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Time-Inconsistent Mean-Field Stochastic LQ
Problem: Open-Loop Time-Consistent Control
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Abstract—This paper is concerned with the open-loop
time-consistent solution of time-inconsistent mean-field
stochastic linear-quadratic (LQ) optimal control. Different
from standard stochastic linear-quadratic problems, both
the system matrices and the weighting matrices are de-
pending on the initial times, and the conditional expecta-
tions of the control and state enter quadratically into the
cost functional. Such features will ruin Bellman’s principle
of optimality and result in the time inconsistency of op-
timal control. Based on the dynamical nature of the sys-
tems involved, a kind of open-loop time-consistent equi-
librium control is investigated in this paper. It is shown
that the existence of open-loop equilibrium control for a
fixed initial pair is equivalent to the solvability of a set of
forward–backward stochastic difference equations with sta-
tionary condition and convexity condition. By decoupling
the forward–backward stochastic difference equations, nec-
essary and sufficient conditions in terms of linear difference
equations and generalized difference Riccati equations are
given for the existence of open-loop equilibrium control for
a fixed initial pair. Moreover, the existence of open-loop
time-consistent equilibrium controls for all the initial pairs
is shown to be equivalent to the solvability of a set of cou-
pled constrained generalized difference Riccati equations
and two sets of constrained linear difference equations.

Index Terms—Forward–backward stochastic difference
equation, mean-field theory, stochastic linear-quadratic op-
timal control, time inconsistency.

I. INTRODUCTION

A. Time Consistency versus Time Inconsistency

THOUGH not mentioned frequently, time consistency is in-
deed an essential notion in optimal control theory, which
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relates to Bellman’s principle of optimality. To see this, re-
call a standard discrete-time stochastic optimal control problem,
whose system dynamics and cost functional are given, respec-
tively, by {

Xk+1 = f(k,Xk , uk , wk )

Xt = x ∈ Rn , k ∈ Tt , t ∈ T
(1)

and

J(t, x;u) =
N −1∑
k=t

E
[
e−δ(k−t)L(k,Xk , uk )

]

+ E
[
e−δ(N −t)h(XN )

]
. (2)

Here, Tt = {t, . . . , N − 1}, T = {0, 1, . . . , N − 1}, and N is
a positive integer; {Xk, k ∈ T̃t} and {uk , k ∈ Tt} with T̃t =
{t, . . . , N} are the state process and the control process, re-
spectively; {wk , k ∈ T} is a stochastic disturbance process; E
is the operator of mathematical expectation. Without loss of
generality, the functions f , L, and h are assumed bounded. Let
U [t,N − 1] be a set of admissible controls. Then, we have the
following optimal control problem.

Problem (C): Letting (t, x)∈T× Rn , find a ū ∈ U [t,N − 1]
such that

J(t, x; ū) = inf
u∈U [t,N −1]

J(t, x;u). (3)

Above Problem will be called Problem (C) for the ini-
tial pair (t, x), and Problem (C) for other initial pairs can
be similarly formulated. Any ū ∈ U [t,N − 1] satisfying (3)
is called an optimal control for the initial pair (t, x), and
X̄ = {X̄k = X̄(k; t, x, ū), k ∈ T̃t} is the corresponding opti-
mal trajectory. Furthermore, (X̄, ū) is referred to as an optimal
pair for the initial pair (t, x).

Let (X̄, ū) be an optimal pair for the initial pair (t, x); as
the dynamics evolves, we indeed face a family of optimal
control problems, namely, Problem (C) for the initial pairs
{(k, X̄k ), k ∈ Tt}. Bellman’s principle of optimality tells us
that the optimal controls of this family of problems are interre-
lated, namely, for any τ ∈ Tt+1 = {t + 1, . . . , N − 1}, ū|Tτ

=
{ūτ , . . . , ūN −1} (the restriction of ū on Tτ = {τ, . . . , N − 1})
is an optimal control of Problem (C) for the initial pair (τ, X̄τ ).
This property is the cornerstone of Bellman’s dynamic pro-
gramming and is referred to as the time consistency of optimal
control, which is essential to handle optimal control problems
like Problem (C) and its continuous-time counterpart. In such
situation, we call that Problem (C) is time consistent.

