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a b s t r a c t

This paper investigates the differential private algorithm for the average output consensus control
of continuous-time heterogeneous systems. A distributed hybrid controller is designed where agents
exchange information at discrete time instants. The proposed controller protects the individual privacy
by imposing random noises upon the interactive information. Based on the stochastic approximation
method, we employ a series of time-varying control gains to relax the existing mechanisms which
require the privacy noises to be exponentially decaying with time. Using non-decaying privacy noises,
the delivered information can keep random with an invariant variance, and the real information cannot
be directly exposed to the eavesdropper along with time. We further develop a method to design the
control gain such that the heterogeneous systems can achieve asymptotically unbiased output average
consensus with the desired accuracy and meet the predefined differential privacy index. Finally, a
numerical example is provided to demonstrate the effectiveness of the theoretical results.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Distributed cooperative control of multi-agent systems (MAS)
s of great significance as it is widely used in many real applica-
ions, such as energy management (Zhang & Chow, 2012), data
usion and falsification (Kailkhura, Brahma, & Varshney, 2017),
istributed Kalman filter (Li, Wei, Han, & Liu, 2016), etc. Among
thers, average consensus control of MAS is a fundamental prob-
em, where it supposes that agents can converge to the average
f their initial states via a communication network. So far, a
umber of works have been developed on the average consensus
ontrol of MAS (Olfati-Saber & Murray, 2004; Pasqualetti, Borra,
Bullo, 2014; Zhao, Liu, Li, & Duan, 2017; Zhu & Martínez,

010), including continuous-time MAS and discrete-time MAS.
owever, with the increasing need of security and reliability,
rivacy-preservation of individual dataset is required in many
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application sceneries (Li, Ma, & Fu, 2015; Ren, Xu, Yang, & Yang,
2019). For example, in a social network (Amelkin, Bullo, & Singh,
2017), people interact with their neighbors and evaluate their
opinions by comparison with the opinions of others, but ex-
changing opinions probably reveals individual privacy. Another
example is the cooperative guidance system (Kang, Wang, Li,
Shan, & Petersen, 2018), where information interactions may
expose the locations of missiles, as well as, the launch stations.
It naturally arises a problem that how to achieve average con-
sensus while protecting the information of each agent from being
detected by a third malicious party.

To address the problem, one solution is encrypting the in-
teractive information, with approaches like homomorphic en-
cryption (Ruan, Gao, & Wang, 2019). However, cryptographic
techniques are often computationally expensive, especially when
the calculation resource of each agent is limited. An alternative
solution is imposing randomness upon the information (Fung,
Wang, Chen, & Yu, 2010). Recently, differential privacy techniques
have been widely considered on the publishing data in many
technology companies, such as Google and Apple. Based on the
original definition given by Dwork (2006), ϵ-differential privacy
has been extended to multi-agent scenario, including protecting
the initial states of agents in consensus problem (Huang, Mitra,
& Dullerud, 2012) and protecting the global state trajectories in
Kalman filter (Le Ny & Mohammady, 2018; Le Ny & Pappas, 2014).
From a systems and control perspective, Cortés, et al. (2016)
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ave a tutorial and comprehensive framework of differential
rivacy analysis on dynamical systems. By adding uncorrelated
oises on information, Nozari, Tallapragada, and Cortés (2017)

designed a differentially private consensus algorithm for single-
order discrete-time multi-agent systems, where agents achieved
unbiased convergence to the average almost surely. Wang, Huang,
Mitra, and Dullerud (2017) designed an ϵ-differentially private
onsensus algorithm for linear discrete-time coupled dynamic
ystems. Fiore and Russo (2019) combined differential privacy
nd resilient consensus algorithm in a multi-agent system over
directed communication topology. Gao, Deng, and Ren (2019)
roposed an event-triggered scheme to reduce the control up-
ates while also keeping the algorithm to be ϵ-differentially
rivate. By adding correlated noises on interaction information,

accurate consensus can be achieved (He, Cai, Cheng, Pan & Shi,
2019; He, Cai, Zhao, Cheng & Guan, 2019; Mo & Murray, 2017)
while protecting the initial states from neighboring agents. How-
ever, if the eavesdropper can obtain all the information received
and delivered by node i, then the initial state of this agent
can be estimated by an iterative observer under the correlated
noises mechanism. Overall, the above literature has two common
grounds: (1) all the algorithms are designed for discrete-time
multi-agent systems; (2) in order to guarantee the convergence
and satisfy the differential privacy index, the privacy noise is
required to decay exponentially with time. Many practical plants
reveal continuous-time dynamics and it is often the case that
they are inherently heterogeneous with different dimensions
and dynamics. (Chen & Chen, 2017; Lewis, Cui, Ma, Song, &
Zhao, 2016; Su & Huang, 2012; Wang, Liu, Xiao, & Shen, 2018).
In addition, decaying noises potentially expose the trajectory
of state. These factors motivate us to investigate the privacy-
preserving algorithm of continuous-time heterogeneous MAS and
relax limitation of using exponentially decaying privacy noises.

In this paper, we design a distributed hybrid dynamic feedback
controller based on the hierarchical control framework, where the
upper layer aims to achieve consensus of reference states and
the lower layer drives the agent to track its reference. Specifi-
cally, each agent imposes a Laplace noise on local reference state
and then transmits it to neighbors at discrete-time instants. The
added noises are i.i.d. with a bounded variance. If the control
gain βk satisfies the stochastic approximation condition, namely,∑

∞

k=0 βk = ∞,
∑

∞

k=0 β2
k < ∞ and other gain matrices are

in certain forms, then the heterogeneous multi-agent systems
(HMAS) can achieve asymptotically unbiased mean square output
average consensus. In summary, the contributions of this paper
are threefold:

(1) Compared with existing literature that focuses on discrete-
time systems, we develop a differentially private consen-
sus algorithm for continuous-time HMAS. By introducing a
discrete-time interaction scheme, we design a distributed
hybrid dynamic feedback controller, which receives
discrete-time information from neighbors and enables the
privacy analysis for continuous-time HMAS by the existing
tools and techniques on discrete-time systems;

(2) The privacy noises in existing literature are required to
decay exponentially with time. Based on the stochastic ap-
proximation method, we employ a time-varying control gain
to relax this limitation. Moreover, the adding non-decaying
noises also avoid directly exposing the information of refer-
ence state;

(3) Compared to the existing works on consensus of MAS with
communication noises (Li & Zhang, 2010), we present a
guideline on how to design the time-varying control gain
such that HMAS can achieve asymptotically unbiased out-
put average consensus with the desired accuracy and the

predefined differential privacy index.

2

This paper is organized as follows. Preliminaries and the problem
statement are given in Section 2. Distributed differentially private
algorithm with convergence and privacy analysis is presented in
Section 3. The numerical examples are given in Section 4 and the
conclusions are drawn in Section 5.

