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General lemmas for stability analysis of linear continuous-time
systems with slowly time-varying parameters

JI-FENG ZHANG+

This note investigates stability conditions for some dynamic systems with slowly
time-varying parameters or with unknown internal or external disturbances
The models and conditions are motivated by adaptive control problems. The
results presented here provide some sufficient conditions for the exponential
convergence of the state sequence of systems without system disturbance, and
for the uniform boundedness of the state sequence of such systems when they
are subject to uniformly bounded system disturbances.

1. Introduction

Over the last two decades, adaptive control problems have been the subject
of intensive study in systems and control theory (see for example, the texts by
Astrém and Wittenmark 1989, Caines 1988, Chen and Guo 1991, and the papers
by Goodwin et al. 1991, Ortega and Tang 1989). The strategies to construct
adaptive control laws are often quite different, but they usually have one
common aspect; that is, they combine some estimation procedure with the
‘certainty equivalence principle’. This often leads to a closed-loop system which
has time-varying parameters. Therefore, an analysis of the stability of the
corresponding closed-loop system is equivalent to an analysis of the stability of a
corresponding time-varying system.

When the system parameter varies arbitrarily, it is hard to find a general
method to tell us whether or not the system is stable. For the case where the
time-varying parameters are differentiable and the derivatives of the parameters
are sufficiently small, an early work of Desoer (1969) showed that the systems in
question are exponentially stable. For the case where the derivatives of the
parameters are not sufficiently small, a counter-example shows that the system
may be unstable (see for example, Rosenbrock 1963). Moreover, in many
situations of interest, the time-variation of the parameters is not differentiable
(see for example, Ezzine and Haddad 1989, Feng et al. 1992, Sworder and Chou
1985).

Example 1: Suppose the time-varying system is described by x(t) = A()x(1).
Then if

_[Antei2i+1), i=0,1,...
A(f)‘{Az,ze[sz,sz), f= L. (@)
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where

_ ot _ | —log2 2
Ay =l ‘[ 0 —10g2j

then all the eigenvalues of A(r) are —log2 and —log2 for all 1 = 0. But, for the
initial condition

x(0) =\—4@ V2-1,1J

the solution is

2-Vi+ W2t — 2k)
Zz_2k+2 (é . \/i)k,
V2

4 2
t=2k+2

Vi e [2k, 2k + 1)

x(t)y =13 —
2 +V2

2r—2k+2 (3 ﬁ

=+
22+V)R2-2k-1+V2 |4 2
21—2k+2

k
), Vi e [2k + 1, 2k + 2)

From this we get

4 2

which means that |lx(¢)|| exponentially goes to infinity.
However, if

()| = % (§ + l/_%) ﬁ, Yt =2

Ay = [Av £ € 160, 6i £ 3), i @

0,1,...
1A tef6i+3,6i+6), i=0,1,...

then we can show that |[x(r)|| exponentially converges to zero for any initial
value x(0).

It is easy to see that A(f), given by (1) or (2), is piecewise constant. The
only difference is that A(¢) in (1) jumps faster than A(t) in (2). From this, and
the analysis mentioned above, we observe that if the parameters jump ‘too’ fast,
then the system may be unstable even if all the eigenvalues of A(7) < —¢< 0.
However, if the parameters jump rarely enough in some sense, then

A(r) = —& < 0 can ensure the stability of the system. O

This note is a continuous-time version of the previous work of Giri et al.
(1990), which presents a general lemma for investigating the uniform bounded-
ness of the solutions of a class of discrete-time systems. The purpose of this note
is to provide some sufficient conditions on the time-varying parameters, which
may be continuous or discontinuous functions of time ¢, in order to guarantee
the exponential convergence of the state sequence of the corresponding auto-
nomous systems (i.e. without disturbance), and to guarantee the uniform
boundedness of the state sequence of the involved systems with uniformly
bounded disturbances.
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2. Main results

Similar to Giri et al. (1990), we introduce the following definitions, which are
suitable to measure the degree of variation of parameters which are continuously
or discontinuously varying in time.

Definition 1: Let pe R. A real process {s(¢)} is said to be p-asymptotically
small in the mean if

| e
lirinsup lilzl sup ?L s(tyder = pu (3)

O

Definition 2: Let veR and {S(f)} be real matrix process. If there is a real
number sequence {z;} satisfying

te < tr41 =2, @ and sup (g4 — f) AT < o,
k=0
such that
1 ty+!
limsuplimsup [ 1S ~ S(ellde < v 4)
—s 00 c—> 00 ty

then {S(¢)} said to be v-asymptotically slowly varying in the mean (v-ASVM)
with respect to {t;}. O

For a real number p, the set of all w-asymptotically-small-in-the-mean
processes is denoted by S,(u). Similarly, for a real number v and a sequence

{t,}, the set of all the matrix processes of v-ASVM with respect to {z;} is
denoted by V, (v, {t}).

