all k ⩾ 0, then Zk converges
almost surely and

∑
∞

k=0 ζk < ∞ almost surely.

Theorem 4.2. If Assumptions 2.1–2.4, 3.1-3.2 and 4.1–4.2 hold, the
consensus times τ = 1 and S = 1, then for any ϵ, δ > 0 and σ
k k i,k
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i
a

P
r

⩽

F

⩽

F

∥

T
s
S

n (29), the sequence Xk generated by Algorithm 2 with stochastic
pproximation-type step size converges almost surely to X∗.

roof. Similar to (22), considering the strategy update of Algo-
ithm 2, we have

∥xi,k+1 − x∗

i ∥
2

∥xi,k − x∗

i ∥
2
+ α2

k∥Fi(xi,k,Nvi,k) − φi(x∗)∥2

+α2
k∥ei,k∥

2
+ α2

k∥ni,k∥
2
− 2αk(xi,k − x∗

i )
T ei,k

−2αk(xi,k − x∗

i )
T (Fi(xi,k,Nvi,k) − φi(x∗))

+2α2
k (Fi(xi,k,Nvi,k) − φi(x∗))T ei,k

+2α2
k (Fi(xi,k,Nvi,k) − φi(x∗))Tni,k

−2αk(xi,k − x∗

i )
Tni,k + 2αkeTi,kni,k. (33)

Then, summing the above inequality over i = 1, . . . ,N , and
noting that E[nk|Fk] = E[ek|Fk] = E[eTknk|Fk] = 0, we obtain

E[∥Xk+1 − X∗
∥
2
|Fk]

⩽ ∥Xk − X∗
∥
2
+ α2

kE[∥ek∥2
|Fk] + α2

kE[∥nk∥
2
|Fk]

+ 2α2
k∥F (xk,Nvk) − φ(x∗)∥2

− 2αkE[(Xk − X∗)T (F (xk,Nvk) − φ(x∗))|Fk]. (34)

Setting yk =
∑N

i=1 xi,k, we have

−2αk(Xk − X∗)T (F (xk,Nvk) − φ(x∗))

= −2αk(Xk − X∗)T (F (xk, yk) − φ(x∗))

+2αk(Xk − X∗)T (F (xk, yk) − F (xk,Nvk)).

Moreover, from Assumption 2.3 and by using the Cauchy–
Schwarz inequality, it is obtained that

−2αk(Xk − X∗)T (F (xk,Nvk) − φ(x∗))

⩽ −2αk(Xk − X∗)T (F (xk, yk) − φ(x∗))

+2αkN max
i∈V

{Li}∥Xk − X∗
∥∥Vk −

1
N
11TXk∥. (35)

rom (24), (34) and (35) it follows that

E[∥Xk+1 − X∗
∥
2
|Fk]

⩽ (1 + 4α2
k L

2
φ)∥Xk − X∗

∥
2
+ α2

kE[∥ek∥2
|Fk]

+ α2
kE[∥nk∥

2
|Fk] + 4α2

kN
2 max

i∈V
{L2i }∥Vk −

1
N
11TXk∥

2

+ 2αkN max
i∈V

{Li}∥Xk − X∗
∥E[∥Vk −

1
N
11TXk∥|Fk]

− 2αk(Xk − X∗)T
(
F (xk, yk) − φ(x∗)

)
(1 + 4α2

k L
2
φ)∥Xk − X∗

∥
2

+ α2
kν

2
+ α2

k
8N2n2C2 ln(1.25/δ)

ϵ2

+ 4α2
kN

2 max
i∈V

{L2i }∥Vk −
1
N
11TXk∥

2

+ 2αkN max
i∈V

{Li}∥Xk − X∗
∥E[∥Vk −

1
N
11TXk∥|Fk]

− 2αk(Xk − X∗)T
(
F (xk, yk) − φ(x∗)

)
. (36)

rom (30) it follows that

Vk −
1
N
11TXk∥

2 ⩽ N(θMρk
+ 2θM

k∑
s=1

ρk−s)2

⩽ N(θM +
2θM

)2.

