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a b s t r a c t

This work is concerned with stochastic consensus conditions of multi-agent systems with both time-
delays and measurement noises. For the case of additive noises, we develop some necessary conditions
and sufficient conditions for stochastic weak consensus by estimating the differential resolvent func-
tion for delay equations. By the martingale convergence theorem, we obtain necessary conditions and
sufficient conditions for stochastic strong consensus. For the case of multiplicative noises, we consider
two kinds of time-delays, appeared in the measurement term and the noise term, respectively. We
first show that stochastic weak consensus with the exponential convergence rate implies stochastic
strong consensus. Then by constructing degenerate Lyapunov functional, we find the sufficient consensus
conditions and show that stochastic consensus can be achieved by carefully choosing the control gain
according to the noise intensities and the time-delay in the measurement term.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The research on consensus in multi-agent systems, which in-
volves coordination of multiple entities with only limited neigh-
borhood information to reach a global goal for the entire team,
has offered promising support for solutions in distributed systems,
such as flocking behavior and swarms (Liu, Passino, & Polycarpou,
2003; Martin, Girard, Fazeli, & Jadbabaie, 2014; Zhu, Xie, Han,
Meng, & Teo, 2017), sensor networks (Akyildiz, Su, Sankarasub-
ramaniam, & Cayirci, 2002; Ogren, Fiorelli, & Leonard, 2004). Due
to that time-delays are unavoidable in almost all practical sys-
tems and the real communication processes are often disturbed by
various random factors, each agent cannot measure its neighbors’
states timely and accurately. Hence, there has been substantial and
increasing interest in recent years in the consensus problem of the
multi-agent systems subject to the phenomenon of time-delay and
measurement noise (or stochasticity).

✩ The material in this paper was not presented at any conference. This paper
was recommended for publication in revised form by Associate Editor Hideaki Ishii
under the direction of Editor Christos G. Cassandras.
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jif@iss.ac.cn (J.-F. Zhang).

So far lots of achievements have been made in the research
of consensus problems of multi-agent systems with time-delays.
Olfati-Saber and Murray (2004) presented that small time-delay
does not affect the consensus property of the protocol. Lin and Ren
(2014) studied a constrained consensus problem for multi-agent
systems in unbalanced networks in the presence of time-delays.
For the case of distributed time-delays, Munz, Papachristodoulou,
and Allgower (2011) showed that the consensus for single inte-
grator multi-agent systems can be reached under the same condi-
tions as the delay-free case. For the high-order linear multi-agent
systems, the time-delay boundwas investigated in Cepeda-Gomez
andOlgac (2011) andWang, Zhang, Fu, and Zhang (2017). Themen-
tioned papers above are for the continuous-time models. For the
discrete-time models, we refer to Hadjicostis and Charalambous
(2014), Liu, Li, and Xie (2011), Sakurama and Nakano (2015) and
the references therein.

Additive and multiplicative noises have been used to model
the measurement uncertainties in multi-agent systems. Different
from the deterministic consensus dynamics, in the presence of
noises, the convergence of stochastic consensus dynamics presents
various kinds of probabilistic meanings, where the almost sure
consensus and themean square consensus are of themost practical
interest. Note that mean square convergence and almost sure
convergence cannot generally imply each other (see Mao (1997)).
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So analyzing the relationship between the two kinds of stochastic
consensus is imperative and important. To date, much literature
has been devoted to stochastic consensus analysis of multi-agent
systems with measurement noises.

Additive noises in multi-agent systems are often consid-
ered as external interferences and independent of agents’ states.
For discrete-time models, distributed stochastic approximation
method was introduced for multi-agent systems with additive
noises, and mean square and almost sure consensus conditions
were obtained in Aysal and Barner (2010), Huang, Dey, Nair, and
Manton (2010), Huang and Manton (2009), Kar and Moura (2009),
Li and Zhang (2010) andXu, Zhang, and Xie (2012). For continuous-
time models, the necessary and sufficient conditions of mean
square average-consensus were obtained in Cheng, Hou, Tan, and
Wang (2011) and Li and Zhang (2009). And the sufficient condi-
tions of almost sure strong consensus were stated in Wang and
Zhang (2009). Tang and Li (2015) gave the relationship between
the convergence rate of the consensus error and a representative
class of consensus gains in both mean square and probability one.

Multiplicative noises can be generated by data transmission
channels, both during the propagation of radio signals and under
signal processing by receivers or detectors. Multiplicative noises
have been investigated intensively in Tuzlukov (2002) for signal
processing. In multi-agent systems, multiplicative noises have to
be considered when there is channel fading or logarithmic quanti-
zation (Carlia & Fagnanib, 2008; Dimarogonas & Johansson, 2010;
Li,Wu, & Zhang, 2014;Wang & Elia, 2013). For themulti-agent sys-
tems with multiplicative noises, Ni and Li (2013) investigated the
consensus problems of continuous-time systems with the noise
intensities being proportional to the absolute value of the relative
states of agents. Then this work was extended to the discrete-
time version in Long, Liu, and Xie (2015). Li et al. (2014) studied
the distributed averaging with general multiplicative noises and
developed some necessary conditions and sufficient conditions for
mean square and almost sure average-consensus. Taking the two
classes of measurement noises into consideration, Zong, Li, and
Zhang (2018) gave the necessary and sufficient conditions of mean
square and almost sureweak and strong consensus for continuous-
time models.

When time-delays and noises coexist in real multi-agent net-
works, these works above are far from enough to deal with the
consensus problem. Based on this phenomenon, the distributed
consensus problem was addressed in Liu, Xie, and Zhang (2011),
and the approximate mean square consensus problem was exam-
ined in Amelina, Fradkov, Jiang, and Vergados (2015) for discrete-
time models. For continuous-time models, Liu, Liu, Xie, and Zhang
(2011) presented some sufficient conditions for the mean square
average-consensus. However, the mean square weak consensus,
and the almost sure consensus have not been taken into account
even for the case with balanced graphs. Moreover, the works
stated above are for the additive measurement noise and little is
known about the consensus conditions for the case with the noises
coupled with the delayed states (multiplicative noises).