However, the time-consistency fails quite often in many situ-
ations. For instance, when the exponential discounting function
e−δ(k−t) in (2) is replaced by other discounting functions, the
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corresponding problem is not time consistent, i.e., time incon-
sistent; see examples in [5] and [19] about the hyperbolic dis-
counting and quasi-geometric discounting. In addition, when the
conditional expectations of the state and/or control enters non-
linearly into the cost functional, the considered optimal control
problems are time inconsistent too; a notable example is the
mean–variance utility [2], [5], [9], [11], [22], [24]. In such case,
the smoothing property of conditional expectation will not be
sufficient to ensure the time consistency of optimal control.

B. Literature Review

Problems with nonlinear terms of conditional expectation (in
the cost functional) are classified into the mean-field stochastic
optimal control [37]. In [22], recognizing the time inconsistency
(called nonseparability there), Li and Ng derived the optimal
policy of multiperiod mean–variance portfolio selection by us-
ing an embedding scheme. Note that the optimal policy of [22]
is with respect to the initial pair, i.e., it makes sense to be optimal
only when viewed at the initial time. This derivation is called
the precommitment optimal solution now.

Precommitment optimal solution is a static notion, which
maps the considered initial pair into an admissible control set.
By applying a precommitment optimal control (for an initial
pair), its restriction to the tail time horizon is not an optimal
control for the intertemporal initial pair. This static trait conflicts
with the dynamic nature of (time-inconsistent) optimal control,
as the time is involved in the problem setting. Though the static
solution is of some practical and theoretical values, it neglects
and has not really addressed the time inconsistency. Differently,
another approach handles the time inconsistency in a dynamic
manner; instead of seeking a precommitment optimal control,
some kinds of equilibrium solutions are dealt with. This is mai-
nly motivated by practical applications in economics and fina-
nce, and has recently attracted considerable interest and efforts.

The explicit formulation of time inconsistency was initiated
by Strotz [29] in 1955, whereas its qualitative analysis can be
traced back to the work of Smith [28]. Strotz studied the general
discounting problem, and in the discrete-time case, his idea is
to tackle the time inconsistency by a lead-follower game with
hierarchical structure. Specifically, controls at different time
points were viewed as different selves (players), and every self-
integrated the policies of his successor into his own decision.
By a backward procedure, the equilibrium policy (if it exists)
was obtained. Inspired by Strotz and intending to tackling prac-
tical problems in economics and finance, hundreds of works
were concerned with time inconsistency of dynamic systems
described by ordinary difference or differential equations; see,
for example, [12], [13], [15], [19], [20], [26] and references
therein. Unfortunately, as pointed out by Ekeland [12], [13],
it is hard to prove the existence of Strotz’s equilibrium policy.
Therefore, it is necessary and of great importance to develop
a general theory on time inconsistent optimal control. This, on
the one hand, can enrich the optimal control theory, and on
the other hand, can provide instructive methodology to push
the solvability of practical problems. Recently, this topic has
attracted considerable attention from the theoretic control com-
munity; see, for example, [5], [17], [18], [30], [32], [34], [37]
and references therein.

For the time-inconsistent LQ problems, two kinds of time-
consistent equilibrium solutions are studied, which are the open-
loop equilibrium control and the closed-loop equilibrium strat-
egy [17], [18], [32], [34], [37]. The separate investigations of

such two formulations are due to the fact that in the dynamic
game theory, open-loop control distinguishes significantly from
closed-loop strategy [3], [36]. To compare, open-loop formu-
lation is to find an open-loop equilibrium “control,” whereas
the “strategy” is the object of closed-loop formulation. By a
strategy, we mean a decision rule that a controller uses to select
a control action based on the available information set. Mathe-
matically, a strategy is a mapping or operator on the information
set. When substituting the available information into a strategy,
the open-loop value or open-loop realization of this strategy
is obtained. Strotz’s equilibrium solution [29] is essentially a
closed-loop equilibrium strategy, which is further elaborately
developed by Yong to the LQ optimal control [32], [37] as well
as the nonlinear optimal control [33], [34]. In contrast, open-
loop equilibrium control is extensively studied in [17], [18], and
[37]. In particular, the closed-loop formulation can be viewed
as the extension of Bellman’s dynamic programming, and the
corresponding equilibrium strategy (if it exists) is derived by a
backward procedure [32]–[34], [37]. Differently, the open-loop
equilibrium control is characterized via the maximum-principle-
like methodology [17], [18].