Notation. Denote R, R>0 as the set of the real number and
positive real number, respectively. Denote Rn×m as the set of
n×m real matrix. In represents n×n identity matrix and 1n is an
-dimension column vector with all elements being 1. The nota-
ion ⊗ stands for Kronecker product. The notation col(x1, . . . , xN )
tands for a column vector by stacking them together. The nota-
ion diag(b1, . . . , bN ) denotes the diagonal matrix with diagonal
lements being b1, . . . , bN . The notation ∥ · ∥ is the 2-norm for a
ector or a matrix. For a matrix A, denote H(A) = ATA, and the
otation ρ(A) is the spectral radius of A. For a random variable
∈ R, E[X] and Var(X) denotes the expectation and variance of
. For a random vector Y ∈ Rn, the notation cov(Y ) denotes the
ovariance matrix of Y . Lap(µ, b) denotes the Laplace distribution.
(x) =

∫
+∞

0 tx−1e−tdt is the gamma function and Γ (x, z) =
+∞

z tx−1e−tdt is the upper incomplete gamma function.

2. Preliminaries

2.1. Graph theory

Denote G = (V, E,A) as a directed graph with a set of nodes
V = {1, 2, . . . ,N}, a set of edges E ∈ V × V and a weighted
adjacency matrix A =

(
aij
)
N×N . Node i represents the ith system

and an edge eji in graph is denoted by the ordered pair nodes {j, i}.
j, i} ∈ E if and only if node i can obtain the information from
ode j. A path in graph G is an ordered sequence v1, v2, . . . , vk of
odes such that any ordered pair of vertices appearing consecu-
ively in the sequence is an edge of the graph, i.e., (vi, vi+1), for
ny i = 1, 2, . . . , k − 1. For the adjacency matrix A, aij > 0 if
j, i} ∈ E , and aij = 0 otherwise. We assume there is no self-loop
n the graph G, i.e., aii = 0. Define Ni = {j|aij > 0} as the set of
agent i’s neighbors. The Laplacian matrix L = (lij)N×N of graph
G is defined as lij = −aij if i ̸= j, otherwise lij =

∑N
k=1,k̸=i aik.

Denote ∆in
i =

∑
j aij and ∆out

i =
∑

j aji as in-degree and out-
degree of node i in the directed graph G. A digraph is balanced if
∆in

i = ∆out
i := ∆i for ∀i ∈ V . For a balanced digraph, we define the

greatest degree and the smallest degree as ∆max = max{∆i, i ∈

V} and ∆min = min{∆i, i ∈ V}.

2.2. Problem statement

Consider a set of N continuous-time heterogeneous linear
systems coupled by a communication graph G. The dynamics of
the ith system is described by{

ẋi(t) = Aixi(t) + Biui(t),
yi(t) = Cixi(t),

(1)

where Ai ∈ Rni×ni , Bi ∈ Rni×ri , Ci ∈ Rp×ni are matrices in
appropriate dimensions, xi ∈ Rni is the system state, yi ∈ Rp

and ui ∈ Rri are measurement output and control input of the
ith system.

Definition 2.1. Heterogeneous systems (1) are said to achieve
the average output consensus if for any i ∈ V , it holds that
limk→∞ yi(k) =

1
N

∑
i∈V yi(0).

For the above coupled dynamical systems, we need following
ssumptions.

ssumption 2.1. (Ai, Bi) is stabilizable.
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Fig. 1. Hierarchical control framework for HMAS.

ssumption 2.2. For any i ∈ V , there exists a solution (Πi,Ui)
of the following matrix equation{

0 = AiΠi + BiUi,

CiΠi = Ip×p.
(2)

Assumption 2.3. The digraph G is balanced and strongly con-
nected.

Remark 2.1. Under Assumption 2.1, there exists a matrix Ki such
hat Ai + BiKi is Hurwitz. The matrix equation (2) in Assump-
ion 2.1 is a typical linear output regulation equation (Su & Huang,
012). Note that there exists a solution for the matrix equation (2)
f and only if

ank
[

Ai Bi
Ci 0

]
= ni + p.

ssumption 2.3 describes the connectivity of a digraph and is
tandard in the average consensus (Olfati-Saber & Murray, 2004).
nder Assumption 2.3, we have 1T

NL = 0 and all the eigenvalues
of L̄ ≜ L+LT

2 are nonnegative.

To achieve average output consensus of heterogeneous sys-
ems (1), generally, we can design a dynamic feedback controller⎧⎨⎩ ξ̇i(t) = β

∑
j∈Ni

(
ξj(t) − ξi(t)

)
,

ui(t) = K1ixi(t) + K2iξi(t),
(3)

where ξi(t) ∈ Rp is the reference state with the initial value
ξi(0) = yi(0), K1i ∈ Rri×ni , K2i ∈ Rri×p are gain matrices, and β

is the control parameter.

Remark 2.2. The above controller (3) directly results from Su and
Huang (2012) and facilitates average output consensus of HMAS.
However, the controller transmits a continuous-time signal, say
ξi(t). For each agent, delivering {ξi(t)|t ∈ R≥0} is very likely to
expose its privacy, including the reference trajectory ξi(t) and the
initial position yi(0).

Considering that the existing privacy analysis tools are fea-
sible for discrete-time sequences, we introduce a discrete-time
interaction scheme and noise generators to deal with continuous-
time dynamical systems, as shown in Fig. 1. HMAS only inter-
acts the information at discrete-time instants, denoted as Ts =

{t0, t1, t2, . . . , tk, . . .} with t0 = 0 and tk+1 − tk = hk ≥ hmin,
where hmin > 0 is the lower bound of time interval between two
adjacent information interactions. In the hierarchical framework,
each agent is allowed to transmit data via the communication
network only at discrete time instants Ts. With the penetration
of noise generators, the original coupled system turns to be a
stochastic coupled system. Below we introduce the definition of
asymptotically unbiased mean square output average consensus
and ϵ-DP for the distributed controller of continuous-time HMAS.
3

Definition 2.2. For s ∈ [0, 1] and r ∈ R≥0, heterogeneous
systems (1) are said to achieve asymptotically unbiased mean
square output average consensus with (s, r)-accuracy, if for any
given y(0) ∈ RNp, there is a random vector y⋆, such that E [y⋆] =
1
N

∑N
i=1 yi(0), ∥cov(y

⋆)∥ is bounded, limt→∞ E[∥yi(t) − y⋆
∥
2
] = 0

or i ∈ V , and P{∥y⋆
−

(1TN⊗Ip)y(0)
N ∥ < r} ≥ 1 − s.

We suppose that the eavesdropper has access to all the inter-
action information through the communication network. Denote
M(·) as a stochastic map from a private dataset D to an ob-
servation O. In this paper, we focus on protecting the privacy
information of initial states against an external eavesdropper.
Thus, the private dataset is D = {yi(0), i ∈ V}, and the observation
set is O = {φi(tk), i ∈ V, k = 0, 1, . . . , T − 1}. Then, ϵ-differential
privacy for the private dataset is introduced.