Motivated by the above discussions and partly based on our
recent works Li et al. (2014), Li and Zhang (2009) and Zong
et al. (2018), this work investigates the distributed consensus
problemof continuous-timemulti-agent systemswith time-delays
andmeasurement noises, including the additive andmultiplicative
cases. Due to the presence of noises, existing techniques for the
casewith only time-delay (Olfati-Saber &Murray, 2004; Xu, Zhang,
& Xie, 2013) are no longer applicable to the analysis of stochastic
consensus. Moreover, the coexistence of time-delays and noises
leads to the difficulty in finding the relationship between control
parameters and time-delays for stochastic consensus problem.
Note that even for the case with uniform time-delays, the con-
sensus analysis is not easy due to the presence of noises. In this

paper, the differential resolvent function and degenerate Lyapunov
functional methods are developed to overcome the difficulties
induced by time-delays and noises.

We first use a variable transformation to transform the closed-
loop system into a stochastic differential delay equation (SDDE)
driven by the additive or multiplicative noises. Then the key is
to analyze the asymptotic stability of SDDEs. Hence, our concern
is not only important in the consensus analysis mentioned above
but also has its own mathematical interest because the relevant
stochastic stability theory for this kind of SDDEs has not been well
established. By semi-decoupling the corresponding SDDEs, using
differential resolvent function and degenerate Lyapunov func-
tional methods for stability analysis, stochastic consensus problem
is solved. The contribution of the current work can be concluded as
follows.

(1) Additive noises case:We established some new explicit nec-
essary conditions and sufficient conditions for various stochastic
consensus under general digraphs.

• For weak consensus, we show that if the digraph contains a
spanning tree, then for any fixed time-delay τ1 and noise in-
tensity, (a) mean square weak consensus can be achieved by
designing control gain function c(t) satisfying

∫
∞

0 c(t)dt =

∞ and limt→∞c(t) = 0; (b) almost sureweak consensus can
be achieved by designing control gain function c(t) satisfy-
ing

∫
∞

0 c(t)dt = ∞ and limt→∞c(t) log
∫ t

0 c(s)ds = 0;
• For strong consensus, we show that if the digraph contains

a spanning tree, then for any fixed time-delay τ1 and noise
intensity, mean square and almost sure strong consensus
can be achieved by designing control gain function c(t)
satisfying τ1max2≤j≤N

|λj|
2

Re(λj)
supt≥t0c(t) < 1 for certain t0 ≥

0,
∫

∞

0 c(t)dt = ∞ and
∫

∞

0 c(t)2dt < ∞, where {λi}2≤i≤N
are the non-zero eigenvalues of the corresponding Laplacian
matrix. The mean square strong consensus results relax the
restriction of balanced graph and time-delay bound in Liu,
Liu, et al. (2011).

(2) Multiplicative noises case: We first develop a fundamen-
tal theorem to show that mean square (or almost sure) weak
consensus with the exponential convergence rate implies mean
square (or almost sure) strong consensus. Then by constructing
a degenerate Lyapunov functional, we prove that if the graph is
strongly connected and undirected, then for any fixed time-delay
τ1 in the deterministic measurement and noise intensity bound σ̄ ,
mean square and almost sure strong consensus can be achieved by
designing control gain k ∈ (0, 1

λN τ1+
N−1
N σ̄2 ).

(3) The new findings: (1) Mean square weak consensusmay not
imply almost sureweak consensus, and stochastic weak consensus
may not imply stochastic strong consensus for the case with addi-
tive noises; (2) Mean square weak consensus with the exponential
convergence rate implies almost sure strong consensus for the
case with multiplicative noises, and stochastic consensus does not
necessarily depend on the time-delay in the noise term.

The rest of the paper is organized as follows. Section 2 serves
as an introduction to the networked systems and consensus prob-
lems. Section 3 gives some necessary conditions and sufficient
conditions of stochastic weak and strong consensus for multi-
agent systems with time-delay and additive noises. Section 4 aims
to consider stochastic consensus problem of multi-agent systems
with time-delays and multiplicative noises. Section 5 gives some
concluding remarks and discusses the future research topics.

Notations: For any complex number λ in complex space C, Re(λ)
and Im(λ) denote its real and imaginary parts, respectively, and |λ|

denotes its modulus. 1n denotes a n-dimensional column vector
with all ones. ηN,i denotes the N-dimensional column vector with
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the ith element being 1 and others being zero. IN denotes the
N-dimensional identity matrix. For a given matrix or vector A, its
transpose is denoted by AT , and its Euclidean norm is denoted by
∥A∥. For two matrices A and B, A ⊗ B denotes their Kronecker
product. For a, b ∈ R, a ∨ b = max{a, b} and a ∧ b = min{a, b}.
For any given real symmetric matrix K , we denote its maximum
and minimum eigenvalues by λmax(K ) and λmin(K ), respectively.
Let (Ω,F,P) be a complete probability space with a filtration
{Ft}t≥0 satisfying the usual conditions. For a given randomvariable
or vector X , its mathematical expectation is denoted by EX . For
a (local) continuous martingale M(t), its quadratic variation is
denoted by ⟨M⟩(t). For τ > 0, C([−τ , 0];Rn) denotes the space
of all continuous Rn-valued functions ϕ defined on [−τ , 0].

2. Problem formulation

Consider N agents distributed according to a digraph G = {V,
E,A}, where V = {1, 2, . . . ,N} is the set of nodeswith i represent-
ing the ith agent, E denotes the set of edges and A = [aij] ∈ RN×N

is the adjacency matrix of G with element aij = 1 or 0 indicating
whether or not there is an information flow from agent j to agent
i directly. Ni denotes the set of the node i’s neighbors, that is,
aij = 1 for j ∈ Ni. Also, degi =

∑N
j=1aij is called the degree

of i. The Laplacian matrix of G is defined as L = D − A, where
D = diag(deg1, . . ., degN ). IfG is balanced, then L̂ =

LT
+L
2 denotes

the Laplacian matrix of the mirror digraph Ĝ of G (Olfati-Saber &
Murray, 2004).

For agent i, denote its state at time t by xi(t) ∈ Rn. In real multi-
agent networks, for each agent, the information from its neighbors
mayhave time-delays andnoises. Hence,we consider that the state
of each agent is updated by the rule

ẋi(t) = K (t)
N∑
j=1

aijzji(t), i = 1, 2, . . . ,N, t > 0, (1)

with

zji(t) = ∆ji(t − τ1) + fji(∆ji(t − τ2))ξji(t) (2)

denoting the measurement of relative states by agent i from its
neighbor j ∈ Ni. Here, ∆ji(t) = xj(t) − xi(t), K (t) ∈ Rn×n is the
control gain matrix function to be designed, τ1 ≥ 0 and τ2 ≥ 0
are time-delays, ξji(t) ∈ R denotes the measurement noise and
fji : Rn

↦→ Rn is the intensity function. Let τ = τ1 ∨ τ2 and
the initial data xi(t) = ψi(t) for t ∈ [−τ , 0], i = 1, 2, . . . ,N be
deterministic continuous functions. Let x(t) = [xT1(t), . . . , x

T
N (t)]

T

and ψ(t) = [ψT
1 (t), . . . , ψ

T
N (t)]

T .
In this work, ∆ji(t − τ1) in (2) is called the measurement term

and fji(∆ji(t − τ2))ξji(t) is called the noise term. We also assume
that the measurement noises are independent Gaussian white
noises. In fact, the Gaussian white noise is a classical assumption
in continuous-time models and has been discussed in Tuzlukov
(2002) for signal processing due to some physical and statistic
characteristics. Here, the independence assumption would be con-
servative, however, to reduce this conservatismwith seriousmath-
ematical analysis would need more efforts in future investigation.

