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Abstract; This paper considers the parameter estimation and adaptive stabilization problems for
linear discrete-time systems with unknown parameters and bounded isturbances. The a-priori know-
ledge for designing adaptive controllers is only the order of the system. No assumption is required ex-
cept controllability and observability of the system. The excitation signals are deterministic, and
hence, no external stochastic excitation signal is applied.
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1 Introduction
Consider the linear single-input single-output discrete-time system
A(2)y = zB(Du, +w., Y 2=0, (1.1
where y,,u, and w, are the system output, input and unknown disturbance, respectively, A(z)
and B(z) are polynomials in backward shift operator z

A@ =1+az+ - +az, p=0, ¢#0, e
B(2) =bi+ = +b47, ¢=1, 5#0 (@:3)

and
0=[—a > —.a, byses b5t (1. 4)

is the unknown parameter of the system. The disturbance w, is of arbitrary nature . deterministic
or stochastic. Assume that {w,} satisfies the following long run average condition

1 .
f;%n+1§wf<°°’ (155)
or satisfies the more restrictive condition
sup |w,| << oo, (1.6)
a=0

The problem of adaptive stabilization consists in designing control aiming at stabilizing the
system with unknown parameters. For system (1. 1) with w,=0, the problem was discussed in
[1~4] and others. When w, is not identically equal to zero, the problem is usually solved under

conditions more than coprimeness of A(z) and zB(z), which as well-known is sufficient for non-
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adaptive stabilization [5~8]. To the authors’ knowledge, under the coprimeness condition only,
the problem has first been solved in [9] for system (1. 1) with {w,)} being a martingale differ-
ence sequence. As in many previous works summarized by Chen and GuolJ, the excitation sig-
nals used in [9] are stochastic processes, which, generally speaking, are more difficult to deal
with than deterministic ones.

In this paper, under the assumption that 4(z) and zB(z) are coprime, we give adaptive con-
trols via deterministic excitation signal such that

1 L]
fgg'+1’_21(y}+ui)<oo a.mn
for the case where (1. 5) holds and
S_gg(ly‘l + |u]) < oo (1.8)

for the case where (1. 6) is satisfied.

» "
Through out the paper, for a polynomial X(z) = ;::.-z", the norms || + |[[,and || « ||,
are defined as follows

IX@ 1= lal and X 1s = 3)1al) "
=

=0
2 Estimation and Adaptive Control
We estimate the unknown parameter 8 by the LS algorithm which recursively defines the es-
timate 6, as follows,

but1 = 6, + wPupa(gos1 — B0 @1
Piyi = P. — wPup@iPs, o= (1 + 9iPap) ™, (2.2)
g=ln = tpr o ] (2.3)
with Py=1I and arbitrary initial value
f=[—ap =+ —an bo - byl
For any s_—=0 write 8, in the component form
= [ gy s — ap b o Bl 2.4
If A(z) and zB(z) are coprime, then there exist two polynomials
G(z) =14 ’Elg,z’, H(z) = ihﬂj, (2.5)
such that s y
A(z)G(z) — zB(z2)H(z) = 1. (2. 6)

Replacing a;, 'bj» gis h, by their estimates ., b, gm and k., respectively in (1. 2), (1.3),
(2.5) i=1,r4p, j=1,2,q, k=1,°+,g—1, s=0,+-,p—1, we correspondingly denote
A(z), B(z), G(z) and H(z) by A(z), B.(z), G,(z) and H,(z), respectively, for example,
A(2) =1+4apz+ - +ax2.

We need the following two lemmas proved in Chen and Zhang!®).

Lemma |1 If A(z) and zB(z) are coprime, then there is a constant &>0 such that for any
0, satisfying || 6,— @ || <&, the following Bezout equation
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A(2)G(2) — zB,(2)H,(z) = 1, @.7
has a unique solution (G,(z), H,(z)) satisfying
deg(G(2)) < g— 1, deg(H(2)<p— 1 (2.8)
and
lg.@ |l + IHLD < 1+ G + 7 (2.9)

for i=1 or 2.
Lemma 2 Let {w,) in (1. 1) be any disturbance (deterministic or stochastic) satisfying

(1.5). Then the LS estimate 8, for & has the following properties

6 — 6l %2+ 2sW

Hal-ellz“<--. ml)

I V ] ; 01 (2- 10)
where Wésg% n-l-l—l Z;:;;}(oo by condition (1.5) or (1.6), and A% denoles the minimum
a =

eigenvalue of P, A7+ gw,-g;;?. :
From (2. 6) it is clear that
¥ =A(2)G(2)y, — 2B(2)H(2)y,

=G(2)[A(2)y, — zB(2)u,] + 2B(2)[G(2)u, — H(2)3.]