1 − ρ

9

Hence, by
∑

∞

k=0 α2
k < ∞, we have

∑
∞

k=0 4α
2
kN

2 maxi∈V{L2i }∥Vk −
1
N 11

TXk∥
2 < ∞. Furthermore, we have⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∞∑
k=0

α2
kν

2 < ∞,

∞∑
k=0

α2
k
8N2n2C2 ln(1.25/δ)

ϵ2 < ∞.

(37)

Now, we apply Lemma 4.4 for

Zk : = ∥Xk − X∗
∥
2,

uk : = 4α2
k L

2
φ,

βk : = α2
kν

2
+ α2

k
8N2n2C2 ln(1.25/δ)

ϵ2

+ 4α2
kN

2 max
i∈V

{L2i }∥Vk −
1
N
11TXk∥

2

+ 2αkN max
i∈V

{Li}∥Xk − X∗
∥E[∥Vk −

1
N
11TXk∥|Fk],

ζk : = 2αk(Xk − X∗)T
(
F (xk, yk) − φ(x∗)

)
.

From Lemma 4.3 and (37) it follows that
∑

∞

k=0 βk < ∞. By using
Lemma 4.4, it is obtained that ∥Xk−X∗

∥
2 converges almost surely,

and
∑

∞

k=0 ζk =
∑

∞

k=0 2αk(Xk −X∗)T
(
F (xk, yk)−φ(x∗)

)
< ∞. Since

the αk-sequence is nonsummable and F (·) is strict monotonic, we
have

lim inf
k→∞

(Xk − X∗)T
(
F (xk, yk) − φ(x∗)

)
= 0.

Notice that the sequence of Xk is bounded. Then, we consider
its bounded subsequence Xkl , which satisfies limk→∞(Xkl − X∗)T(
F (xkl , ykl ) − φ(x∗)

)
= lim infk→∞(Xk − X∗)T

(
F (xk, yk) − φ(x∗)

)
=

0. Strict monotonicity of F (·) (Assumption 4.2) implies that this
subsequence converges to X∗. Furthermore, the convergence of
∥Xk −X∗

∥
2 shows that limk→∞ Xk = X∗. The proof of the theorem

is completed. □

Remark 4.1. The almost sure convergence and (ϵ, δ)-differential
privacy of Algorithm 2 are established simultaneously. While we
only study the privacy issue for stochastic aggregative games
in Lei and Shanbhag (2020), Algorithm 2 can be extended to those
presented in Franci and Grammatico (2020) and Yousefian et al.
(2016).

From Theorem 4.2 it follows that the strategy update states Xk
converge to Nash equilibrium X∗. The following theorem provides
an estimate of the convergence rate.

Lemma 4.5 (Lei & Shanbhag, 2020). If Assumptions 2.1–2.2 hold
and consensus times τk = k + 1, k ⩾ 1, then there exists a constant
θ > 0 and ρ ∈ (0, 1), such that

∥Vk −
1
N
11TXk∥

⩽
√
NMθρ

(k+1)(k+2)
2 + 2

√
NMθρ

(2k+1)
2 (1 +

2
k ln(1/ρ)

)

+ 2
√
NMθe(ln(ρ−1/2))−

1
2 ρ

(k+1)2
2 .

heorem 4.3. If Assumptions 2.1–2.5 and 3.1–3.2 hold, the step size
atisfies αk =

1
kγ , 1

2 < γ ⩽ 1, consensus times τk = k + 1 and
k = 1, then for any ϵ, δ > 0 and σi,k in (29), the convergence rate
of Algorithm 2 is given as follows. When 1

2 < γ < 1, it holds that

E[∥Xk+1 − X∗
∥
2
] = O

( 1 )
.

kγ
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W

E

B
k

α

+

+

F

N
O

F

=

=

T

N

=

=

hen γ = 1, it holds that

[∥Xk+1 − X∗
∥
2
] =

⎧⎪⎨⎪⎩
O( 1

km ), m < 1

O( ln k
k ), m = 1

O( 1k ), m > 1

where m is a positive constant in Assumption 2.5.