Assumption 2.1. The noise process ξji(t) ∈ R satisfies
∫ t
0 ξji(s)ds =

wji(t), t ≥ 0, j, i = 1, 2, . . . ,N , where {wji(t), i, j = 1, 2, . . . ,N}

are independent Brownian motions.

Note that the noise term in (2) includes the two cases: First, the
noises in (2) are additive, that is, each intensity fji(·) is independent
of the agents’ states; Second, the noises are multiplicative, that is,
the intensity fji(·) depends on the relative states. Then the key in
stochastic consensus problem is to find an appropriate control gain
function K (t) such that the agents reach mean square or almost
sure consensus under the two types of noises.

Remark 2.1. Time-delay, multiplicative and additive noises of-
ten exist in measurements and information transmission (see
Tuzlukov (2002)). Olfati-Saber and Murray (2004) studied the
continuous-time consensus with the measurement delay. Li et al.
(2014) and Wang and Elia (2013) considered the noisy and delay-
free measurement zji(t) = xj(t) − xi(t) + fji(xj(t) − xi(t))ξji(t)
for the discrete-time and continuous-time models, respectively.
The measurement model (2) is the generalization of the noisy
measurement model in Li et al. (2014) and the delayed measure-
mentmodel in Olfati-Saber andMurray (2004). Generally, the ideal
measurement xj(t)−xi(t) cannot be obtained accurately and timely
due to measurement noises and delays. There are measurement
delay τ1 and time-delay τ2 for the impact of agents’ states on the
noise intensities. Here, the term fji(xj(t − τ2) − xi(t − τ2))ξji(t) can
be considered as the joint impact of time-delay and measurement
noises on the ideal measurement xj(t) − xi(t).

Here, the two consensus definitions are given as follows.

Definition 2.1. The agents are said to reach mean square weak
consensus if the system (1) with (2) has the property that for
any initial data ψ ∈ C([−τ , 0],RNn) and all distinct i, j ∈ V ,
limt→∞E∥xi(t) − xj(t)∥2

= 0. If, in addition, there is a random
vector x∗

∈ Rn, such that E∥x∗
∥
2 < ∞ and limt→∞E∥xi(t) −

x∗
∥
2

= 0, i = 1, 2, . . . ,N , then the agents are said to reach mean
square strong consensus. Particularly, if Ex∗

=
1
N

∑N
j=1xj(0), then

the agents are said to reach asymptotically unbiased mean square
average-consensus (AUMSAC).

Definition 2.2. The agents are said to reach almost sure weak
consensus if the system (1) with (2) has the property that for
any initial data ψ ∈ C([−τ , 0],RNn) and all distinct i, j ∈ V ,
limt→∞∥xi(t) − xj(t)∥ = 0 almost surely (a.s.) or in probability
one. If, in addition, there is a random vector x∗

∈ Rn, such that
P{∥x∗

∥ < ∞} = 1 and limt→∞∥xi(t) − x∗
∥ = 0, a.s. i =

1, 2, . . . ,N , then the agents are said to reach almost sure strong
consensus. Particularly, if Ex∗

=
1
N

∑N
j=1xj(0), then the agents

are said to reach asymptotically unbiased almost sure average-
consensus (AUASAC).

Remark 2.2. Definition 2.2 follows that in Tahbaz-Salehi and
Jadbabaie (2008) and we use the almost sure consensus to denote
such asymptotical behavior. Most existing literature on stochas-
tic multi-agent systems with noises and time-delay focused on
the mean square consensus. However, in many applications, the
result in the sense of probability one is much more reasonable
since people can only observe the trajectory of the networks in
one random experiment. Note that almost sure convergence and
mean square convergence may not imply each other in stochastic
systems (see Mao (1997)). Generally, the analysis of mean square
convergence is easier than that of almost sure convergence since
taking mean square yields a deterministic system.

We first introduce the following auxiliary lemma (see Zong et
al. (2018)).

Lemma 2.1. For the Laplacian matrix L, we have the following
assertions:

(1) There exists a probability measure π such that π TL = 0.
(2) There exists a matrix Q̃ ∈ RN×(N−1) such that the matrix Q =

( 1
√
N
1N , Q̃ ) ∈ RN×N is nonsingular and

Q−1
=

(
νT

Q

)
,Q−1LQ =

(
0 0
0 L̃

)
, (3)

where Q ∈ R(N−1)×N , L̃ ∈ R(N−1)×(N−1) and ν is a left
eigenvector of L such that νTL = 0 and 1

√
N
νT1N = 1.
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(3) The digraph G contains a spanning tree if and only if each
eigenvalue of L̃ has positive real part. Moreover, if the digraph
G contains a spanning tree, then the probability measure π is
unique and ν =

√
Nπ .

Especially, if the digraph is balanced, then π =
1
N 1N and Q can be

constructed as an orthogonal matrix with the form Q = ( 1
√
N
1N , Q̃ )

and the inverse of Q may be represented in the form Q−1
=

[ 1
√
N
1TN

Q̃ T

]
.

3. Networks with time-delay and additive noises

In this section, we consider the casewith additive noises, which
is concluded as the following assumption.

Assumption 3.1. For any x ∈ Rn, fji(x) = σji1n with σji > 0,
i, j = 1, . . . ,N .

This assumptionhas been examined inAmelina et al. (2015) and
Huang and Manton (2009) for the discrete-time models, and in Li
and Zhang (2009) for the continuous-timemodels. Note that under
Assumption 3.1, time-delay τ2 vanishes in the network system. For
the case with additive noises, we choose K (t) = c(t)In, where
c(t) ∈ C((0,∞); [0,∞)). Define c̄t0 := supt≥t0c(t), t0 ≥ 0. In
fact, the following conditions on the control gain function c(t)were
addressed before:

(C1)
∫

∞

0 c(t)dt = ∞;
(C2)

∫
∞

0 c2(t)dt < ∞;
(C3) limt→∞c(t) = 0.