=G(z)w, + zB(2)[G(2)u, — H(z)y,] €2, 11)
and

4, = H(2)w, + A(2)[6(2)u, — H(2)y.]. (2.12)

From this we see that in the case where 6 is known and w, is bounded in the sense (1. 5) or
(1.6), the system will be stabilized in the sense of (1.7) or (1. 8) if u, is defined from

G(2)u, — H(2)y, = 0. (2:13)
The “certainty equivalence principle” suggests to us defining adaptive control from
Gl(z)ul = Hn(z)yl = 0. (2' 14)

However, in the present case the closeness of 8, to & is not guaranteed. Consequently, it is not
clear if (2. 7) is solvable or not. Even if G,(z) and H,(z) can be defined from (2. 7) we still do
not know whether or not they are close to G(z) and H(z) respectively. So it is important that 6,
somehow approximates 8. If this is the case, then adaptive control defined by (2. 14) may hope-
fully stabilize the system. By lemma 2 we see that for first step of approximating § we may apply

an explosive excitation input, by which we mean such an input that yields A%/a ——>co. How-
"—>00

ever, the stabilization purpose (1.7) or (1. 8) does not allow us to apply such an input for a pe-

riod longer than finite. Thus we need to define stopping times o; at which we turn off the explo- -

sive excitation input and switch on the control defined by the certainty equivalence principle until

7; at which the accuracy of the LS estimate 6, becomes unsatisfactory and we have to apply the

explosive excitation input again. After defining stopping times
An<an<n<onn<--,

it is most important to show that there is some integer ¢ such that o;<Zoo and 7,=c0, because oth-
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erwise the requirement (1.7) or (1. 8) will never be met.
Let {s.} be a real sequence with the following properties
s Oilige < itligs -0 v edar >0 (2.15)
where a>1 is chosen arbitrarily.
‘We now consider the case where (1. 5) holds.
Define stopping times as follows: 7o=0, and for any i1,

a—1

o; = min{a > 7,_;; Ecp,-qp} =it > 0;
=0

(2. 7) subject to (2. 8) is solvable,

16 13+ | Hu) [ 3< ]%_; and

2—1

3 — g0 < s, (a™), (2. 16)
=0
=1 :
% =min{n > 0i: Y, (y; — g-16,)% > eks.(a®)) (2.17)
=0
where y=max{p,q} and s,(z) is given by so(z)=1;
—1 1
5() = nmax{z, o SV GF ), k=11, Va>1l. (2.18)
=0
Finally, adaptive control u, at time = is given by
@, if 8 € [%, gi41) and 8 = 7 + 2k(p +¢) + p + ¢ for some i >0 and k > 03
0, if # € [, ou41) for some i == 0, but

e 875+ 2%(p+q) +p+ gforal k> 0;

H, (2)y: — (@.,(2) = D, if 8 € [@1, ) for some i > 1.
(2.19)
In the following lemma we introduce a deterministic excitation signal which is much simpler to be
proved explosive in comparison with the stochastic one used in [9] and [11].'
Lemma 3 If A(z) and zB(z) are coprime, (1.5) holds and

o, ifrn=2k f k=0;1,'"’
u‘={ n (rp+ )+ p+ g for (2. 20)
0, otherwise,
where a>>1 can be arbitrarily chosen, then for any n=2(p+¢q),
AR = zﬁ—ca”“‘ﬁ” — pC~'W,, (2,90

?
with €= (p-+1)(1+ D)), ¢ and W defined in (2. 24) below.
=1

Proof Set #,=A(z)g, and D=[D;, D,]", where
rhe
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and
ke 2
1 . s “ e e g 0 s 0
i T oy R
o= | e
Dot Bl mites oo, vo fhes o8 nall
From (1. 1) it is easy to see that
o, =DU,+ W,, 2.22)
where
U= [t * U ip+1dfon Wo=[wa 0 Wy ppy (L"';OJT- (2.23)

q
Let k be the largest integer such that 2(k+1) (p+¢)<<n, and set m=2k(p+q). Then it is not