Lemma 1: Suppose that {F(1)} € V,(v, {f}) is an n X n matrix-valued process,
and satisfies

sup |F(#)] = C < = and max {RA(F(x)),i=1,..,mk=1,2,...} < -«
k=1
(5)

where {1} is the same as in Definition 2, C and « >0 are constants, A(F(1;))
denotes the ith eigenvalue of martrix F(t,), and RA;(F(#)) denotes the real part
of Li(F(1)). If {x(t)} is generated by

x(1) = F()x(z) (6)

then there exists a real number vy such that for any ve [0, v),
to zero exponentially.

x(1)| converges

Proof: Define the fundamental matrix @, , of F(1), i.e.
de,

dr

It is easy to see that in order to prove the lemma, it suffices to show that there
exists a real number v, such that for any v e [0, v)

H(‘Dt.uH = Clﬁr_“-: Vizuz=0 (8)

= F(t)®,g, Dy =1, D,y = ®,0Prp, Vi, u=0 (7)

where C; < « and f§ € (0, 1) are constants.
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By (5) and the argument used by Desoer (1970) we may conclude that there

exist constants M = 1 and p > 0 such that
exp {F(1)(t — 5)} < Me ™™= Yi=5=0

Noticing that {F(1)} € V,(v, {1;}), we see that there exists T =2p 'log M

such that
f[\m) —Fllds<vir—1), Vu=T, Vi—-4=T
Set
Ty = nf_lfgx{tl-: tefto+ T, 00+ T+ T])
and
Tl = T}aox{ti: te(Ti+ T, T+ T+ T, Yk=0

where T is defined in Definition 2.
Then it is clear that

T=TPeu~Tha=TasT (9)
exp {F(T)(t —s)} < Me ™79, Vi=s5=0 (10)
Ty
fT: |Fs) = F(Tollds < (T + T) (11)
For any fixed Ty, from (7) we get
do, ,
Tf- = F(Tk)d)l.u & [F(!) . F(Tk)]cpt.ua d)u.u =I, Yt= Tk =u = TO

(12)
which implies that

i
@y = TN TIy , + [ FTNIF() - F(T)]Dds  (13)
From this and (10) it follows that

‘
”(I)r,u” = Me_p({_n)”@ﬂ.u“ + MJ‘T e_p(r_S)“F(s) - F(Tk)”' H(Ds.qus
k

m(t) = Mm(T,) + Mka”F(S) — F(Ty)||lm(s)ds (14)
where m(t) & e”'||®, |

From the Bellman-Gronwall lemma (see for example, Desoer and Vidy-
asagar 1975) it follows from (14) that

m(t) < Mm(TQexp{MLJF(s) - F(Tk)|ds}

t
Iid)r‘u” = MCXP{_p(l - Tk) + MJ;HF(S) - F(Tk)|ds} X quﬂnuH (15)
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Combining this with (11) leads to
|®7,. all < [@r,]| - MeC¥ITHD (16)

for any fixed v e [0, M !). Therefore, if we take

v0=min{L, _L};r__m]n{ 1 (p_ _luogM )’L}
aM M 2M T+7T/) M

then for any fixed v e [0, v)

o & Me~MIT+D) < 1 and oATHDT < e
Hence, (16) implies that
|Pr,..ll < @@z, .l {17

For any fixed t = u = T, it is easy to see that there exist k; and k, such that
kr = k“, e [Tﬁc 3 Tk +1.) and u € [Tku’ Tk“+'l)-
By (7) and |[@, ] =1 we get

r
[P0l < 1+ [JEG-I@ulds, Vo= u=T,

This, together with the Bellman—-Gronwall lemma (see, for example, Desoer
and Vidyasagar 1975) yields

!
001 = exp{[IFG) 105} vizu=T,

which, combined with (11) and the condition sup=q|[F()|| = C, implies that
Tys1 N
for, .l = o { [ TIFGas} < esp (v + T + )
ke
Therefore, from (15), (11) and (17) it follows that
@, < Mexp{(Mv+ v+ CUT + T)yak ! (18)

for any t = u = Ty.