Remark 3.1. Conditions (C1) and (C2) are called convergence con-
dition and robustness condition, respectively (Li & Zhang, 2009).
In fact, the two conditions can be regarded as the continuous-
time version of the classical rule for the step size in discrete-time
stochastic approximation, which intuitively means that the decay
of gain function is allowed, but cannot be too fast.

For the systems with additive noises, the necessary and suffi-
cient conditions of mean square and almost sure strong and weak
consensus seems to be clear now in view of Zong et al. (2018).
When time-delay appears, the sufficient conditions involving (C1)
and (C2) were obtained for mean square strong consensus in Liu,
Liu, et al. (2011) under balanced graphs. But little is known about
the necessary and sufficient conditions of stochastic strong and
weak consensus under general digraphs. This sectionwill fill in this
gap.

Here, we first consider the linear scalar equation

˙̄X(t) = −λc(t)X̄(t − τ1), t > 0, (4)

X̄(t) = ξ (t) for t ∈ [−τ1, 0], where Re(λ) > 0, τ1 ≥ 0 and ξ ∈

C([−τ1, 0],C). The solution to (4) has the form (Gripenberg, Lon-
den, & Staffans, 1990) X̄(t) = Γ (t, s)X̄(s), ∀ t ≥ s ≥ 0, where
Γ (t, s) is the differential resolvent function, satisfying Γ (t, t) = 1
for t > 0, Γ (t, s) = 0 for t < s and
∂

∂t
Γ (t, s) = −λc(t)Γ (t − τ1, s), t > s. (5)

Although some papers have studied the asymptotic stability of
the linear equation (4) (see Grossman and Yorke (1972), Hale and
Lunel (1993) for example), the decay rate has not been revealed.
The following lemma is to estimate the decay rate of differential
resolvent function Γ (t, s). The proof can be found in the arXiv
version Zong, Li, and Zhang (2017).

Lemma 3.1. If there is a constant t0 ≥ 0 such that τ1c̄t0
|λ|2

Re(λ) < 1,
then the solution to (5) satisfies

|Γ (t, s)|2 ≤ b(λ)e−ϱ(λ)
∫ t
s c(u)du, t > s ≥ t0. (6)

Here, b(λ) is a positive constant depending on λ and ϱ(λ) := ρ1(λ) ∧

ρ2(λ), where ρ1(λ) is the unique root of the equation 3ρ|λ|2τ 21 c̄
2
t0

eρ c̄t0 τ1 +2ρ−2(Re(λ)−|λ|2τ1c̄t0 ) = 0 and ρ2(λ) =
1

c̄t0 τ1
log 1

|λ|c̄t0 τ1
.

Remark 3.2. Due to the time-delay, we cannot use the similar
methods in Zong et al. (2018) to obtain themean square and almost
sure consensus conditions sincewedonot have the explicit expres-
sion of Γ (t, s). However, we can have the decay rate estimation of
Γ (t, s), which is established in Lemma 3.1 and plays an important
role in obtaining the sufficient conditions for mean square and
almost sure consensus.

By Lemma 3.1, we now examine mean square and almost sure
consensus, respectively.

3.1. Mean square consensus

Let ϱ(λ) be defined in Lemma 3.1 and {λi}
N
i=2 be the eigenvalues

of L̃. Define ϱ0 = min1≤j≤Nϱ(λj) and λ̄ = max2≤i≤NRe(λi(L)). We
introduce another conditions on the control gain c(t):

(C4) limt→∞

∫ t
0 e

−ϱ0
∫ t
s c(u)duc2(s)ds = 0;

(C4′) limt→∞

∫ t
0 e

−2λ̄
∫ t
s c(u)duc2(s)ds = 0.

Remark 3.3. At the first glance, (C4) and (C4′) are very com-
plicated, in fact, they correspond to the sufficient condition and
necessary condition formean square stability of SDEswith additive
noises in Zong et al. (2018). Moreover, thanks to (C4) and (C4′), we
can findmuch simpler conditions formean squareweak consensus
(see Corollary 3.3 and Remark 3.4).

Theorem 3.2. For system (1) with (2) and K (t) = c(t)In, suppose
that Assumptions 2.1 and 3.1 hold, and τ1c̄t0max2≤j≤N

|λj|
2

Re(λj)
< 1 for

certain t0 ≥ 0. Then the agents reach mean square weak consensus if
G contains a spanning tree and conditions (C1) and (C4) hold, and only
if G contains a spanning tree and condition (C4′) holds under (C1).

Proof. Substituting (2) into (1) and using Assumption 3.1 produce
dx(t) = −c(t)(L⊗ In)x(t −τ1)dt +c(t)

∑N
i,j=1aijσji(ηN,i ⊗1n)dwji(t).

Let ν be defined in Lemma 2.1 and JN =
1

√
N
1Nν

T . Noting that
L1N = 0 and νTL = 0, then (IN − JN )L = L(IN − JN ). Let
δ(t) = [(IN − JN ) ⊗ In]x(t) = [δT1 (t), . . . , δ

T
N (t)]

T , where δi(t) ∈

Rn, i = 1, 2, . . . ,N . Then we have dδ(t) = −c(t)(L ⊗ In)δ(t −

τ1)dt + c(t)
∑N

i,j=1aijσji((IN − JN )ηN,i ⊗ 1n)dwji(t). Define δ̃(t) =

(Q−1
⊗ In)δ(t) = [̃δT1 (t), . . . , δ̃

T
N (t)]

T , δ(t) = [̃δT2 (t), . . . , δ̃
T
N (t)]

T ,
δ̃i(t) ∈ Rn. By the definition of Q−1 given in Lemma 2.1, we have
δ̃1(t) = (νT ⊗ In)δ(t) = (νT (IN − JN ) ⊗ In)x(t) = 0 and

dδ(t) = −c(t)(L̃ ⊗ In)δ(t − τ1)dt + dM(t), (7)

where Q is defined in Lemma 2.1 and M(t) =
∑N

i,j=1aijσji(q̄i ⊗

1n)
∫ t
0 c(s)dwji(s), and q̄i = Q (IN − JN )ηN,i. Note that δi(t) = xi −

1
√
N

∑N
k=1νkxk(t) =

1
√
N

∑N
k=1νk(xi − xk) and then xj(t) − xi(t)