difficult to see that for any nE€R?* with | 5| =1,
+2G+0—1 H2GHO—1 a+H20rto—1

if
__2 Il 7"@:ll.> = < __E | #*pw; || 2 — ._.2 | 7w |l 2,
i=n+rtqg i=s+rtg i=s,+p+g
which together with the fact e/ 4, (DD™) = 2, (M™M) >0 implies that
420+ —1 0+20+¢)—1 8 +20+¢)—1
S L A.m( > DU i | =i wiwr)
i=a+ptg i=n,+rtg i=atrty
1 5+20+9—1 . 5+20+0—1
S i SRV e D YR Bk
i=n, -+ i=a,+¢
; w20t —1
>ehon( > OUF) = p(u+ 20 + 20W, (2. 24)
=2 +ptyg

where Wésup +1 sz<oo by condition (1.5) or (1. 6).
On the other hand, we have

5+20+9—1 8 +20+0—1
1o - OT) = inf ("®,)?
- ( i=§+w ) l=1=1 i=§r+¢
8 +20+9—1 ?
<huo| D7 @) [+ DT+ Dlat) ],
i t+g =1
which together with (2. 24) yields
n+2G+e—1 8 +2G+9)—1
& e
ha( D) @) > ghun(| D] UDT) = o, (2.25)
i=a,+q i=a+p+q
b 4
where C= G+ D1+ D).
=1
From (2. 20) it is easy to get that
s+2G+e)—1 :
Z UUT = a®STrH0 g = 0> 80T (;+¢)x<p+q>
l'm:‘-l-r{-q

From this and (2. 25) we obtain (2. 21).



178 CONTROL THEORY AND APPLICATIONS Vol. 10

3 Main Results
Theorem 1 If A(z) and zB(z) are coprime, and disturbance {w,} is bounded in the sense
(1.5), then the adaptive control (2. 19) stabilizes the closed-loop system in the following sense

Z(y, + 1)) < oo (8.1)
.;:o

for arbitrary initial values ;, i—O,—l,--- v — Py By J=0,—1,%,—q.

Proof The first step is to show that there exists an integer ¢=>1 such that o;<oco and
=00,

We now prove that it is impossible that %< co and o;1;=0co. In fact, if there were an i=0
such that 7,<7co and o;4; =00, then by (2. 19) we get ‘

u.={a.’ ifn= 174 2k(p+ ¢) + p + ¢ for some k = 0; G.2)
0, ifa=>wn, butazxzn+ 2k(p+¢q +p+gforallk = 0.
Hence, by Lemmas 2 and 3 we would have that for any a=>7+2(p+4¢),

el M}ngﬂ and A% > 2_;“2'_“”') — pC~Wa, (3.3)
where 6,=0— 6.

From this, Lemma 1 and (2. 15) we see that all requirements except the last inequality list-
ed in (2. 16) are met for all a—>N, starting from some integer No—=>7,42(p+¢).

Set Co= E (y2+u%). Then by (1.1), (2.18), (3.3) and (1.5) we obtain that for any

Ju——
“,>—ND’

a—1 a—1 n—1
D — P8P < 2> (P8 + 2> 0]
j=0 =0 j=0

<2y[s.(a®) + Co] || 6. || 2 + 2W,

c 290 | 3o || 2 + 2w, oW
<uto1 + Q) (e T ) 3.4

which together (2. 15) implies that there exists an integer N;=>N, such that for any a=>N;

a—1

D1 — 051602 < elsu(a™).

=0
Therefore, we have o;+;< N;. This contradicts o;;=0°.
We now prove that 7;=oco for some i.
By Lemma 2 we see that
é 2 + 2W(T,'
1,1 Lol
which incorporating the definition of o; implies that

(3.5)

= 8|l 2+ 2Wo,
"a’i"zgezi " 0“ Uj_ .

Similar to (3. 4), by (3.5), (2.15), (2.18) we obtain that

a—1 a—1

D — 10,2 <2 (¢1-8,) + zz)wa

Jj=0 j=0 =0
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2
<eZs,(a™D) [(1 =z %) + Lol 2 2. (3.6)

which together with (3. 5) and (2. 15) implies that for some large enough i=>1 and any a_>o;,
one has

—1

2@ — 911852 < s (a20).

=0
Therefore,, there must be an i for which 7,=oo.