Definition 2.3 (Cortés, et al., 2016). Given a time horizon T > 0
and a parameter ϵ > 0, a randomized mechanism M : D → O
is said to be ϵ-differentially private up to time T − 1, if for any
subset O ⊆ RpNT and any two datasets D and D′, it holds that

P[M(D) ∈ O] ≤ eϵ∥D−D′
∥1P[M(D′) ∈ O]. (4)

We call a mechanism M is ϵ-differentially private over the
infinite time horizon if (4) holds for T → ∞. Overall, given
a pre-desired privacy index ϵ⋆ and a pair of accuracy indexes
(s⋆, r⋆), the objective of this paper is to design a distributed pro-
tocol ui(t) and noise generators over the discrete-time sequence
Ts such that HMAS can achieve asymptotically unbiased mean
square output average consensus with (s⋆, r⋆)-accuracy and keep
ϵ⋆-differentially private over the infinite time horizon.

3. Differentially private consensus

3.1. Hybrid controller design

The distributed hybrid controller ui(t) is designed as⎧⎪⎪⎪⎨⎪⎪⎪⎩
ui(t) = K1ixi(t) + K2iξi(t),
ξ̇i(t) = 0, for t ∈ (tk, tk+1)

ξi(tk) = ξi(t−k ) + βk−1

∑
j∈Ni

(
φj(t−k ) − ξi(t−k )

)
, k ∈ N>0

(5)

with the noise generator as{
φi(t−k ) = ξi(t−k ) + ηi(t−k ),
ηi,l(t−k ) ∼ Lap(0, b), l ∈ {1, 2, . . . , p}, k ∈ N>0

(6)

where βk is a positive time-varying control gain; K2i = Ui −K1iΠi
with Ui and Πi satisfying (2); ξi(t) is the reference state with
ξi(0) = yi(0), and note that ξi(t) is right continuous at time tk,
thus limt→t+k

ξi(t) = ξi(tk); ηi(t−k ) ∈ Rp, i ∈ V is a random
vector with each entry to be i.i.d. Laplace distribution, of which
the covariance matrix is 2b2Ip. For ∀i, j ∈ V , i ̸= j, ηi(t−k ) and
ηj(t−k ) are mutually independent. Define the σ -algebra F̄η

k =

σ {η(t−1 ), η(t−2 ), . . . , η(t−k )} where η(t) = col(η1(t), η2(t), . . . ,
ηN (t)), and we have that {η(t−k ), F̄η

k , k ∈ N>0} is a martingale
difference sequences and σ 2

η ≜ supk∈N>0
E
[
∥η(t−k )∥2

]
< ∞.

Remark 3.1. The privacy noise used in this paper always keeps
random with the covariance matrix 2b2Ip, which is not required
to decay to zero as in the existing literature. This results in the
information of reference state not being directly inferred with
time. Another point worth noting is that we use a time-varying
control gain βk, which makes the controller more flexible than

that with a constant.
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Denote A = diag(A1, . . . , AN ), B = diag(B1, . . . , BN ), K1 =

diag(K11, . . . , K1N ), Π = diag(Π1, . . . , ΠN ), U = diag(U1, . . . ,

UN ), and define ξ̃i(t) = ξi(t) −
1
N

∑
ξi(t), xci(t) = xi(t) − Πiξi(t),

ξ̃ = col(ξ̃1, . . . , ξ̃N ), and xc = col(xc1, . . . , xcN ). Then, substituting
(5) and (6) to the dynamics (1) yields:

For t ∈ (tk, tk+1), k ∈ N≥0, we have ˙̃
ξ (t) = 0. Under

Assumption 2.2 and K2i = Ui − K1iΠi, it holds that

ẋc(t) = ẋ(t) − Π ξ̇ (t) = Ax(t) + Bu(t) + 0
= (A + BK1)x(t) + B(U − K1Π )ξ (t)
= (A + BK1)xc(t) + [(A + BK1)Π + B(U − K1Π )]ξ (t)

= (A + BK1)xc(t). (7)

For t = tk, k ∈ N>0, we have

ξ (tk) =
[
(IN − βk−1L) ⊗ Ip

]
ξ (t−k ) + βk−1(A ⊗ Ip)η(t−k ).

Then, defining J = IN − 11T/N yields

ξ̃ (tk) =
(
J ⊗ Ip

)
ξ (tk)

=
[
(J − βk−1L) ⊗ Ip

]
ξ̃ (t−k ) + βk−1(JA ⊗ Ip)η(t−k ), (8)

and

xc(tk) =x(tk) − Πξ (tk)
=x(t−k ) − Π

{[
(IN − βk−1L) ⊗ Ip

]
ξ (t−k ) + βk−1(A ⊗ Ip)η(t−k )

}
=xc(t−k ) + Πβk−1(L ⊗ Ip)ξ̃ (t−k ) − βk−1Π (A ⊗ Ip)η(t−k ). (9)

Note that the last equation of (9) holds because (L⊗ Ip)(J ⊗ Ip) =

(L ⊗ Ip) and ξ̃ (t−k ) = (J ⊗ Ip)ξ (t−k ). Therefore, the closed-loop
system with respect to ξ̃ (t) and xc(t) can be represented in a
compact form as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̃
ξ (t) = 0, for t ∈ (tk, tk+1)

ξ̃ (tk) =
[
(IN − βk−1L − 11T/N) ⊗ Ip

]
ξ̃ (t−k )

+
[
(βk−1JA) ⊗ Ip

]
η(t−k ), k ∈ N>0

ẋc(t) = (A + BK1)xc(t), for t ∈ (tk, tk+1)

xc(tk) = xc(t−k ) + βk−1Π (L⊗Ip)ξ̃ (t−k )
− βk−1Π (A ⊗ Ip)η(t−k ), k ∈ N>0.

(10)

Denoting Â = A + BK1, it follows from (10) that ξ̃ (t−k+1) = ξ̃ (tk),
xc(t−k+1) = eÂhkxc(tk), and⎧⎪⎪⎪⎨⎪⎪⎪⎩

ξ̃ (tk+1) =
[
(IN − βkL − 11T/N) ⊗ Ip

]
ξ̃ (tk)

+
[
(βkJA) ⊗ Ip

]
η(t−k+1)

xc(tk+1) = eÂhkxc(tk) + βkΠ (L ⊗ Ip)ξ̃ (tk)
− βkΠ (A ⊗ Ip)η(t−k+1), k ∈ N≥0.

(11)

Note that if setting βk to be constant as in existing liter-
ature, the above closed-loop system cannot achieve asymptot-
ically unbiased convergence. This is because the influence of
privacy noises (6) will not vanish to zero. To this end, we apply
the stochastic approximation method to design a time-varying
control gain and then give convergence and privacy analysis.