Portfolio selection is to seek a best allocation of wealth among
a basket of securities. The (single-period) mean–variance for-
mulation is pioneered by Markowitz [24] in 1952, which is the
cornerstone of modern portfolio theory and is widely used in
both academia and industry. The multiperiod mean–variance
portfolio selection is the natural extension of [24], which has
been extensively studied. Until 2000 and for the first time, Li
and Ng [22] and Zhou and Li [38] reported the analytical pre-
commitment optimal policies for the discrete-time case and the
continuous-time case, respectively. Noted above, multiperiod
mean–variance portfolio selection is a particular example of
time-inconsistent optimal control; the recent developments in
time-inconsistent optimal control and the revisits of multiperiod
mean–variance portfolio selection [2], [6], [9], [10], [17], [18]
are mutually stimulated.

It is noted that some nondegenerate assumptions are posed in
[2], [6], [9], [10], [17], and [18]. Specifically, the volatilities of
the stocks in [2], [6], [17], and [18] and the return rates of the
risky securities in [9] and [10] are assumed to be nondegenerate.
To make the formulation more practical, it is natural to consider,
at least in theory, how to generalize these results to the case
where degeneracy is allowed. In fact, mean–variance portfolio
selection problems with degenerate covariance matrices may
date back to 1970s. In [7] or the “corrected” version [27], Buser
et al. propose the single-period version with possibly singular
covariance matrix. Clearly, such class of problems are more
general than the classical ones [24], and more consistent with
the reality.

To address the case with possible degenerate return rates, it
is better to put multiperiod mean–variance portfolio selection
within the framework of time-inconsistent mean-field stochastic
LQ optimal control (with indefinite weighting matrices), which
has not been established yet. Note that the running weighting
matrices in [17], [18], [32], [34], and [37] are assumed to be
nonnegative definite and positive definite. For standard time-
consistent indefinite stochastic LQ optimal control, readers are
referred to, for example, [1], [8], [31] and reference therein.

C. Contents of This Paper

In this paper, we shall investigate a time-inconsistent indef-
inite mean-field stochastic LQ optimal control problem. The
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matrices in system dynamics and cost functional are also de-
pendent on the initial times; this is an extension of the general
discounting functions that are in cost functionals. The contents
of this paper are as follows.

The notion of open-loop equilibrium control is introduced in
Section II, which is a discrete-time counterpart of that for the
continuous-time problem [17], [18]. Different from the precom-
mitment optimal control, the equilibrium control is only locally
optimal in an infinitesimal sense. Furthermore, the open-loop
equilibrium control is defined for a fixed initial time-state pair;
its existence is shown to be equivalent to some stationary con-
dition and convexity condition, which are involved with a set of
forward–backward stochastic difference equations (FBSΔEs).
Furthermore, necessary and sufficient conditions are obtained,
respectively, for the stationary condition and the convexity con-
dition; and by combining them, the existence of open-loop equi-
librium control is further characterized.

The convexity condition is equivalent to the nonnegative def-
initeness of some matrices relating to a set of linear difference
equations (LDEs), which is called the solvability of those con-
strained LDEs. The stationary condition is characterized via a
property about the ranges of some matrices that are involved
with another set of LDEs and a set of generalized difference
Riccati equations (GDREs). If we further let the initial pair
vary, some neater result about the existence of open-loop equi-
librium control will be obtained. Specifically, for any initial pair
problem (LQ) admitting an open-loop equilibrium control is
shown to be equivalent to that two sets of constrained LDEs
(39), (41), and a set of constrained GDREs (40) are solvable. It
is worth pointing out that (if it is solvable) the set of GDREs
(40) does not have symmetric structure, i.e., its solution is not
symmetric. Furthermore, all the open-loop equilibrium controls
are obtained.

As application of the derived theory, Section V investigates
the multiperiod mean–variance portfolio selection. Necessary
and sufficient condition is given on the existence of open-loop
equilibrium portfolio control, which is completely characterized
by the returns of the risky and riskless assets. If the return rates of
the risky securities are nondegenerate, the equilibrium portfolio
control will exist.

From our derived results, we have the following remarks.
1) Most existing results about time-inconsistent LQ prob-

lems are for the continuous-time case [17], [18], [32],
[34], [37], and the study of discrete-time case is lag-
ging behind. Noted above, the discrete-time multiperiod
mean–variance portfolio selection is a notable example
of discrete-time time-inconsistent LQ problems, and its
full investigation motivates and needs to develop general
theory about discrete-time time-inconsistent LQ optimal
control. This is the aim of this paper.