Proof. From (36) and by Assumption 2.5, we have

E[∥Xk+1 − X∗
∥
2
]

⩽ (1 − 2αkm + 4α2
k L

2
φ)E[∥Xk − X∗

∥
2
] + α2

kE[∥ek∥2
]

+ α2
kE[∥nk∥

2
] + 4α2

kN
2 max

i∈V
{L2i }∥Vk −

1
N
11TXk∥

2

+ 2αkN max
i∈V

{Li}∥Xk − X∗
∥E[∥Vk −

1
N
11TXk∥].

y using Lemma 4.5, when αk =
1
kγ , 1

2 < γ ⩽ 1, there exists
> k0 and β > 0 such that

−2αkm + 4α2
k L

2
φ ⩽ −

m
kγ

,

2
kE[∥ek∥2

] + 4α2
kN

2 max
i∈V

{L2i }∥Vk −
1
N
11TXk∥

2

2αkN max
i∈V

{Li}∥Xk − X∗
∥E[∥Vk −

1
N
11TXk∥]

α2
kE[∥nk∥

2
] ⩽

β

k2γ
. (38)

rom (38) it follows that

E
[
∥Xk+1 − X∗

∥
2]

⩽
[
1 −

m
kγ

]
E
[
∥Xk − X∗

∥
2]

+
β

k2γ
, as k > k0.

Thus, iterating the above process, we have

E
[
∥Xk+1 − X∗

∥
2] ⩽

k∏
t=k0

[
1 −

m
tγ

]
E
[
∥Xk0 − X∗

∥
2]

+

k−1∑
l=k0

k∏
t=l+1

(1 −
m
tγ

)
β

l2γ
+

β

k2γ
. (39)

ote that
∏k

t=k0

[
1 −

m
tγ

]
= exp

(∑k
t=k0

log(1 −
m
tγ )

)
=(

exp
(
−

∑k
t=k0

m
tγ

))
. Then, when γ = 1, it is obtained that

k∏
t=k0

[
1 −

m
tγ

]
= O

(
exp

(
−

k∑
t=k0

m
t

))
= O

(
exp

(
−m log

k
k0

))
= O

( 1
km

)
. (40)

rom (39) and (40) it follows that

E
[
∥Xk+1 − X∗

∥
2]

= O
(
exp

(
−m log

k
k0

))
+ O

( k−1∑
l=k0

(
l
k
)m

β

l2
)
+ O(

β

k2
)

O
(
exp

(
−m log

k
k0

))
+ O

( 1
km

k−1∑
l=k0

β

l2−m

)
+ O(

β

k2
)

O
( 1
km

)
+ O

( 1
km

k−1∑ β

l2−m

)
+ O(

β

k2
).
l=k0

10
By using
∑k−1

l=k0
β

l2−m ⩽
∫ k
k0−1

β

x2−m dx, we have

k−1∑
l=k0

β

l2−m =

⎧⎨⎩
O(1), m < 1

O(ln k), m = 1
O( 1

k1−m ), m > 1

hus, the results hold for γ = 1. When 1
2 < γ < 1, it is obtained

that
k∏

t=k0

[
1 −

m
tγ

]
= O

(
exp

(
−

k∑
t=k0

m
tγ

))
= O

(
exp

(
−

m
1 − γ

[(k + 1)1−γ
− k1−γ

0 ]
))

.

oting that for large enough k0 and l ⩾ k0, we have (1−
m
lγ )

−1 ⩽ 2.
Therefore, from (39) it follows that

E
[
∥Xk+1 − X∗

∥
2]