= δj(t) − δi(t). Hence, mean square weak consensus equals
limt→∞E∥δ(t)∥2

= 0 for any initial data. By the matrix theorem,
there exists a complex invertible matrix R such that RL̃R−1

= J ,
Here, J is the Jordan normal form of L̃, i.e., J = diag(Jλ2,n2 , . . . ,
Jλl,nl ),

∑l
k=2nk = N−1,whereλ2, λ3, . . . , λl are all the eigenvalues

of L̃ and Jλk,nk is the corresponding Jordan block of size nk with
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eigenvalue λk. Letting Y (t) = (R ⊗ In)δ̄(t) = [Y T
1 (t), . . . , Y

T
N (t)]

T

with Yj(t) ∈ Cn, then we have from (7) that dY (t) = −c(t)(J ⊗

In)Y (t − τ1)dt + (R ⊗ In)dM(t). Considering the kth Jordan block
and its corresponding component ηk(t) = [ηTk,1(t), . . . , η

T
k,nk

(t)]T

and R(k) = [RT
k,1, . . . , R

T
k,nk

]
T , where ηk,j(t) = Ykj (t) and Rk,j = Rkj is

kjth row of Rwith kj =
∑k−1

l=2 nl+ j, we have dηk(t) = −c(t)(Jλk,nk ⊗

In)ηk(t−τ1)dt+(R(k)⊗In)dM(t). This produces the following semi-
decoupled delay equations:

dηk,nk (t) = −c(t)λkηk,nk (t − τ1)dt + 1ndMk,nk (t) (8)

and

dηk,j(t) = −c(t)λkηk,j(t − τ1)dt − c(t)ηk,j+1(t − τ1)dt
+ 1ndMk,j(t), j = 1, . . . , nk − 1, (9)

where Mk,j(t) =
∑N

i=1rkj,i
∑N

j=1aijσji
∫ t
0 c(s)dwji(s), rkj,i = Rkj q̄i,

j = 1, . . . , nk. Then mean square weak consensus is equivalent to
that limt→∞E∥ηk,j(t)∥2

= 0, k = 1, . . . , l, j = 1, 2, . . . , nk for any
initial data ψ .

We firstly prove the ‘‘if’’ part. Let Γk(t, s) denote the differential
resolvent function defined by (5) with λ being replaced with λk.
Under Lemma 2.1, we know that Re(λk) > 0 and ν =

√
Nπ . By

means of a variation of constants formula for (8), we obtain

ηk,nk (t) = Γk(t, t0)ηk,nk (t0) + 1nZk,nk (t, t0), (10)

where Zk,nk (t, t0) =
∫ t
t0
Γk(t, s)dMk,nk (s). Then we get E∥ηk,nk (t)∥

2

= |Γk(t, t0)|2∥ηk,nk (t0)∥
2

+ Cnk

∫ t
t0

|Γk(t, s)|2c2(s)ds, where Cnk =

n
∑N

i=1|rknk ,i|
2∑N

j=1aijσ
2
ji . By Lemma 3.1, we have E∥ηk,nk (t)∥

2
≤

b(λk)e
−ϱ(λk)

∫ t
t0

c(u)du
∥ηk,nk (t0)∥

2
+ Cnkb(λk)

∫ t
t0
c2(s) e−ϱ(λk)

∫ t
s c(u)duds.

By (C1) and (C4), we have limt→∞E∥ηk,nk (t)∥
2

= 0. Assume
that limt→∞E∥ηk,j+1(t)∥2

= 0 for some fixed j < nk, and we
will show limt→∞E∥ηk,j(t)∥2

= 0. By means of a variation of
constants formula for (9), we obtain ηk,j(t) = Γk(t, t0)ηk,j(t0) + 1n

Zk,j(t) −
∫ t
t0
Γk(t, s)c(s)ηk,j+1(s)ds, where Zk,j(t) =

∫ t
t0
Γk(t, s)

dMk,j(s). Hence, we have E∥ηk,j(t)∥2
≤ 2|Γk(t, t0)|2E∥ηk,j(t0)∥2

+

Cj
∫ t
t0

|Γk(t, s)|2c2(s)ds + 2E∥
∫ t
t0
Γk(t, s)c(s)ηk,j+1(s)ds∥2, where

Cj = n
∑N

i=1|rkj,i|
2∑N

l=1ailσ
2
li . Note that the first two terms tend

to zero, then we only need to prove that the last term vanishes
at infinite time. Let k, j be fixed and write ηk,j+1(s) = [y1(s),
. . . , yn(s)]T ∈ Cn, then limt→∞E|ym(s)|2 = 0, m = 1, . . . , n,
and E∥

∫ t
t0
Γk(t, s)c(s)ηk,j+1(s)ds∥2

≤ b(λk)
∑n

m=1EX̃
2
m(t), where

X̃m(t) =
∫ t
0 e−0.5ϱ(λk)

∫ t
s c(u)duc(s)|ym(s)|ds. By Minkowski’s inequal-

ity for integrals, we have
√
E(̃Xm(t))2 ≤

∫ t
0 e−0.5ϱ(λk)

∫ t
s c(u)duc(s)√

E|ym(s)|2ds. LetU1(t) =
∫ t
0 e0.5ϱ(λk)

∫ s
0 c(u)duc(s)

√
E|ym(s)|2ds. Then

it is easy to see from (C1) that limt→∞

√
EX̃2

m(t) = 0 if limt→∞U1(t)
< ∞. Note that limt→∞E|ym(s)|2 = 0. If limt→∞U1(t) = ∞, then

L’Hôpital’s rule gives limt→∞

√
E(̃Xm(t))2 ≤ limt→∞

√
E|ym(t)|2

0.5ϱ(λk)
= 0.

Hence,we have limt→∞E|̃Xm(t)|
2

= 0, and then limt→∞E∥ηk,j(t)∥2

= 0 for the fixed j < nk. The similar induction yields limt→∞E
∥ηk,j(t)∥2

= 0 for all j = 1, . . . , nk, and therefore, limt→∞E
∥ηk,j(t)∥2

= 0 for all k = 1, . . . , l and j = 1, . . . , nk. That is,
the agents achieve mean square weak consensus if G contains a
spanning tree and conditions (C1) and (C4) hold.