2) The novelties of this paper are as follows.
First, no definiteness constraint is posed on the weight-
ing matrices of cost functional, namely, the considered
problem is an indefinite LQ optimal control. On the one
hand, the indefinite setting provides a maximal capac-
ity to model and deal with LQ-type problems, whose
study will generalize existing results to some extent. On
the other hand and most importantly, general explicit an-
swers have not been reported about whether or not the
definite weighting matrices could ensure the existence of

open-loop equilibrium control for a time-inconsistent LQ
problem. Therefore, the essential and weakest conditions
are much desired for ensuring the existence of open-loop
equilibrium control; and it is not necessary to pose the
definiteness constraint on the weighting matrices.
Second, necessary and sufficient conditions are obtained
on the existence of open-loop equilibrium control of prob-
lem (LQ) for both the case with a fixed initial pair and the
case with all the initial pairs. The conditions are in terms
of discrete-time LDEs and GDREs, which are easy to be
verified by iteratively solving the LDEs and GDREs.
Third, necessary and sufficient condition is derived on
the existence of open-loop equilibrium portfolio control
of multiperiod mean–variance portfolio selection [prob-
lem (MV)]. The obtained condition is completely char-
acterized by the returns of the risky and riskless assets.
If the return rates of the risky securities are nondegener-
ate (this is the common assumption in the literature), the
equilibrium portfolio control will exist.

If the system dynamics and cost functional are both indepen-
dent of the initial time, the corresponding LQ problem will be
a dynamic version of that considered in [25], where the con-
ditional expectation operators are replaced by the expectation
operators. For more details on mean-field stochastic optimal
control and related mean-field games, we refer to [4], [11], [14],
[16], [21], [25], [35] and the references therein.

The rest of this paper is organized as follows. Section II intro-
duces the notion of open-loop equilibrium control of problem
(LQ). In Sections III and IV, necessary and sufficient conditions
on the existence of open-loop equilibrium control are presented
for both the case with a fixed initial pair and the case with all the
initial pairs. Section V studies the multiperiod mean–variance
portfolio selection, and some concluding remarks are given in
Section VI.

II. OPEN-LOOP EQUILIBRIUM CONTROL

Consider the following controlled stochastic difference equa-
tion (SΔE)⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Xt
k+1 =

(
At,kXt

k + Āt,kEtX
t
k

+ Bt,kuk + B̄t,kEtuk + ft,k

)
+
∑p

i=1

(
Ci

t,kXt
k + C̄i

t,k EtX
t
k

+ Di
t,kuk + D̄i

t,kEtuk + di
t,k

)
wi

k

Xt
t = x, k ∈ Tt , t ∈ T

(4)

where At,k , Āt,k , Ci
t,k , C̄i

t,k ∈ Rn×n , Bt,k , B̄t,k ,Di
t,k , D̄i

t,k ∈
Rn×m , and ft,k , di

t,k ∈ Rn are deterministic matrices. In (4),
the noise process {wk = (w1

k , . . . , wp
k )T , k ∈ T} is assumed to

be a vector-valued martingale difference sequence defined on a
probability space (Ω,F , P ) with

Ek [wk ] = 0, Ek [wkwT
k ] = Γk , k ≥ 0. (5)

Et in (4) is the conditional mathematical expectation E[ · |Ft ],
where Ft = σ{wl, l = 0, 1, . . . , t − 1}, and F0 is understood
as {∅,Ω}. Furthermore, Γk = (γij

k )p×p is assumed to be deter-
ministic.
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The cost functional associated with the system (4) is

J(t, x;u) =
N −1∑
k=t

Et

[
(Xt

k )T Qt,kXt
k + (EtX

t
k )T Q̄t,kEtX

t
k

+ uT
k Rt,kuk + (Etuk )T R̄t,kEtuk + 2qT

t,kXt
k

+ 2ρT
t,kuk

]
+ Et

[
(Xt

N )T GtX
t
N

]
+ (EtX

t
N )T ḠtEtX

t
N + 2Et(gT

t Xt
N ) (6)

where Qt,k , Q̄t,k , Rt,k , R̄t,k , k ∈ Tt , Gt, Ḡt are deterministic
symmetric matrices of appropriate dimensions, and qt,k , ρt,k ,
k ∈ Tt , gt are deterministic vectors.

In (4), the initial state x is in l2F (t; Rn ), which is defined as

l2F (t; Rn ) =
{

ζ ∈ Rn
∣∣ ζ is Ft-measurable, E|ζ|2 < ∞

}
.