⩽

k∏
t=k0

[
1 −

m
tγ

]
E
[
∥Xk0 − X∗

∥
2]

+

k−1∑
l=k0

k∏
t=l+1

(1 −
m
tγ

)
β

l2γ
+

β

k2γ

⩽

k∏
t=k0

[
1 −

m
tγ

]
E
[
∥Xk0 − X∗

∥
2]

+ 2
k−1∑
l=k0

k∏
t=l

(1 −
m
tγ

)
β

l2γ
+

β

k2γ

O
(
exp

(
−

m
1 − γ

(k + 1)1−γ
))

+ O
( 1
k2γ

)
+O

( k−1∑
l=k0

exp
(
−

m
1 − γ

(k + 1)1−γ
)

× exp
( m
1 − γ

l1−γ
) β

l2γ
)
. (41)

Note that for large k0,
γ

mk1−γ
0

< 1
2 . Then, we have

k−1∑
l=k0

exp
( m
1 − γ

l1−γ
) β

l2γ

⩽

∫ k

k0

exp
( m
1 − γ

l1−γ
) β

l2γ
dl

1
m

∫ k

k0

β

lγ
d(exp

( m
1 − γ

l1−γ
)
)

=
1
m

β

lγ
(exp

( m
1 − γ

l1−γ
)
)|kk0 −

β

m

∫ k

k0

exp
( m
1 − γ

l1−γ
)
d(

1
lγ

)

=
1
m

β

lγ
(exp

( m
1 − γ

l1−γ
)
)|kk0

+
γ

m

∫ k

k0

1
l1−γ

exp
( m
1 − γ

l1−γ
) β

l2γ
dl

⩽
1
m

β

kγ
(exp

( m
1 − γ

k1−γ
)
)

+
γ

mk1−γ

0

∫ k

k0

exp
( m
1 − γ

l1−γ
) β

l2γ
dl

⩽
1 β

γ
(exp

( m
k1−γ

)
) +

1
∫ k

exp
( m

l1−γ
) β

2γ dl.

m k 1 − γ 2 k0 1 − γ l
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F∑
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⩽
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E

urthermore, we have
k−1

l=k0

exp
( m
1 − γ

l1−γ
) β

l2γ
= O(

1
kγ

(exp
( m
1 − γ

k1−γ
)
)).

rom (41) it follows that

E
[
∥Xk+1 − X∗

∥
2]

= O
(
exp

(
−

m
1 − γ

(k + 1)1−γ
))

+ O
( 1
k2γ

)
+O

(
exp

(
−

m
1 − γ

(k + 1)1−γ
) 1
kγ

exp
( m
1 − γ

k1−γ
))

O
( 1
kγ

)
.

he proof is completed. □

Remark 4.2. The convergence rate of the algorithm with stochas-
tic approximation-type step sizes is given for the first time in
Theorem 4.3, and the related results are not given even if privacy-
preserving is not considered. From Theorem 4.3, we see that
the privacy level ϵ does not affect the convergence rate of the
algorithm when privacy noise is added directly to the gradient.

Next, by using the mini-batch method, observing the strategy
update of Algorithm 2, we find that the parameter 1

Sk
has reduced

he influence of added privacy noise on the performance of the
lgorithm. Since the influence of added privacy noise on the
lgorithm’s performance is reduced, the faster convergence rate
ill be achieved at the same privacy level, which will be shown

n the following theorem.

heorem 4.4. If Assumptions 2.1–2.5 and 3.1–3.2 hold, consensus
times τk = k + 1, αk = α, Sk = ⌈α−2q−(k+1)

⌉ for some ρ ∈ (0, 1),
and E[∥X0 − X∗

∥
2
] ⩽ C1, then for any ϵ, δ > 0 and σi,k in (29), the

following results hold:

E[∥Xk − X∗
∥
2
]