3.2. Convergence analysis

In this subsection, we first prove the output of each heteroge-
neous system converges to the average of inner controller states
in mean square. Then, we further prove that HMAS can achieve
asymptotically unbiased mean square output average consensus.

Lemma 3.1 (Polyak, 1987). Let {u(k), k = 0, 1, . . .}, {α(k), k =

0, 1, . . .} and {q(k), k = 0, 1, . . .} be real sequences, satisfying 0 <
4

q(k) ≤ 1, α(k) ≥ 0, k = 0, 1, . . .,
∑

∞

k=0 q(k) = ∞, α(k)/q(k) → 0,
k → ∞, and

u(k + 1) = (1 − q(k))u(k) + α(k).

Then lim supk→∞ u(k) ≤ 0. In particular, if u(k) ≥ 0, k = 0, 1, . . . ,
then u(k) → 0, k → ∞.

Theorem 3.1. Apply the distributed hybrid controller (5) and
noise generator (6) to heterogeneous multi-agent systems (1). If
Assumptions 2.1–2.3 hold and Ai + BiK1i is Hurwitz,

∑
∞

k=0 βk = ∞,∑
∞

k=0 β2
k < ∞, then

lim
t→∞

E
y(t) −

1
N
(1N1T

N ⊗ Ip)ξ (t)
2 = 0. (12)

roof. Defining V1(k) = ξ̃ T (tk)ξ̃ (tk) and V2(k) = xTc (tk)xc(tk), it
akes from (11) that

1(k + 1) = ξ̃ T (tk+1)ξ̃ (tk+1)

= ξ̃ T (tk)
[
(IN − βk(LT

+ L) + β2
kL

TL) ⊗ Ip
]
ξ̃ (tk)

+ 2ξ̃ T (tk)
[
(IN − βkL − 11T/N) ⊗ Ip

]T [
(βkJA) ⊗ Ip

]
η(t−k+1)

+ β2
k η

T (t−k+1)
[
(AT JT JA) ⊗ Ip

]
η(t−k+1), (13)

nd

2(k + 1) = xTc (tk+1)xc(tk+1)

= xTc (tk)H(eÂhk )xc(tk) + β2
k ξ̃

T (tk)H
(
Π (L ⊗ Ip)

)
ξ̃ (tk)

+ β2
k η

T (t−k+1)H
(
Π (A ⊗ Ip)

)
η(t−k+1)

− 2βkxTc (tk)
[
eÂ

T hkΠ (A ⊗ Ip)
]
η(t−k+1)

+ 2βkxTc (tk)
[
eÂ

T hkΠ (L ⊗ Ip)
]
ξ̃ (tk)

− 2β2
k ξ̃

T (tk)
[
(LT

⊗ Ip)Π TΠ (A ⊗ Ip)
]
η(t−k+1). (14)

efine σ -algebra Fη

k = σ {ξ (t0), η(t−1 ), η(t−2 ), . . . , η(t−k )}, and we
have ξ (tk) ∈ Fη

k from (10). By ξ̃ (tk) = (J ⊗ Ip)ξ (tk), it holds
that ξ̃ (tk) ∈ Fη

k . Thus, ξ̃ (tk) and η(t−k+1) are independent. Taking
conditional expectation with respect to Fη

k at both sides of the
above equations yields that

E
[
V1(k + 1)|Fη

k

]
≤
(
1 − 2βkλ2(L̄) + β2

k ∥L∥
2) ξ̃ T (tk)ξ̃ (tk)

+β2
k ∥JA∥

2E
[
ηT (t−k+1)η(t

−

k+1)|F
η

k

]
. (15)

Similarly, xc(tk) ∈ Fη

k , and there exists υ > 0 such that

E
[
V2(k + 1)|Fη

k

]
≤ (1 + υ)∥eÂhk∥2xTc (tk)xc(tk)

+

(
1 +

1
υ

)
β2
k ∥Π (L ⊗ Ip)∥2ξ̃ T (tk)ξ (tk)

+β2
k ∥A∥

2
∥Π∥

2E
[
∥η(t−k+1)∥

2
|Fη

k

]
. (16)

efine a Lyapunov candidate V = V1 + V2, then

E
[
E
[
V (k + 1)|Fη

k

]](
1 − 2βkλ2(L̄) + β2

k

(
∥L∥

2
+

(
1 +

1
υ

)
∥Π (L ⊗ Ip)∥2

))
E [V1(k)]

+(1 + υ)∥eÂhk∥2E [V2(k)] + β2
k (∥JA∥

2
+ ∥A∥

2
∥Π∥

2)σ 2
η .

Note that by the law of total expectation, we have
E
[
E
[
V (k + 1)|Fη

k

]]
= E [V (k + 1)], and

E
[
E
[
∥η(t−k+1)∥

2
|Fη

k

]]
= E

[
∥η(t−k+1)∥

2]
≤ σ 2

η < ∞.

Since
∑

∞

k=0 β2
k < ∞, we have limk→∞ βk = 0. As Â = A + BK1

is Hurwitz, there exists υ such that ∥eÂhk∥2
≤ ∥eÂhmin∥2

≤
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1−2βkλ2(L̄)+β2
k (∥L∥

2
+(1+ 1

υ )∥Π (L⊗Ip)∥2)
1+υ

, where hmin is the lower bound
of intervals between two adjacent interactions. Hence,

E [V (k + 1)] ≤
(
1 − 2βkλ2(L̄) + β2

k S
)
E [V (k)]

+β2
k (∥JA∥

2
+ ∥A∥

2
∥Π∥

2)σ 2
η . (17)

here S = ∥L∥
2

+
(
1 +

1
υ

)
∥Π (L ⊗ Ip)∥2. Then, there exists M

uch that βk ≤ min
{

λ2(L̄)
∥L∥2+(1+υ)∥Π (L⊗Ip)∥2

, 1
λ2(L̄)

}
for all k > M ,

which holds for

0 ≤ 1 − 2βkλ2(L̄) + β2
k

(
∥L∥

2
+

(
1 +

1
υ

)
∥Π (L ⊗ Ip)∥2

)
< 1.

t also follows that
∑

∞

k=0 2βkλ2(L̄) − β2
k (∥L∥

2
+ (1 +

1
υ
)∥Π (L ⊗

p)∥2) ≥
∑

∞

k=0 βkλ2(L̄) = ∞ and

lim
→∞

β2
k (∥JA∥

2
+ ∥A∥

2
∥Π∥

2)σ 2
η

2βkλ2(L̄) − β2
k (∥L∥2 + (1 +

1
υ
)∥Π (L ⊗ Ip)∥2)

= 0.

herefore, by Lemma 3.1, we have limk→∞ E[V (k)] = 0, which
mplies that limk→∞ E[V1(k)] = 0 and limk→∞ E[V2(k)] = 0.
hen, limt→∞ E[ξ̃ T (t)ξ̃ (t)] = 0, limt→∞ E[xTc (t)xc(t)] = 0. Since

CΠ = INp, we have

lim
t→∞

E
y(t) −

1
N
(1N1T

N ⊗ Ip)ξ (t)
2

lim
t→∞

E
[
H
(
Cx(t) − CΠξ (t) + (J ⊗ Ip)ξ (t)

)]
lim
t→∞

E[2(CxTc (t))Cxc(t)] + lim
t→∞

E[2ξ̃ T (t)ξ̃ (t)] = 0.