Similarly, we can define l2F (k; Rn ) and l2F (k; Rm ), k ∈ T . Fur-
thermore, let

l2F (Tt ; Rm ) =
{

ν = {νk , k ∈ Tt}
∣∣∣, νk is Fk -measurable

E|νk |2 < ∞, k ∈ Tt

}
.

Then, we pose the following optimal control problem.
Problem (LQ): For the initial pair (t, x), find a u∗ ∈ l2F

(Tt ; Rm ) such that

J(t, x;u∗) = inf
u∈l2F (Tt ;Rm )

J(t, x;u) (7)

holds.
Due to the time inconsistency, we in this paper intend finding

an equilibrium control of the following type.
Definition II.1: Given t ∈ T and x ∈ l2F (t; Rn ), ut,x,∗ ∈

l2F (Tt ; Rm ) is called an open-loop equilibrium control of prob-
lem (LQ) for the initial pair (t, x), if

J(k,Xt,x,∗
k ;ut,x,∗|Tk

) ≤ J(k,Xt,x,∗
k ; (uk , ut,x,∗|Tk + 1 )) (8)

holds for any k ∈ Tt and any uk ∈ L2
F (k; Rm ). Here, ut,x,∗|Tk

and ut,x,∗|Tk + 1 (with Tk = {k, ..., N − 1}, Tk+1 = {k + 1,

..., N − 1}) are the restrictions of ut,x,∗ on Tk and Tk+1 , re-
spectively; and Xt,x,∗ is given by⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Xt,x,∗
k+1 =

[
(Ak,k + Āk,k )Xt,x,∗

k

+ (Bk,k + B̄k,k )ut,x,∗
k + fk,k

]
+
∑p

i=1

[
(Ci

k,k + C̄i
k,k )Xt,x,∗

k

+ (Di
k,k + D̄i

k,k )ut,x,∗
k + di

k,k

]
wi

k

Xt,x,∗
t = x, k ∈ Tt

(9)

which is called the equilibrium state corresponding to ut,x,∗.
Noting that ut,x,∗|Tk

= (ut,x,∗
k , ut,x,∗|Tk + 1 ), the control (uk ,

ut,x,∗|Tk + 1 ) on the right-hand side of (8) differs from ut,x,∗|Tk

only at time instant k. Intuitively, the cost functional will in-
crease if one deviates from ut,x,∗. Hence, {ut,x,∗

t , ..., ut,x,∗
N −1} can

be viewed as an equilibrium of a multiperson game with hierar-
chical structure. By its definition, ut,x,∗ is time consistent in the
sense that for any k ∈ Tt , ut,x,∗|Tk

is an open-loop equilibrium
control for the initial pair (k,Xt,x,∗

k ).

Throughout this paper, we adopt the following notations:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ak,	 = Ak,	 + Āk,	 , Bk,	 = Bk,	 + B̄k,	

Ci
k ,	 = Ci

k,	 + C̄i
k,	 , Di

k ,	 = Di
k,	 + D̄i

k,	

Qk,	 = Qk,	 + Q̄k,	 , Rk,	 = Rk,	 + R̄k,	

Gk = Gk + Ḡk , i = 1, ..., p, k ∈ Tt , 	 ∈ Tk .

(10)

Then, (9) is simply rewritten as

⎧⎪⎪⎨
⎪⎪⎩

Xt,x,∗
k+1 =

[
Ak,kXt,x,∗

k + Bk,kut,x,∗
k + fk,k

]
+
∑p

i=1

[
Ci

k ,kXt,x,∗
k + Di

k ,kut,x,∗
k + di

k,k

]
wi

k

Xt,x,∗
t = x, k ∈ Tt .

(11)

III. PROBLEM (LQ) FOR A FIXED INITIAL PAIR

A. First Characterization on the Existence of Open-Loop
Equilibrium Control

Throughout Section III, we will study Problem (LQ) for the
fixed initial pair (t, x), which will be simply denoted as Problem
(LQ)tx . First, a difference formula of cost functionals is given.