⩽

{
(C1 +

C4
max{γ /C0,C0/γ }−1 )max{C0, γ }

k, C0 ̸= γ

(C1 +
C4

ln((ϑ/C0)e)
)ϑk, C0 = γ

here

0 = 1 − 2αm + α2
+ 4α2L2φ + 2(1 + 2α2)α2c21,

2 = (1 + 2α2)(2c21∥X
∗
∥
2
+ Nc22)

+
8N2n2α4C2 ln(1.25/δ)

ϵ2 ,

C3 = 2Mθρ−
1
2 (1 +

2
k ln(1/ρ)

) + 2Mθe(ρ ln(ρ−1/2))−
1
2 ,

4 = 4α2N3 max
i∈V

{L2i }(M
2θ2

+ C2
3 )

+ 4αN
3
2 M max

i∈V
{Li}(Mθ + C3) + C2α

2.

roof. Similar to the proof of (33)–(35), by considering the strat-
gy update of Algorithm 2, we have

E[∥Xk+1 − X∗
∥
2
|Fk]

(1 − 2αm + α2
+ 4α2L2φ)∥Xk − X∗

∥
2

+ 4α2N2 max
i∈V

{L2i }∥Vk −
1
N
11TXk∥

2

+ 4αNM max
i∈V

{Li}∥Vk −
1
N
11TXk∥

+ (1 + 2α2)E[∥ek∥2
|Fk] +

α2

2 E[∥nk∥
2
|Fk]
Sk

11
Fig. 1. Communication topology.

⩽ (1 − 2αm + α2
+ 4α2L2φ)∥Xk − X∗

∥
2

+ 4α2N2 max
i∈V

{L2i }∥Vk −
1
N
11TXk∥

2

+ 4αNM max
i∈V

{Li}∥Vk −
1
N
11TXk∥

+ (1 + 2α2)E[∥ek∥2
|Fk] +

8N2n2α2C2 ln(1.25/δ)
S2k ϵ2

. (42)

By Assumption 3.2, we have

E[∥ek∥2
|Fk] ⩽ 2α2c21∥Xk − X∗

∥
2
+

2c21∥X
∗
∥
2
+ Nc22

Sk
,

here c1 = max1⩽i⩽n ci,1, c2 = max1⩽i⩽n ci,2. Further, based on
Lemma 4.5 and (42), Sk ⩾ α−2, we have

E[∥Xk+1 − X∗
∥
2
] ⩽ C0E[∥Xk − X∗

∥
2
]

+ 4α2N3 max
i∈V

{L2i }(M
2θ2ρ(k+1)(k+2)

+ C2
3ρ2(k+1))

+ 4αN
3
2 M max

i∈V
{Li}(Mθρ

(k+1)(k+2)
2 + C3ρ

k+1) +
C2

Sk
⩽ C0E[∥Xk − X∗

∥
2
] + C4γ

k+1,

where γ = max{ρ, q}.

[∥Xk+1 − X∗
∥
2
] ⩽ Ck+1

0 E[∥X0 − X∗
∥
2
] + C4

k+1∑
m=1

Ck+1−m
0 γm.

When C0 ̸= γ , for γ < C0, we have
k+1∑
m=1

Ck+1−m
0 γm

= Ck+1
0

k+1∑
m=1

C−m
0 γm ⩽

1
C0/γ − 1

Ck+1
0 .

Similarly, when γ > C0, it is obtained that
∑k+1

m=1 C
k+1−m
0 γm ⩽

1
γ /C0−1γ

k+1. Therefore,
∑k+1

m=1 C
k+1−m
0 γm ⩽

max{C0,γ }
k+1

max{γ /C0,C0/γ }−1 . When
C0 = γ , by using kCk

0 ⩽ ϑk/ ln((ϑ/C0)e), ϑ ∈ (C0, 1), it is obtained
that E[∥Xk+1 − X∗

∥
2
] ⩽ Ck+1

0 E[∥X0 − X∗
∥
2
] + C4(k + 1)Ck+1

0 ⩽

(C1 +
C4

ln((ϑ/C0)e)
)ϑk+1. □

Remark 4.3. In Theorems 4.4, we show that the convergence rate
of the algorithm has the same order as that of the non-private
algorithm in Lei and Shanbhag (2020). Different from Lei and
Shanbhag (2020), the privacy level ϵ affects the convergence rate
of the algorithm in the form of O( 1

ϵ2
).