This completes the proof. □

Remark 3.2. Theorem 3.1 shows that the output state of each
heterogeneous systems converges to the average of reference
states in mean square. Note that Ai+BiK1i is Hurwitz, and it is easy
to design K1i by the pole-placement method or solving a Riccati
equation AT

i Pi + PiAi − PiBiBT
i Pi + Qi = 0 with Qi as a positive

definite matrix, and then we can design K1i = −BT
i Pi. In addition,

we can set βk =
a1

(k+a2)α
with a1, a2 > 0 and α ∈ (0.5, 1], such

hat
∑

∞

k=0 βk = ∞ and
∑

∞

k=0 β2
k < ∞.

Remark 3.3. Theorem 3.1 also holds for the decaying noises, as
in Nozari et al. (2017), in form of{

φi(t−k ) = ξi(t−k ) + ηi(t−k )
ηi,l(t−k ) ∼ Lap(0, ciqki ), l ∈ {1, 2, . . . , p}, k ∈ N>0

(18)

here ηi(t−k ) and ηj(t−k ) are mutually independent with ci >

0, 0 < qi < 1. This is because, under the decaying noises
(18), it still holds that {η(t−k ), F̄η

k , k ∈ N>0} is a martingale
difference sequence and σ 2

η ≜ supk∈N>0
E
[
∥η(t−k )∥2

]
is bounded,

which implies that (17) holds. Therefore, in aid of the stochastic
approximation method, we relax the selection of privacy noises in
existing literature. However, it rises another problem that how to
design βk to satisfy the requirements on accuracy and ϵ⋆-differ-
ential privacy. This issue will be addressed in the following.

Theorem 3.2. Apply the distributed hybrid controller (5) and
noise generator (6) to heterogeneous multi-agent systems (1). If
Assumptions 2.1–2.3 hold and Ai + BiK1i is Hurwitz,

∑
∞

k=0 βk = ∞,∑
∞

k=0 β2
k < ∞, then limt→∞ E ∥yi(t) − y⋆∥

2
= 0, where y⋆ is a

random vector, satisfying E[y⋆
] =

1
N (1

T
N ⊗ Ip)y(t0) and cov[y⋆

] =

2b2
∑

∞

j=0 β2
j
∑

i∈V
∆2

i
N2 Ip.

Proof. Because the graph is balanced and strongly connected, we
have 1T L = 0. According to the updating of ξ (t ) in (5), we can
N k

5

obtain that

(1T
N ⊗ Ip)ξ (tk) = (1T

N (IN − βk−1L) ⊗ Ip)ξ (t−k )

+ βk−1(1T
NA ⊗ Ip)η(t−k )

= (1T
N ⊗ Ip)ξ (t−k ) + βk−1(1T

NA ⊗ Ip)η(t−k )

= (1T
N ⊗ Ip)ξ (tk−1) + βk−1(1T

NA ⊗ Ip)η(t−k ).

y taking iterations, we have

1T
N ⊗ Ip)ξ (tk) =

∑
i∈V

ξi(t0) +

k∑
j=1

βj−1(1T
NA ⊗ Ip)η(t−j ),

hich immediately follows that

lim
→∞

(1T
N ⊗ Ip)ξ (t) =

∑
i∈V

ξi(t0) +

∞∑
j=1

∑
i∈V

βj−1∆iηi(t−j ).

y Theorem 3.1, we have

lim
→∞

E
yi(t) − y⋆

2 ≤ lim
t→∞

E
yi(t) −

1
N
(1T

N ⊗ Ip)ξ (t)
2

+ lim
t→∞

E
 1
N
(1T

N ⊗ Ip)ξ (t) − y⋆

2 = 0,

ith y⋆
=

1
N

∑
i∈V ξi(t0) +

1
N

∑
∞

j=1
∑

i∈V βj−1∆iηi(t−j ). By the fact
hat ηi(t−k ), i ∈ V , k ∈ N>0 are i.i.d.,

[
y⋆
]

= E

⎡⎣ 1
N

∑
i∈V

ξi(t0) +
1
N

∞∑
j=0

∑
i∈V

βj∆iηi(t−j )

⎤⎦
=

1
N

∑
i∈V

ξi(t0) =
1
N

∑
i∈V

yi(t0), (19)

nd

ov
(
y⋆
)

=

∞∑
j=0

∑
i∈V

β2
j ∆

2
i

N2 2b2Ip. (20)

Because
∑

∞

j=0 β2
j < ∞, ∥cov (y⋆) ∥ is bounded. □

The following theorem provides a way to design control pa-
rameter to ensure the (s⋆, r⋆)-accuracy.

Theorem 3.3. Suppose Assumptions 2.1–2.3 hold. Apply the dis-
tributed hybrid controller (5) with the noise generator (6). Given a
pair of parameters (s⋆, r⋆), if set βk =

a1
(k+a2)α

, α ∈ (0.5, 1], a1 > 0,
2 > 0, and Ai + BiK1i is Hurwitz such that

a21a
−2α+1
2

2α − 1
+

a21
a2α2

≤
s⋆(r⋆)2

2pb2
∑

i∈V
∆2

i
N2

, (21)

then P {∥y⋆
− E[y⋆

]∥ < r⋆} ≥ 1 − s⋆.

Proof. By the multidimensional Chebyshev’s inequality, we have

P
{
(y⋆

− E[y⋆
])T (cov(y⋆))−1(y⋆

− E[y⋆
]) < ϵ

}
≥ 1 −

p
ϵ
.

aking (20) into the above inequality yields{
∥y⋆

− E[y⋆
]∥ <

√
ϵκ
}

≥ 1 −
p
ϵ

(22)

here κ = 2b2
∑

∞

k=0 β2
k
∑

i∈V
∆2

i
N2 . Let r =

√
ϵκ , then ϵ =

r2
κ

and
thus

P
{
∥y⋆

− E[y⋆
]∥ < r

}
≥ 1 −

pκ
r2

. (23)

herefore, heterogeneous systems achieve asymptotically unbi-
sed mean square output average consensus with (s, r)-accuracy,

where s =
2pb2 ∑∞

β2∑ ∆2
i .
r2 j=0 j i∈V N2
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Clearly, as long as
∞∑
k=0