The second step is to prove (3. 1) by use of the fact that for some i, o;<<co and 7;=oco.
By (2. 7) we have

¥ = G (D[4 (2)y. — 2B (D] + 2B, ([ G, (2)uy — H, (2],
h = He(2)[4:(2)y — 2B, (D] + 4,(2)[G (2Dt — Ho(2)7n].
Hence, from (2.19) we get, for any n=>n0Ao;+max(p,q),

¥ = G, (2)[4,(2)y. — zB,(D)u], 3.7
4, = H,(2)[4,(2)y, — zB, (2)u,]. (3.8)
From (3. 7) and (3. 8) it follows that for any n>>n,,
a—1 a—1 .ﬂ_l
—E(y} +u}) = —E(ﬁ + uf) A= E(y? + u})
=%

a—1 '0_1

7N E@ i+ | H,@ 1D D) @ — 911602 + — 2(y5=+ua)

j=0 ;=0
a—1
s a”"*
‘-<~.gi _1_ (; — ?’}—190,)2 +a<s alas) + e, 3.9
a B =0
-0-—1
where a = E (% + ud).
=0
e s.(az" o
Noticing that =—— is nondecreasing from (3. 9) we get for any a>sy and any 1€ [moystn],
E(ﬁ + ) < s'(tfﬂ‘) +a<e, 8’(02‘) + a,
=0
which together with (2. 18) yields
=1 2,
(: e {ahf,—rzo@, s B= Lyeorsmhilh e,‘_f-% " cl}. (3.10)

=1
cz=az°'i+cl+_[nax{ Z(yf"*-ﬂj), I=1,n-,1€0_1}-

Then (3. 10) implies that for any n>>1,
ss(a&r..) 8 ls'l(‘—"'%')

n <

its Cazs
which means
s.(a®)

“g.. = B.r..)—lcz,
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i.e. s,(a”)n is bounded, and hence, (3. 1) is true. Q.E.D.
We now consider the case where (1. 6) holds.
Define stopping times as follows:7,=0, and for any i=>1,

a—1
o; = min{a > 7;_,. an,fp}' — a2 17 >0,
=0
(2. 7) subject to (2. 8) is solvable,
1l
" G2 |+ " H,(2) “ 1< 58'.
and iyl_ P-T—ie-| geﬁ;(ab)}s (3. 11)
%= min{a > o;; [y — @i_10,| > a5(a®)}, (3.12)
where y=max{p,q} and s,(z) is given by sy(z)=1,
3;(3)=max{z! Iy;]: Juj]yj=ﬂ'-7; ""ﬂ""].}’ Y zn =413 £3.13)

Theorem 2 If A(z) and zB(z) are coprime, and disturbance {w,) is bounded in the sense
(1. 6), then the adaptive control (2. 19) with o;, 7; given by (3. 11)~ (3. 13) stabilizes the
closed-loop system in the following sense

slgg(ly.l + |m|) < oo (3.14)
for arbitrary initial values g, 1=0,—1,%,—p, uj, j=0,—1,,—q.

Proof Similar to the argument of Theorem 1 we can show that there is an integer : such
that ¢;<co and w=oco. Therefore, for any mAoi+y, (3.7) and (3. 8) hold, and for any
n=0;,

lon — P16, | < £,5.(a™%). (3.15)

From (3. 7) and (3. 15) we see that for any a>s,,

l9a| =16,,(2) (. — @i_16.) |
< |6, |l . 3k l#h—s — Pi-1-18) |
<e || G (2) ||y max s,_;(a®). (3. 16)
0<s<r—1
Similarly, from (3. 8) and (3. 15) we get
el el Ho@ [ max sy,
0<j<e—1
which together with (3. 16) and

3
P

" Gdi(z) ” 1 =l ” Hcr..(z) " lg
yields
max(|nl, |nl) <5 max s (a0,
Y o<1
From this and (3. 13) it is not difficult to see that
: 1 2y—1 :
3|+Zr(ak") “'-<... a?a-i + 5;‘9-+2?—j(az"')1

which together with Lemma 3 in [4] implies that
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f;gs‘.(a"‘f) < co¥i < oo,
where ¢ is a constant and depends on y only. Q.E.D.
Remark Both Theorems 1 and 2 conclude that there is an integer i—=1 such that o;<7co and
7,—oco and for n>>0; the adaptive control is defined from
H,(2)y. — G (2)u, = 0.
This together with (1. 1) implies that after a finite number of steps the closed-loop system even-
tually becomes
F(2)y, = G, (2w, with F(z) = A(2)G,(2) — 2B(2)H,(2).
It is clear that o;, and hence, F(z) depends on {w.}._
4 Conclusion Remarks
For a single-input single-output discrete-time system with unknown parameters and bounded
disturbances; an indirect adaptive stabilization controller is presented. The construction of the
controller is characterized by a deterministic excitation signal sequence and an appropriate time
splitting. The a-priori knowledge for designing adaptive controllers is only the order of the sys-
tem. No matter what the feature of w(¢) is, deterministic or stochastic, the adaptive controller
stabilizes the closed-loop system. Hence, it is possible to deal with adaptive control problems by

use of a unified algorithm, for bath deterministic and stochastic systems.
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