Remark 4.4. We present two different differentially private dis-
tributed algorithms seeking the equilibrium solution in stochastic
aggregative games. If a better convergent accuracy is required,
then it is better to use the input-perturbation method; but if a
simple operation or low computational complexity is preferred,
then it is better to use the output-perturbation method.

5. Simulation example

This section provides a numerical simulation to testify the
effectiveness of Algorithms 1–2. We consider a 5-player Cournot
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f

=

ξ

Fig. 2. The expectations of the players’ Nash equilibrium seeking mean square errors by using Algorithms 1–2.
competition model, where the player i’s loss function is given as
ollows:

E[fi(xi, x, ξi)]

E[(xi − x̂i)2 + (0.04
5∑

i=1

xi + ξi + 5)xi],

where x̂1 = 50, x̂2 = 55, x̂3 = 60, x̂4 = 65, x̂5 = 70,
ξi ∼ U(− ci

5 ,
ci
5 ), ci ∼ U(3, 5). Since E[(xi − x̂i)2 + (0.04

∑5
i=1 xi +

i + 5)xi] = (xi − x̂i)2 + (0.04
∑5

i=1 xi + 5)xi, as shown in Ye
et al. (2021), the game has a unique Nash equilibrium X∗

=

(41.5, 46.4, 51.3, 56.2, 61.6). The communication topology
among players switches between two graphs is given in Fig. 1.
Setting q = 0.5, from Fig. 2 it follows that E[∥Xk − X∗

∥
2
]

converges to a small neighborhood of zero by using Algorithm 1.
This indicates that the mean square convergence of the algorithm
cannot be guaranteed when the privacy noise is added to the
estimate of each player. In addition, comparing Fig. 2(a) and (b),
it follows that the mean square error of the algorithm is inversely
proportional to privacy level ϵ. From Fig. 2(c) and (d) it follows
that E[∥Xk−X∗

∥
2
] exactly converges to zero by using Algorithm 2,

while comparing Fig. 2(c) and (d), it follows that Algorithm 2
converges faster for larger batch sizes at the same level of privacy,
which is consistent with theoretical analysis.

6. Conclusion

This paper designs privacy-preserving distributed algorithms
seeking the Nash equilibrium in stochastic aggregative games
and protecting each player’s sensitive information. The (ϵ, δ)-
differentially private method is used, where additional noise is
12
introduced. The input and output-perturbation methods are both
given. In particular, the algorithm converges almost surely to
the equilibrium using stochastic approximation-type conditions
and is (ϵ, δ)-differentially private. Under suitable conditions of
consensus times, the algorithm’s convergence rate is also given.
Then, by using mini-batch methods, the effect of privacy noise on
the algorithm’s performance is reduced, and better performance
than stochastic approximation-type distributed algorithms is ob-
tained. Under appropriate assumptions, the algorithm can achieve
exponential convergence and (ϵ, δ)-differential privacy. Finally, a
simulation example is provided to verify the effectiveness of the
algorithms.

Note that the attackers of this paper are passive. Ensuring
that the algorithm performs well when active attackers exist is
a challenging topic. Future work shall introduce a novel strat-
egy that combines differential privacy methods and homomor-
phic encryption techniques. In addition, coupling constraints are
of fundamental importance in technical applications, such as
electricity markets or road networks. Hence, privacy-preserving
distributed algorithms for stochastic aggregative games with cou-
pling constraints are also an interesting topic, which deserves to
be studied.
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