We now prove the ‘‘only if’’ part. First, if G does not contain
a spanning tree, then L at least has two zero eigenvalues. By
Lemma 2.1, L̃ at least has one zero eigenvalue, denoted by λ2.
Hence, we have from (10)

η2,n2 (t) = η2,n2 (0) + 1nM2,n2 (t). (11)

Therefore, E∥η2,n2 (t)∥
2

= ∥η2,n2 (0)∥
2
+ nE|M2,n2 (t)|

2 > 0, which
is in contradiction with the definition of mean square weak con-
sensus, that is, G contains a spanning tree. Second,weneed to show
the necessity of condition (C4′) for mean square weak consensus.
Let ν =

√
Nπ and Gk(t) = ηk,nk (t) − ηk,nk (t − τ1), then mean

square weak consensus implies limt→∞E∥ηk,nk (t)∥
2

= 0 and
limt→∞E∥Gk(t)∥2

= 0. Note that dηk,nk (t) = −c(t)λkηk,nk (t)dt +

c(t)λkGk(t)dt + 1ndMk,nk (t). By the variation of constants formula,
we obtain

ηk,nk (t) = e−λk
∫ t
0 c(u)duηk,nk (0) + 1nZk,nk (t) + U2(t)

= : ζk,nk (t) + U2(t) (12)

where U2(t) =
∫ t
0 e−λk

∫ t
s c(u)duc(s)λkGk(s)ds, ζk,nk is the solution to

(8) with τ1 = 0, that is, it satisfies

dζk,nk (t) = −c(t)λkζk,nk (t)dt + 1ndMk,nk (t). (13)

Then we get E∥ζk,nk (t)∥
2

≤ 2E∥U2(t)∥2
+ 2E∥ηk,nk (t)∥

2. By the
similar methods used in estimating E∥

∫ t
0 Γk(t, s)c(s)ηk,j+1(s)ds∥2

above, we can obtain limt→∞E∥U2(t)∥2
= 0, and then limt→∞E

∥ζk,nk (t)∥
2

= 0. It is shown in Zong et al. (2018) that limt→∞E
∥ζk,nk (t)∥

2
= 0 implies condition (C4′) under (C1) and Re(λk) > 0.

Hence, the proof is complete. □
It can be seen that Lemma 3.1 plays an important role in the

consensus analysis, where the condition τ1c̄t0max2≤j≤N
|λj|

2

Re(λj)
< 1

for certain t0 ≥ 0 is always true if (C3) holds. Hence, we can obtain
the following corollary. The proof is the same as that in Zong et al.
(2018) and is omitted.

Corollary 3.3. For system (1)with (2) and K (t) = c(t)In, suppose that
Assumptions 2.1 and 3.1 hold. Then the agents achieve mean square
weak consensus if G contains a spanning tree and conditions (C1)
and (C3) hold. Moreover, if c(t) is a decreasing function and satisfies
(C1), then the agents achieve mean square weak consensus only if G
contains a spanning tree and (C3) holds.

Remark 3.4. In fact, the proof of Corollary 3.3 highly depends on
Theorem 3.2, where the sufficient condition (C4) and the neces-
sary condition (C4′) for mean square weak consensus produce the
sufficiency of (C3) and the necessity of (C3) when c(t) is mono-
tonically decreasing, respectively. Corollary 3.3 is important since
it provides the succinct conditions (C1) and (C3), and implies that
condition (C2) is unnecessary for mean square weak consensus.

Above, we have obtained the conditions for mean square weak
consensus. Now, we can apply the martingale convergence theo-
rem to get the conditions for mean square strong consensus (the
proof can be found in the arXiv version Zong et al. (2017)).

Theorem 3.4. For system (1) with (2) and K (t) = c(t)In, suppose
that Assumptions 2.1 and 3.1 hold, and τ1c̄t0max2≤j≤N

|λj|
2

Re(λj)
< 1 for

certain t0 ≥ 0. Then the agents reach mean square strong consensus
if G contains a spanning tree and conditions (C1)–(C2) hold, and only
if G contains a spanning tree and condition (C2) holds under (C1).

Remark 3.5. Theorem 3.2, Corollary 3.3 and Theorem 3.4 give the
design of control gain for mean square consensus. They show that
if G contains a spanning tree, then for any given time-delay τ1,
the control gain function c(t) can be properly designed for guar-
anteeing mean square weak and strong consensus. These improve
the results in Liu, Liu, et al. (2011) in the following three aspects.
(a) Liu, Liu, et al. (2011) considered the case with balanced di-
graphs,while our consensus analysis is for general digraphs. (b) Liu,
Liu, et al. (2011) require the time-delay τ1 <

λ2(L̂)
∥L∥2

, no matter how
the control gain functions are selected, while we remove the delay
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bound restriction and show that for any given time-delay τ1, the
control gain function can be properly designed for guaranteeing
mean square consensus. (c) Even for the case with c̄0 = 1 and
undirected graphs, our delay bound restriction λNτ1 < 1 is weaker
than λ2Nτ1 < λ2 in Liu, Liu, et al. (2011). (c) We get not only
sufficient conditions for mean square strong consensus, but also
the necessary conditions and sufficient conditions formean square
weak consensus. Here, the main skills are the semi-decoupled
method and the differential resolvent function.

3.2. Almost sure consensus

Here, we give some necessary conditions and sufficient con-
ditions for almost sure weak and strong consensus. To examine
almost sure weak consensus, we need two more conditions:

(C5) limt→∞c(t) log
∫ t

0 c(s)ds = 0;
(C5′) lim inft→∞c(t) log

∫ t
0 c(s)ds = 0.

Remark 3.6. Intuitively, (C5) and (C5′) mean that the gain function
c(t) under (C1) should decay with certain rate and the rate cannot
be too large. The two conditions can help us find the fact that
mean square weak consensus may not imply almost sure weak
consensus.

Theorem 3.5. For system (1) with (2) and K (t) = c(t)In, suppose
that Assumptions 2.1, 3.1 and condition (C1) hold. Then the agents
achieve almost sure weak consensus if G contains a spanning tree and
condition (C5) holds, and only if G contains a spanning tree.Moreover,
if G is undirected, then the agents achieve almost sureweak consensus
only if G is connected and condition (C5’) holds.