By (9) and the definitions of k, and k, we see that t —u < T} .1 — T} =<
(k,— k,+ 1)(T + T). Thus, we have

ki—k,=(T+T)t—u -1
Substituting this into (18) results in
[ @]l < Mexp{(My + v+ OXT + T)}alT*T70m02

which together with a7*7)"" < e™# implies
@, ]l < Mexp{(Mv + v+ C(T + T)}a e P94 Vi=u= T,

From this it is not difficult to see that (8) holds for some large enough constant
Cyand B=e " e(0, 1). O

Corollary 1:  Suppose that F(0) is stable, F(t) satisfies

r
fimsap 1LnF(s) _ FO)|ds < v
D
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Then there exists a real number vy such that for any ve [0, vy), {x(1)} generated
by (6) is exponentially stable.
The proof is similar to that in Lemma 1. It is omitted here.
Lemma 2:  Suppose that {x,} is generated by
dx, = F(1)x,dt + v,dt + G,dw, (19)

where {w,} is a standard brownian motion, sup,~ |G/ <=, G, and v, are
F, 2 o{x;: 0=s=<1} measurable, and {v:} is uniformly bounded in the sense
that

[ leslPas = 06 + 1) 20)

If F(t) satisfies all the conditions of Lemma 1 for some constants C >0, a >0
and a deterministic sequence {1}, then there exists a constant vy such that for any
ve [0, v)

| belPds = oGt + 1) 1)

Proof: Let @,; denote the fundamental matrix of F(r) given by (7). Then, by
the argument of Lemma 1, we have for some (deterministic) constants C; and
pe(0, 1)

@, ]| < Cie P9, V=520 (22)

From (19) we see that
t I
X = (I)r‘()xﬂ o+ faq)f.sus ds + J;)éi‘,sGsdws (23)

From (22) it follows that

t
J(I

Therefore, from (20). (24) and (23) we see that in order to prove (21) it
suffices to show

A
J;] q)ix.s Ug ds

¢ ty A 2 Cz '
di = C%J (feﬁ("‘”vsfds) di < —1f v, Pds  (24)
0\ /0 ﬁQ 0

[lesFar = 0 + 1 23)

where

T
& = J'G(p.'.sGs dwy (26)
P = E( | ora,,ds
i
Then it is easy to see that

To this end, set V, = g, Pg,, where

P, =—I— F'(1)P, — PF(1) (27)
and by (22)

IB) = €3 e s = CH/2p) 28)
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From (26) we see
dg, = F(t)g, dt + G,dw, with g, =0
which together with (27) implies that
dv, = —|g|fdt + tr (P.G:G,)dr + 2g;P,G,dw,

From this it follows that
{ T r
[ s as = Vo + [Jor (BGIG)ds + 2] gTP.Gdw, (29)

Noticing that (see for example, Christopeit 1986)

!

' 1/2+¢
[grpGiam = of[[lsinipas] ). veo
by (28), (29) and the condition sup,=q |G| < ® we get (25), and hence, (21). 0

Lemma 3:  Assume that
(a) there exists a real number K such that for all 1 =0
() = s(t)r(r) + K, and (30)
(b) there exists a positive real & such that {s(1)} € S,(—9)

+u

sup s(A)dA < oo, for any fixed T < = (31)
=0
O=u=T

Then, {r(t)} subject to (30) is uniformly upper-bounded. In addition, if K =0
and {r(t)} is non-negative, then {r(t)} converges exponentially to zero.

Proof: From (30) it is easy to see that

r(t) < exp { fu s(2) dl} #0) + K fﬂrexp { J !s(A) cm} du (32)

Noticing that {s(t)} € S,(—98), we can find a sufficiently large number T <
such that forallu=Tand t —u=T

Emas—gum

Therefore, from (31) and (32) it follows that there is a constant C, independent
of K such that for all t =2T

1 o t t
r(t) < [Ir(0)|exp {fo s(A) dl}]exp{—% (t — T)} + !K|Jr7Texp {LS(A) dh} du

r 7
- \K\L exp {Ls()t)d/l}duexp {——2— (t - T)}

=T

+ iK{L exp{—g (r — u)}du

- cfon{-2 - 1)) + cix

which, together with (31), leads to the desired results. O
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3. Conclusions
In Lemmas 1 and 2, Condition (5) is obviously weaker than

sup [F(r)| < = and sup{max {RA,(F(1)),i=1,...,n}} < —-a<0
=0

=0

This is essential for the analysis of stability of an adaptive control system or a
hybrid system with parameters which rarely jump.

Moreover, from Definition 2, and Lemmas 1 and 2 it is easy to see if the
system with ‘frozen’ parameters at time instant #; is stable and the parameters
vary slowly in the mean, then the real system with time-varying parameters is
also stable. This fact has been used to investigate stability of a hybrid system
with feedback control and with time-varying but snapshot parameters (see
Caines and Zhang 1992).
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