β2
k ≤

s⋆(r⋆)2

2pb2
∑

i∈V
∆2

i
N2

,

t ensures the (s⋆, r⋆)-accuracy. By the fact that the function
f (x) =

a1
(x+a2)α

, with α ∈ (0.5, 1], a1 > 0, a2 > 0, is a strictly
ecreasing function for x > 0. Then, for k ∈ N>0, we have

a1
(k+a2)α

)2
≤
∫ k
k−1

(
a1

(x+a2)α

)2
dx and thus

∞∑
k=0

β2
k =

a21
a2α2

+

∞∑
k=1

(
a1

(k + a2)α

)2

≤
a21
a2α2

+

∫
∞

0

(
a1

(x + a2)α

)2

dx

≤

(
a21(x + a2)−2α+1

−2α + 1

)⏐⏐⏐⏐∞
0

+
a21
a2α2

≤ 0 −
a21a

−2α+1
2

−2α + 1
+

a21
a2α2

≤
s⋆(r⋆)2

2pb2
∑

i∈V
∆2

i
N2

. (24)

his completes the proof. □

Under the non-decaying noises, the proposed controller can
nsure the predefined accuracy by selecting a proper control
ains βk, k ∈ N≥0. Besides, we can enhance the accuracy by
inifying the term

∑
∞

k=0 β2
k .

.3. Privacy analysis

In this subsection, we will show our algorithms are ϵ-
ifferentially private on the dataset D = {yi(0), i ∈ V}. For
ocusing on privacy analysis, we introduce an assumption on
ontrol parameters such that heterogeneous multi-agent systems
an achieve asymptotically unbiased mean square output average
onsensus.

ssumption 3.1. Assume
∑

∞

k=0 βk = ∞,
∑

∞

k=0 β2
k < ∞, βk <

1
∆max

and Ai + BiKi1, i ∈ V is Hurwitz.

Remark 3.4. In Assumption 3.1, besides the basic convergence
condition derived in Theorem 3.2, we need βk < 1

∆max
to ensure

that the trajectories of inner controller states converge from the
beginning.

Before giving the privacy analysis, let us introduce the defi-
nition of sensitivity. For a private dataset D and an observation
O = {φi(t−k ), i ∈ V}

T
k=1, there exist a determinate sequence of

oises {ηi(t−k ), i ∈ V}
T
k=1 and a determinate trajectory ρ(D,O) =

ξ
D,O
i (t−k ), i ∈ V}

T
k=1. Based on the sensitivity defined by Cortés,

t al. (2016), the sensitivity of the interaction information at
iscrete-time instants in this paper is defined as follows.

efinition 3.1. The sensitivity of a randomized mechanism M at
ime tk ≥ 0 is

(tk) = sup
D,D′∈D,O∈O

∥ρ(D,O)(t−k ) − ρ(D′,O)(t−k )∥1

∥D − D′∥1
. (25)

Sensitivity is a measure of the difference of two observed
trajectories induced by changing the private dataset.

Theorem 3.4. Suppose Assumptions 2.1–2.3 and 3.1 hold. Applying
the distributed controller (5) and noise generator (6) yields

S(tk) =

{
1, k = 1∏k−2 (26)
l=0 (1 − βl∆min), k ≥ 2

6

where ∆min is the minimum degree of the graph.

Proof. Assume a pair of private datasets D = {yi(t0), i ∈ V}

and D′
= {y′

i(t0), i ∈ V}, and a set of observation O. Denote
P = {ρ(D,O) : O ∈ O} and P ′

= {ρ(D′,O) : O ∈ O}

as the set of possible trajectories under the controller (5) w.r.t.
D and D′ in the observation set O. The trajectories subject to
the probability density functions f (D, ρ(D,O)) and f (D′, ρ(D′,O)),
respectively. Based on the controller (5), because the observations
O = {φj(t−k ), j ∈ V} for D and D′ are the same, it has

ξ
D,O
i (t−k+1) = ξ

D,O
i (tk) = (1 − βk−1∆i)ξ

D,O
i (t−k ) + βk−1

∑
j∈Ni

φj(t−k ),

and it is similar for D′ such that

ξ
D′,O
i (t−k+1) = ξ

D′,O
i (tk) = (1 − βk−1∆i)ξ

D′,O
i (t−k ) + βk−1

∑
j∈Ni

φj(t−k ).

Therefore,

ξ
D′,O
i (t−k+1) − ξ

D,O
i (t−k+1)

= ξ
D′,O
i (tk) − ξ

D,O
i (tk)

= (1 − βk−1∆i)
(
ξ
D′,O
i (t−k ) − ξ

D,O
i (t−k )

)
=

k−1∏
l=0

(1 − βl∆i)
(
ξ
D′,O
i (t0) − ξ

D,O
i (t0)

)
. (27)

Defining J = {1, 2, . . . , p}, it follows that for k = 1,

∥ρ(D,O)(t−1 ) − ρ(D′,O)(t−1 )∥1

=

∑
i∈V

∑
j∈J

⏐⏐⏐ξD′,O
i,j (t0) − ξ

D,O
i,j (t0)

⏐⏐⏐
=

∑
i∈V

∑
j∈J

⏐⏐y′

i,j(t0) − yi,j(t0)
⏐⏐

= ∥D − D′
∥1 ≤ S(t1)∥D − D′

∥1, (28)

and for k ≥ 2, it has

∥ρ(D,O)(t−k ) − ρ(D′,O)(t−k )∥1

=

∑
i∈V

∑
j∈J

⏐⏐⏐ξD′,O
i,j (t−k ) − ξ

D,O
i,j (t−k )

⏐⏐⏐
=

∑
i∈V

∑
j∈J

(
k−2∏
l=0

(1 − βl∆i)

) ⏐⏐⏐ξD′,O
i,j (t0) − ξ

D,O
i,j (t0)

⏐⏐⏐
≤

(
k−2∏
l=0

(1 − βl∆min)

)∑
i∈V

∑
j∈J

⏐⏐⏐ξD′,O
i,j (t0) − ξ

D,O
i,j (t0)

⏐⏐⏐
≤

(
k−2∏
l=0

(1 − βl∆min)

)
∥D − D′

∥1

≤ S(tk)∥D − D′
∥1. (29)

Thus, S(t1) = 1 and S(tk) =
∏k−2

l=0 (1 − βl∆min) for k ≥ 2. This
completes the proof. □

Then, it is ready to calculate the differential privacy index ϵ of
the proposed algorithm.

Theorem 3.5. Suppose Assumptions 2.1–2.3 and 3.1 hold. The dis-
tributed controller (5) with the noise generator (6) is ϵ-differentially
private for heterogeneous systems (1) over time horizon T with

ϵ =

∑T
k=1 S(tk)
b

. (30)
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roof. Recall that P = {ρ(D,O) : O ∈ O} and P ′
= {ρ(D′,O) :

∈ O} are the set of possible trajectories under the controller
5) w.r.t. D and D′ in the observation set O, and the trajecto-
ies subject to the probability density functions f (D, ρ(D,O)) and
(D′, ρ(D′,O)), respectively. Then, it can be obtained that

P[M(D) ∈ O]

P[M(D′) ∈ O]
=

∫
ρ(D,O)∈P f (D, ρ(D,O)) dτ∫

ρ(D′,O)∈P ′ f (D′, ρ(D′,O)) dτ ′
.