Proof. Note that almost sure weak consensus is equivalent to that
for any initial data ψ , limt→∞∥ηk(t)∥ = 0, a.s., k = 1, . . . ,N . Let
θk,nk (t) = ζk,nk (t)−ηk,nk (t), where ζk,nk is defined by (13). Then we
have

θ̇k,nk (t) = −c(t)λkθk,nk (t − τ1) + c(t)gk,nk (t), (14)

where gk,nk (t) = λk(ζk,nk (t − τ1) − ζk,nk (t)) is continuous. Not-
ing that Zong et al. (2018) proved that limt→∞ζk,nk (t) = 0 a.s.,
then we have that limt→∞∥gk,nk (t)∥ = 0, a.s. By means of a
variation of constants formula for Eq. (14), we have θk,nk (t) =

Γk(t, t0)θk,nk (t0)+
∫ t
t0
Γk(t, s)c(s)gk,nk (s)ds, where Γk(t, s) is the dif-

ferential resolvent function of (4) with λ being replaced by λk. Let
b0 = maxi=2,...,Nb(λi). Note that (C5) implies τ1c̄t0max2≤j≤N

|λj|
2

Re(λj)
<

1 for certain t0 ≥ 0. By (6), we get ∥θk,nk (t)∥ ≤
√
b0e

−0.5ϱ0
∫ t
t0

c(u)du

∥θk,nk (t0)∥ +
√
b0

∫ t
0 e−0.5ϱ0

∫ t
s c(u)duc(s)∥gk,nk (s)∥ds. Let p(t) =∫ t

0 e0.5ϱ0
∫ s
0 c(u)du

∥gk,nk (s)∥c(s)ds and Ỹ (t) = p(t)e−0.5ϱ0
∫ t
0 c(u)du, then

p(t) is increasing and limt→∞p(t) < ∞ or limt→∞p(t) =

∞. It is easy to see from (C1) that limt→∞∥Ỹ (t)∥ = 0 a.s. if
limt→∞p(t) < ∞. But if limt→∞p(t) = ∞, by L’Hôpital’s rule,
we still have limt→∞∥Ỹ (t)∥ =

2
ϱ0
limt→∞∥g(t)∥ = 0, a.s. Hence,

limt→∞∥θk,nk (t)∥ = 0, a.s. This together with limt→∞∥ζk,nk (t)∥ =

0 gives limt→∞ ∥ηk,nk (t)∥ = 0, a.s.
We now assume that limt→∞∥ηk,j+1(t)∥ = 0, a.s. for j < nk,

and we will show that limt→∞∥ηk,j(t)∥ = 0, a.s. Let gk,j(t) =

λk(ζk,j(t − τ1)− ζk,j(t)) and g̃k,j+1 = ζk,j+1(t)−ηk,j+1(t − τ1), where
ζk,j is the solution to (9) with τ1 = 0. Then we obtain dθk,j(t) =

−c(t)λkθk,j(t − τ1)dt + c(t)gk,j(t)dt − c(t)g̃k,j+1(t)dt, which to-
gether with the variation of constants formula implies θk,j(t) =

Γk(t, t0)θk,j(t0)+
∫ t
t0
Γk(t, s)c(s)gk,j(s)ds−

∫ t
t0
Γk(t, s)c(s)g̃k,j+1(s)ds.

Note that Zong et al. (2018) proved that limt→∞ζk,j(t) = 0 a.s. for
all k, j. Thenwe get limt→∞∥g̃k,j+1∥ = 0, a.s. and limt→∞∥gk,j∥ = 0,

a.s. By the similar skills used in estimating ∥θk,nk (t)∥, we can obtain
limt→∞∥θk,j(t)∥ = 0, a.s. This together with limt→∞∥ζk,j(t)∥ = 0
gives limt→∞∥ηk,j(t)∥ = 0, a.s. Hence, almost sureweak consensus
follows by mathematical induction.

If almost sure weak consensus is achieved, then G contains
a spanning tree. Otherwise, we have from (11) that in order for
limt→∞η1,n1 (t) = 0, a.s., the martingale 1nM1,n1 (t) must converge
to −η1,n1 (0) for any initial data ψ , which is impossible since
η1,n1 (0) depends on the initial data.

Next, we show the second assertion. Assume that almost sure
weak consensus is achieved, then the existence of a spanning
tree is proved above. If G is undirected, then all corresponding
components of Y (t) have the form (8) with λk > 0, k = 2, . . . ,N ,
nk = 1. In order to prove that condition (C5′) holds, we only need
to show limt→∞ζk,nk (t) = 0, a.s., since this implies (C5′) (see Zong
et al. (2018)). Note that (12) implies ∥ζk,nk (t)∥ ≤ ∥ηk,nk (t)∥ +∫ t
0 e−λ

∫ t
s c(u)du

∥Gk(s)∥c(s)ds, and limt→∞∥Gk(t)∥ = 0, a.s. and
limt→∞ηk,nk (t) = 0. Then we can use the similar methods in prov-
ing limt→∞∥Ỹ (t)∥ = 0 a.s. above to obtain that limt→∞∥ζk,nk (t)∥ =

0. Therefore, condition (C5′) holds, and the proof is complete. □

Remark 3.7. Based on Corollary 3.3 and Theorem 3.5, we can
see that mean square weak consensus does not imply almost sure
weak consensus. In fact, let G be strongly connected and undi-
rected, and choose c(t) = log−1(4 + t), which satisfies (C1) and
(C3), then we obtain the mean square weak consensus form Corol-
lary 3.3. However, by L’Hôpital’s rule, limt→∞c(t) log

∫ t
0 c(s)ds = 1,

so the almost sure weak consensus does not hold.

The following strong consensus is based on the martingale
convergence theorem. The proof is omitted and can be found in
the arXiv version Zong et al. (2017).

Theorem 3.6. For system (1) with (2) and K (t) = c(t)In, suppose
that Assumptions 2.1, 3.1 and condition (C1) hold, and c̄t0τ1max2≤j≤N
|λj|

2

Re(λj)
< 1 for certain t0 ≥ 0. Then the agents achieve almost sure

strong consensus if and only if G contains a spanning tree and
condition (C2) holds.

Remark 3.8. Theorems 3.5 and 3.6 give the design of the control
gain c(t) for almost sure consensus. In fact, if G contains a spanning
tree, then for any fixed time-delay τ1, we can choose the control
gain c(t) satisfying (C1) and (C5) (or (C2) and c̄t0τ1max2≤j≤N

|λj|
2

Re(λj)
<

1 for certain t0 ≥ 0) to ensure almost sure weak (or strong)
consensus. Especially, the gain function c(t) satisfying (C1)–(C3)
assures the almost sure strong consensus for any τ1.

Note that conditions (C2)–(C4) are to attenuate the additive
measurement noises. So, if the noises vanish (σji = 0), we have the
following theorem, which extends (Olfati-Saber & Murray, 2004)
to the casewith digraphs andweakens their delay bound condition
τ1λN <

π
2 .

Theorem 3.7. For system (1) with (2) and K (t) = c(t)In, suppose
that σji = 0, i, j = 1, . . . ,N, and G contains a spanning tree. If (C1)

holds and c̄t0τ1max2≤j≤N
|λj|

2

Re(λj)
< 1 for certain t0 ≥ 0, then the agents

can reach the deterministic consensus.