Lemma III.1: Let ζ ∈ l2F (k; Rn ), u = {u	, k ∈ Tk} ∈ l2F
(Tk ; Rm ), ūk ∈ l2F (k; Rm ) and λ ∈ R. Then, we have

J(k, ζ; (uk + λūk , u|Tk + 1 )) − J(k, ζ;u)

= λ2 Ĵ(k, 0; ūk ) + 2λ
[
Rk,kuk + BT

k,kEkZk
k+1

+
p∑

i=1

(Di
k ,k )T Ek (Zk

k+1w
i
k ) + ρk,k

]T
ūk (12)

where u|Tk + 1 = {uk+1 , ..., uN −1} and

Ĵ(k, 0; ūk )

= Ek

[
ūT

k Rk,k ūk

]
+

N −1∑
	=k

Ek

[
(Y k,ūk

	 )T Qk,	Y
k,ūk

	

+ (EkY k,ūk

	 )T Q̄k,	EkY k,ūk

	

]
+ Ek

[
(Y k,ūk

N )T GkY k,ūk

N

]
+ (EkY k,ūk

N )T ḠkEkY k,ūk

N (13)

with

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Y k,ūk

	+1 = Ak,	Y
k,ūk

	 + Āk,	EkY k,ūk

	

+
∑p

i=1

(
Ci

k,	Y
k,ūk

	 + C̄i
k,	EkY k,ūk

	

)
wi

	

Y k,ūk

k+1 = Bk,k ūk +
∑p

i=1 Di
k ,k ūkwi

k

Y k,ūk

k = 0, 	 ∈ Tk+1 .

(14)
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Furthermore, Zk
k+1 in (12) is computed via the following

FBSΔE⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xk
	+1 =

(
Ak,	X

k
	 + Āk,	EkXk

	

+ Bk,	u	 + B̄k,	Eku	 + fk,	

)
+
∑p

i=1

(
Ci

k,	X
k
	 + C̄i

k,	EkXk
	

+ Di
k,	u	 + D̄i

k,	Eku	 + di
k,	

)
wi

	

Zk
	 = Qk,	X

k
	 + Q̄k,	EkXk

	 + qk,	

+ AT
k,	E	Z

k
	+1 + ĀT

k,	EkZk
	+1

+
∑p

i=1

[
(Ci

k,	)
T E	(Zk

	+1w
i
	)

+ (C̄i
k,	)

T Ek (Zk
	+1w

i
	)
]

Xk
k = ζ, Zk

N = GkXk
N + ḠkEkXk

N + gk

	 ∈ Tk .

(15)

Proof: See Appendix A. �
From Lemma III.1, we have the following result.
Theorem III.1: The following statements are equivalent.
i) Problem (LQ)tx admits an open-loop equilibrium control.

ii) The following assertions hold.
a) The convexity condition

inf
ū k ∈l2F (k ;Rm )

Ĵ(k, 0; ūk ) ≥ 0, k ∈ Tt (16)

is satisfied, where Ĵ(k, 0; ūk ) is given in (13).
b) There exists a ut,x,∗ ∈ l2F (Tt ; Rm ) such that the

stationary condition

0 = Rk,kut,x,∗
k + BT

k,kEkZk,t,x
k+1

+
p∑

i=1

(Di
k ,k )T Ek (Zk,t,x

k+1 wi
k ) + ρk,k , k ∈ Tt

(17)

is satisfied. Here, Zk,t,x
k+1 is computed via the

FBSΔE⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xk,t,x
	+1 =

(
Ak,	X

k,t,x
	 + Āk,	EkXk,t,x

	

+Bk,	u
t,x,∗
	 + B̄k,	Ekut,x,∗

	 + fk,	

)
+
∑p

i=1

(
Ci

k,	X
k,t,x
	 + C̄i

k,	EkXk,t,x
	

+Di
k,	u

t,x,∗
	 + D̄i

k,	Ekut,x,∗
	

+di
k,	

)
wi

	

Zk,t,x
	 = Qk,	X

k,t,x
	 + Q̄k,	EkXk,t,x

	

+qk,	 + AT
k,	E	Z

k,t,x
	+1 + ĀT

k,	EkZk,t,x
	+1

+
∑p

i=1

[
(Ci

k,	)
T E	(Z

k,t,x
	+1 wi

	)

+(C̄i
k,	)

T Ek (Zk,t,x
	+1 wi

	)
]

Xk,t,x
k = Xt,x,∗

k

Zk,t,x
N = GkXk,t,x

N + ḠkEkXk,t,x
N + gk

	 ∈ Tk

(18)

and the initial state Xt,x,∗
k of the forward SΔE of

(18) is computed via⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Xt,x,∗
k+1 =

[
Ak,kXt,x,∗

k + Bk,kut,x,∗
k + fk,k

]
+
∑p

i=1

[
Ci

k ,kXt,x,∗
k + Di

k ,kut,x,∗
k

+ di
k,k

]
wi

k

Xt,x,∗
t = x, k ∈ Tt .