Denoting T = {1, 2, . . . , T } and W = V × J × T , the probability
density functions f (D, ρ(D,O)) over time horizon T are

f (D, ρ(D,O)) =

∏
i∈V, k∈T

f (D, ρ(D,O)i(t−k ))

=

∏
(i,j,k)∈W

1
2b

exp

(
−

⏐⏐ρ(D,O)i,j(t−k ) − φi,j(t−k )
⏐⏐

b

)
. (31)

s they have the same observation over time horizon T , there
exists a bijection g(·) : P → P ′, such that for any pair of
ρ(D,O) ∈ P and ρ(D′,O) ∈ P ′, it has g(ρ(D,O)) = ρ(D′,O). By
the rationale of φi(t−k ) = ξi(t−k ) + η(t−k ), ηi(t−k ) ∼ Lap(0, bIp) and
the observations O = {φi(t−1 ), φi(t−2 ), . . . , φi(t−T )}, then combining
(31) yields

P[M(D) ∈ O]

P[M(D′) ∈ O]
=

∫
ρ(D,O)∈P f (D, ρ(D,O)) dτ∫

g(ρ(D,O))∈P ′ f (D′, g(ρ(D,O))) dτ

=

∫
ρ(D,O)∈P f (D, ρ(D,O)) dτ∫

ρ(D,O)∈P f (D′, g(ρ(D,O))) dτ

=

∏
(i,j,k)∈W

exp

(
−

⏐⏐ρ(D,O)i,j(t−k ) − φi,j(t−k )
⏐⏐

b

+

⏐⏐ρ(D′,O)i,j(t−k ) − φi,j(t−k )
⏐⏐

b

)

≤

∏
(i,j,k)∈W

exp

⎛⎝
⏐⏐⏐ξD′,O

i,j (t−k ) − ξ
D,O
i,j (t−k )

⏐⏐⏐
b

⎞⎠ . (32)

Combining (29) and (32), it has
P[M(D) ∈ O]

P[M(D′) ∈ O]

= exp

⎛⎝∑k∈T
∑

i∈V
∑

j∈J

⏐⏐⏐ξD′,O
i,j (t−k ) − ξ

D,O
i,j (t−k )

⏐⏐⏐
b

⎞⎠
≤ exp

⎛⎝
(
1 +

∑
k∈T /{1}

∏k−2
l=0 (1 − βl|Ni|min)

)
∥D − D′

∥1

b

⎞⎠
≤ exp

(∑T
k=1 S(tk)∥D − D′

∥1

b

)
. (33)

ence, we can obtain that ϵ =

∑T
k=1 S(tk)

b . □

emark 3.5. Theorem 3.5 reveals that the differential privacy
coefficient ϵ can be described by the sum of sensitivity. According
to (26), greater {βk} gives a smaller S(tk), which further leads to
smaller ϵ and a better protection. Similarly, if we select privacy
oises with a greater parameter b, then ϵ becomes smaller and
hus the preservation is stronger.

In the following, we focus on how to design the time-varying
ain to satisfy the predefined ϵ⋆-differential privacy over the
nfinite time horizon.
7

Theorem 3.6. Suppose the same assumptions in Theorem 3.5 hold.
Apply the distributed hybrid controller (5) with the noise generator
(6). Given a parameter ϵ⋆ and set βk =

a1
∆min(k+a2)α

, α ∈ (0.5, 1),
1 > 0, a2 > 0, then the controller ensures ϵ⋆-differentially private

over the infinite time horizon if

1
b

+
a

−1
γ

1 γ
1−γ
γ

b
exp

(
a1a

γ

2

γ

)
Γ

(
1
γ

,
a1a

γ

2

γ

)
≤ ϵ⋆ (34)

here γ = 1 − α and Γ (·, ·) is the upper incomplete gamma
unction.

roof. Based on the results in Theorems 3.4 and 3.5, under the
ontroller (5), taking βk =

a1
∆min(k+a2)α

into Eq. (26) yields

S(tk) =

{
1, k = 1∏k−2

l=0 (1 −
a1

(l+a2)α
), k ≥ 2.

aking logarithm on both sides, we have

n(S(tk)) =

{
0, k = 1∑k−2

l=0 ln(1 −
a1

(l+a2)α
), k ≥ 2.

Let us focus on the case when k ≥ 2. By Assumption 3.1,
βk∆max < 1 implies that a1

(k+a2)α
= βk∆min < 1. Then, due to

the fact that ln(1 + x) ≤ x holds for any x > −1, we have

n(S(tk)) ≤ −

k−2∑
l=0

a1
(l + a2)α

≤ −

∫ a2+1

a2

a1
xα

dx · · · −

∫ k+a2−1

k+a2−2

a1
xα

dx

≤ −

∫ k+a2−1

a2

a1
xα

dx = −
a1x1−α

1 − α

⏐⏐⏐k+a2−1

a2
.

Therefore, denoting γ = 1 − α, for k ≥ 2, it has

S(tk) ≤ exp
(

−
a1

1 − α

(
(k + a2 − 1)1−α

− a21−α
))

≤ exp
(
a1a

γ

2

γ

)
exp

(
−

a1
γ

(k + a2 − 1)γ
)

. (35)

We note that (35) shows an upper bound of S(tk). It is ready
o calculate the sum of S(tk).

lim
T→∞

T∑
k=1

S(tk) = S(t1) + lim
T→∞

T∑
k=2

S(tk)

≤ 1 + exp
(
a1a

γ

2

γ

)
lim
T→∞

T∑
k=2

exp
(

−
a1
γ

(k + a2 − 1)γ
)

. (36)

Note that γ ∈ (0, 0.5), hence, for x > 0, the function f (x) =

xp
(
−

a1
γ
xγ
)

decreases as x increases. Denote τ =
a1
γ
xγ , then

t has dτ = a1xγ−1dx, which follows dx = ( γ

a1
τ )

1−γ
γ a−1

1 dτ =

a
−

1
γ

1 (γ τ )
1−γ
γ dτ and

lim
T→∞

T∑
k=2

exp
(

−
a1
γ

(k + a2 − 1)γ
)

≤ lim
T→∞

T∑
k=2

∫ k+a2−1

k+a2−2
exp

(
−

a1
γ

xγ

)
dx

≤ lim
∫ T+a2−1

exp
(

−
a1 xγ

)
dx
T→∞ a2 γ
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Fig. 2. The topology of communication graph.