4. Networks with time-delays and multiplicative noises

In this section, we consider the case with time-delays and
multiplicative noises. Due to the page limit, the proofs in this
section are omitted and can be found in the arXiv version (Zong
et al., 2017). The following assumption is imposed on the noise
intensities.
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Assumption 4.1. fji(0) = 0 and there exists a constant σ̄ ≥ 0 such
that for any x ∈ Rn, ∥fji(x)∥ ≤ σ̄∥x∥, i, j = 1, 2, . . . ,N .

Assumption 4.1 is a general assumption in stochastic systems.
In fact, the case fji(x) = σjix studied in Wang and Elia (2013) falls
in the assumption. Based on this assumption, we first have the
following lemma.

Lemma 4.1. For system (1) with (2) and K (t) = K ∈ Rn×n, suppose
that Assumptions 2.1 and 4.1 hold, and G contains a spanning tree. If
the agents reach mean square (or almost sure) weak consensus with
an exponential convergence rate γ , that is, E∥xi(t)− xj(t)∥2

≤ Ce−γ t

(or lim supt→∞

log ∥xi(t)−xj(t)∥
t ≤ −γ , a.s. ) for certain C, γ > 0 and

any i ̸= j, then the agents must reach mean square (or almost sure)
strong consensus.

Lemma 4.1 tells us that in order to obtain mean square (or
almost sure) strong consensus, we only need to get mean square
(or almost sure) weak consensus with an exponential convergence
rate. In the following, we find the appropriate control gain K
such that the agents can achieve mean square and almost sure
consensus.

We will assume that G is undirected. Then ν = 1T/
√
N and

Q̃ in Lemma 2.1 can be constructed as Q̃ = [φ2, . . . , φN ] =: φ,
whereφi is the unit eigenvector ofL associatedwith the eigenvalue
λi = λi(L), that is, φT

i L = λiφ
T
i , ∥φi∥ = 1, i = 2, . . . ,N . Hence,

L̃ = diag(λ2, λ3, . . . , λN ) =: Λ. Continuing to use the definitions
of δ(t) and δ̄(t) in obtaining (7) yields

dδ(t) = −(Λ⊗ K )δ(t − τ1)dt + dMτ2 (t), (15)

where Mτ2 (t) =
∑N

i,j=1aij
∫ t
0 [φT (IN − JN )ηN,i ⊗ (Kfji(δj(s − τ2) −

δi(s − τ2)))]dwji(s). Define the degenerate Lyapunov functional for
δt = {δ(t + θ ) : θ ∈ [−τ1, 0]},

V (δt ) =

∫ 0

−τ1

[∫ t

t+s
δ
T
(θ )(Λ2

⊗ K TK )δ(θ )dθ
]
ds

+ ∥δ(t) − (Λ⊗ K )
∫ t

t−τ1

δ(s)ds∥2. (16)

This is known as degenerate functional in Kolmanovskii and
Myshkis (1992). Based on (16), we can get the following theorem
(see the arXiv version Zong et al. (2017) for the detailed proof).

Theorem 4.2. For system (1) with (2) and K (t) = kIn, suppose that
Assumptions 2.1 and 4.1 hold, and G is undirected and connected. If

0 < k <
1

λNτ1 +
N−1
N σ̄ 2

, (17)

then the agents reach AUMSAC and AUASAC with exponential con-
vergence rates less than γτ2 and γτ2/2 respectively, where γτ2 is the
unique root of the equation 2k(1 −

N−1
N kσ̄ 2eγ τ2 − λNkτ1)λ2 − 2γ −

3λ2Nk
2τ 21 γ e

γ τ1 = 0. Moreover, if fji(x) = σijx with σij > 0, i ̸=

j, i, j = 1, 2, . . . ,N and 2τ2 ≥ τ1, then the agents achieve AUMSAC
only if 0 < k < N

σ2(N−1)
, where σ = minN

i,j=1σji.

Remark 4.1. Note that the sufficient condition (17) does not
involve time-delay τ2. Hence, the time-delay τ2 does not affect
the goal of AUMSAC and AUASAC under the choice of control gain
satisfying (17). But it may affect the exponential convergence rates
γτ2 and γτ2/2, and then prolong the time of achieving consensus.
In fact, γτ2 defined in Theorem 4.2 is a decreasing function with
respect to τ2, and satisfies limτ2→∞γτ2 = 0. The arXiv version (Zong
et al., 2017) also confirms the theoretical results by introducing
simulation examples. This is also a new interesting finding in
stochastic stability of stochastic delay systems.

Remark 4.2. Theorem 4.2 shows that if the undirected graph G is
connected, then for any fixed τ1, τ2 ≥ 0, the AUMSAC and AUASAC
can be achieved by designing the control gain K = kIn satisfying
(17). If the noises disappear, then σ̄ 2

= 0 and the fixed control gain
K = kIn with 0 < k < 1

λN τ1
can ensure deterministic consensus,

which is in consistent with Theorem 3.7.

5. Conclusion

This work addresses stochastic consensus, including mean
square and almost sure weak and strong consensus, of high-
dimensional multi-agent systems with time-delays and additive
or multiplicative measurement noises. The main results are com-
posed of two parts. In the first part, we consider consensus con-
ditions of multi-agent systems with the time-delay and additive
noises. Here, the semi-decoupled skill and the differential re-
solvent function become the power tools to find the sufficient
conditions for stochastic weak consensus. Then the martingale
convergence theorem is applied to obtain stochastic strong con-
sensus. The second part takes time-delays and multiplicative
noises into consideration, where the degenerate Lyapunov func-
tional helps us to establish sufficient conditions for mean square
and almost sure strong consensus.

Generally speaking, solving almost sure consensus is a more
difficult and more challenging work than solving mean square
consensus. Moreover, the emergence of time-delay also adds to
the difficulty. Although we find the weak conditions for almost
sure consensus under the additive noises, this cannot be extended
to the case with multiplicative noises. In Section 4, we develop
almost sure consensus based on the conditions of mean square
consensus and stochastic stability theorem. However, the similar
weak conditions in the delay-free case of Li et al. (2014) are difficult
to obtain. These issues still deserve further research. In presence of
the time-delay and multiplicative measurement noises, this work
assumes that the graph is undirected and fixed, and the time-
delays in each channel are equal. In the future works, it would be
more interesting and perhaps challenging to consider the general
case without these assumptions.
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