(19)
Under any of the above conditions, ut,x,∗ given in ii) is an

open-loop equilibrium control for the initial pair (t, x).
Proof: See Appendix B. �
Remark III.1: As the stationary condition (17) holds for k ∈

Tt , we have a set of FBSΔEs, which are coupled with (19) via
the initial states Xk,t,x

k = Xt,x,∗
k , k ∈ Tt .

B. Convexity Condition

This subsection studies the convexity condition (16). First,
we give a compact form of Ĵ(k, 0; ūk ).

Lemma III.2: Ĵ(k, 0; ūk ) can be expressed as

Ĵ(k, 0; ūk ) = ūT
k Wk ūk (20)

where

Wk = Rk,k + BT
k,kPk,k+1Bk,k

+
p∑

i,j=1

γij
k (Di

k ,k )T Pk,k+1Dj
k ,k (21)

with Pk,k+1 and Pk,k+1 computed via⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Pk,	 = Qk,	 + AT
k,	Pk,	+1Ak,	

+
∑p

i,j=1 γij
	 (Ci

k,	)
T Pk,	+1C

j
k,	

Pk,	 = Qk,	 + AT
k,	Pk,	+1Ak,	

+
∑p

i,j=1 γij
	 (Ci

k ,	)
T Pk,	+1Cj

k ,	

Pk,N = Gk, Pk,N = Gk , 	 ∈ Tk .

(22)

Proof: From (14), it follows that⎧⎪⎪⎨
⎪⎪⎩

EkY k,ūk

	+1 = Ak,	EkY k,ūk

	 , 	 ∈ Tk+1

EkY k,ūk

k+1 = Bk,kEk ūk

EkY k,ūk

k = 0.

Let P̄k,	 = Pk,	 − Pk,	 , 	 ∈ Tk . By adding to and subtracting

N −1∑
	=k

Ek

[
(Y k,ūk

	+1 )T Pk,	+1Y
k,ūk

	+1 − (Y k,ūk

	 )T Pk,	Y
k,ūk

	

+(EkY k,ūk

	+1 )T P̄k,	+1EkY k,ūk

	+1 − (EkY k,ūk

	 )T P̄k,	EkY k,ūk

	

]
from (13), we have

Ĵ(k, 0; ūk )

=
N −1∑
	=k

Ek

[
(Y k,ūk

	 )T Qk,	Y
k,ūk

	 + (EkY k,ūk

	 )T Q̄k,	EkY k,ūk
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+ (Y k,ūk

	+1 )T Pk,	+1Y
k,ūk

	+1 − (Y k,ūk

	 )T Pk,	Y
k,ūk

	

+ (EkY k,ūk

	+1 )T P̄k,	+1EkY k,ūk

	+1

− (EkY k,ūk

	 )T P̄k,	EkY k,ūk

	

]

+ ūT
k Rk,k ūk

=
N −1∑

	=k+1

Ek

[
(EkY k,ūk

	 )T
(
Qk,	 + AT

k,	Pk,	+1Ak,	

+
p∑

i,j=1

γij
	 (Ci

k ,	)
T Pk,	+1Cj

k ,	 − Pk,	

)
EkY k,ūk

	

+ (Y k,ūk

	 − EkY k,ūk

	 )T
(
Qk,	 + AT

k,	Pk,	+1Ak,	

+
p∑

i,j=1

γij
	 (Ci

k,	)
T Pk,	+1C

j
k,	 − Pk,	

)
(Y k,ūk

	 − EkY k,ūk

	 )
]

+ ūT
k

[
Rk,k + BT

k,kPk,k+1Bk,k

+
p∑

i,j=1

γij
k (Di

k ,k )T Pk,k+1Dj
k ,k

]
ūk

= ūT
k

[
Rk,k + BT

k,kPk,k+1Bk,k

+
p∑

i,j=1

γij
k (Di

k ,k )T Pk,k+1Dj
k ,k

]
ūk . (23)

�
By Lemma III.2 and Theorem III.1, the following result is

straightforward.
Theorem III.2: The following statements are equivalent.
1) The convexity condition (16) is satisfied.
2) The following inequalities

Wk � 0, k ∈ Tt (24)

hold, i.e., Wk , k ∈ Tt are nonnegative definite, where Wk

is given in (21).

C. Stationary Condition

We now switch to the stationary condition (17). The following
lemma gives an expression of the backward state Zk,t,x of the
FBSΔE (18), provided that ut,x,∗ is a linear function of Xt,x,∗.