≤ lim
T→∞

a
−

1
γ

1

∫ a1
γ (T+a2−1)γ

a1
γ aγ

2

exp (−τ) (γ τ )
1−γ
γ dτ

≤ lim
T→∞

a
−

1
γ

1 γ
1−γ
γ

∫ a1
γ (T+a2−1)γ

a1
γ aγ

2

exp (−τ) τ
1
γ −1dτ

≤ a
−

1
γ

1 γ
1−γ
γ Γ

(
1
γ

,
a1a

γ

2

γ

)
, (37)

here Γ (·, ·) is the upper incomplete gamma function. Hence,
combining (36) and (37), it has

ϵ = lim
T→∞

∑T
k=1 S(tk)
b

≤
1
b

+
a

−1
γ

1 γ
1−γ
γ

b
exp

(
a1a

γ

2

γ

)
Γ

(
1
γ

,
a1a

γ

2

γ

)
≤ ϵ⋆.

his completes the proof. □

emark 3.6. Theorem 3.6 gives an upper bound of differential
rivacy coefficient ϵ when βk is designed in a certain form.
hen the minimum degree of the graph is unknown. Based on
heorem 3.6, if setting βk =

a1
(k+a2)α

under Assumption 3.1, then

ϵ ≤
1
b

+
a

−1
γ

1 ∆
1
γ

minγ
1−γ
γ

b
exp

(
a1a

γ

2

∆minγ

)
Γ

(
1
γ

,
a1a

γ

2

∆minγ

)
.

By (26), (30) and the above inequality, increasing a1 has the same
effect as decreasing ∆min on both differential privacy coefficient
ϵ and the obtained boundary. Moreover, as we know, ϵ increases
s βk decreases, namely, α increases (or a1 decreases, or a2
ncreases). Similarly, the obtained boundary also increases as α

increases (or a1 decreases, or a2 increases).

Remark 3.7. Given the predefined indices (r⋆, s⋆)-accuracy and
⋆-differential privacy. Based on Theorems 3.3 and 3.6, we can
esign the noise parameter b and the control gain βk =

a1
(k+a2)α

ith a1, a2 > 0 and α ∈ (0.5, 1), such that (21) holds and

1
b

+
a

−1
γ

1 ∆
1
γ

minγ
1−γ
γ

b
exp

(
a1a

γ

2

∆minγ

)
Γ

(
1
γ

,
a1a

γ

2

∆minγ

)
≤ ϵ⋆.

n Theorem 3.3, we find that α ∈ (0.5, 1] can guarantee the
onvergence of algorithm. However, in Theorem 3.6, we require
∈ (0.5, 1) to ensure the algorithm to be ϵ-differentially private
ver the infinite time horizon. This is because if α = 1 we have
imT→∞

∑T
k=1 S(tk) = ∞ and thus ϵ =

∑
∞

k=1
S(tk)
b → ∞.
8

Fig. 3. The trajectories of reference states, delivered states, and output states
under the proposed controller (5) with a time-varying control gain and
non-decaying noises (6).

4. Simulation

In this section, we consider ten heterogeneous continuous-
time multi-agent systems coupled by the communication graph
in Fig. 2. In this example, we aim to achieve consensus with
(s⋆, r⋆)-accuracy and ϵ⋆-differential privacy, where s⋆ = 0.35,
r⋆

= 4, and ϵ⋆
= 1.

The dynamics of each agent is⎧⎨⎩ ẋi(t) =

(
0 1
ai ei

)
xi(t) +

(
0
bi

)
ui(t),

yi =
(

1 0
)
xi, i ∈ V1 = {1, . . . , 5},

(38)

⎧⎪⎪⎨⎪⎪⎩
ẋi(t) =

( 0 1 0
0 0 1
ai ei fi

)
xi(t) +

( 0
0
bi

)
ui(t),

yi =
(

1 0 0
)
xi, i ∈ V2 = {6, . . . , 10},

(39)

where for i ∈ V1, ai = −0.3 + 0.4 ∗ i, bi = −0.2 + 0.4 ∗ i,
ei = −1.6 + 0.6 ∗ i and for i ∈ V2, ai = 1.3 − 0.3 ∗ (i − 5), bi =

2.2−0.2∗(i−5), ei = 3.4−0.4∗(i−5), fi = −0.1−0.3∗(i−5). The
initial states are selected randomly on the interval [0, 90], where
the average of the initial outputs is calculated as yave = 47.67.

We employ the proposed controller (5) and make a compari-
son between using non-decaying noises (6) with b = 4 and using
decaying noises (18) as in Nozari et al. (2017) with ci = 4qi =

0.95. Based on (2), for each agent, the solution (Πi,Ui) can be pre-
sented as: for i ∈ V1, Πi = [1, 0]T and Ui = −

ai
bi
; for i ∈ V2, Πi =

1, 0, 0]T and Ui = −
ai
bi
. Then, using pole-placement method,

we set K11 = [−128, −45.5], K12 = [−43.3, −16.2], K13 =

[−26.4, −10.3], K = [−19.1, −7.7], K = [−15.1, −6.4],
14 15
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Fig. 4. The trajectories of reference states, delivered states, and output states
nder the proposed controller (5) with a constant control gain and decaying
oises (18) (Nozari et al., 2017).

Fig. 5. The boundary of differential privacy coefficient ϵ with respect to the
arameter set (α, a1, a2) under the privacy noise (6) with b = 4.

K16 = [−66.8, −40.5, −7.75], K17 = [−74.1, −44.8, −8.8],
K18 = [−83.1, −50.1, −10], K19 = [−94.9, −57, −11.7], and
K1(10) = [−110, −66.2, −13.9], such that all the poles of Ai+BiK1i
are less than −5. Based on the theoretical results, the impulsive
intervals are set as hk = 0.1s. For the case of non-decaying noises,
the control gain is set as βk = 1/(k + 3)0.75. For the case of
decaying noises, as in Nozari et al. (2017), we set the control
gain a constant, say βk = β = 0.2. The results are shown in
Figs. 3 and 4, respectively, where trajectories of ξ (t), φ(t), and
y(t) are displayed. It is observed that the delivered information
φi(t) keeps random under non-decaying noises. Fig. 5 reveals the
relation between the privacy index ϵ and the control parameter
set (a1, a2, α) in form of βk =

a1
(k+a2)α

. It is observed that ϵ

increases as a or α increases, and ϵ decreases as a increases.
2 1

9

5. Conclusion

In this paper, we have developed a differentially private con-
sensus algorithm for the average output consensus problem of
continuous-time heterogeneous systems. The proposed algorithm
has achieved asymptotically unbiased mean square output aver-
age consensus and at the same time protected the initial privacy
of each agent. We have relaxed the selection of privacy noises in
the existing mechanisms by using the stochastic approximation
method, such that the privacy noises are no longer required to
decay exponentially with time. Furthermore, we have developed
a method to design the time-varying control gain to guaran-
tee the desired accuracy and differential privacy. There are still
many interesting topics deserving further investigation, includ-
ing differentially private consensus under time-varying digraphs
and how to asynchronously activate privacy noises to meet the
differential privacy requirement.
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