Lemma III.3: Letting k ∈ T , τ ∈ Tk , suppose that {ut,x,∗
	 ,

	 ∈ Tτ } in (18) has the form ut,x,∗
	 = Ψ	X

t,x,∗
	 + α	, 	 ∈ Tτ

with Tτ = {τ, ..., N − 1} and Ψ	 , α	, 	 ∈ Tτ being determin-
istic matrices. Then, the backward state {Zk,t,x

	 , 	 ∈ Tτ } has
the following expression:

Zk,t,x
	 = Pk,	X

k,t,x
	 + P̄k,	EkXk,t,x

	 + Tk,	X
t,x,∗
	

+ T̄k,	EkXt,x,∗
	 + πk,	 , 	 ∈ Tτ . (25)

Here, P̄k,	 = Pk,	 − Pk,	 with Pk,	 ,Pk,	 computed via (22);
and Tk,	 , T̄k,	 , πk,	 are given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tk,	 = AT
k,	Tk,	+1A	,	

+
∑p

i,j=1 γij
	 (Ci

k,	)
T Tk,	+1Cj

	,	

+
{

AT
k,	Pk,	+1Bk,	 + AT

k,	Tk,	+1B	,	

+
∑p

i,j=1

[
(Ci

k,	)
T Pk,	+1D

j
k,	

+ (Ci
k,	)

T Tk,	+1Dj
	,	

]}
Ψ	

T̄k,	 = AT
k,	 T̄k,	+1A	,	 + ĀT

k,	Tk,	+1A	,	

+
∑p

i,j=1 γij
	 (C̄i

k,	)
T Tk,	+1Cj

	,	

+
{

AT
k,	Pk,	+1B̄k,	 + AT

k,	P̄k,	+1Bk,	

+ AT
k,	 T̄k,	+1B	,	 + ĀT

k,	Pk,	+1Bk,	

+ ĀT
k,	Tk,	+1B	,	

+
∑p

i,j=1 γij
	

[
(Ci

k,	)
T Pk,	+1D̄

j
k,	

+ (C̄i
k,	)

T Pk,	+1Dj
k ,	

+ (C̄i
k,	)

T Tk,	+1Dj
	,	

]}
Ψ	

Tk,N = 0, T̄k ,N = 0

	 ∈ Tτ

(26)

and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

πk,	 = AT
k,	Pk,	+1

(
Bk,	α	 + fk,	

)
+ AT

k,	Tk,	+1
(
B	,	α	 + f	,	

)
+ AT

k,	πk,	+1

+
∑p

i,j=1 γij
	

[
(Ci

k ,	)
T Pk,	+1

(
Dj

k ,	α	 + dj
k,	

)
+ (Ci

k ,	)
T Tk,	+1

(
Dj

	,	α	 + dj
	,	

)]
+ qk,	

πk,N = gk

	 ∈ Tτ

(27)

with Tk,	 = Tk,	 + T̄k,	 , 	 ∈ Tτ .
Proof: See Appendix C. �
To prove above lemma, we have used a backward deduc-

tion method, namely, starting from k = N and k = N − 1, the
expression (25) can be deductively obtained.

For a given matrix M ∈ Rn×m , its Moore–Penrose inverse
is denoted as M †, which is in Rm×n . The following lemma is
from [1].

Lemma III.4: Let matrices L, M , and N be given with ap-
propriate size. Then, LXM = N has a solution X if and only if
LL†NMM † = N . Moreover, the solution of LXM = N can
be expressed as X = L†NM † + Y − L†LY MM †, where Y is
a matrix with appropriate size.

Based on above results, we have the following theorem.
Theorem III.3: The following statements are equivalent.
i) The stationary condition (17) is satisfied.

ii) The condition

HkXt,x,∗
k + βk ∈ Ran(Wk ), k ∈ Tt (28)
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holds. Here, Hk ,Wk , βk , k ∈ Tt are given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Wk = Rk,k + BT
k,k

(
Pk,k+1 + Tk,k+1

)
Bk,k

+
∑p

i,j=1 γij
k (Di

k ,k )T

×
(
Pk,k+1 + Tk,k+1

)
Dj

k ,k

Hk = BT
k,k

(
Pk,k+1 + Tk,k+1

)
Ak,k

+
∑p

i,j=1 γij
k (Di

k ,k )T

×
(
Pk,k+1 + Tk,k+1

)
Cj

k ,k

βk = BT
k,k

[(
Pk,k+1 + Tk,k+1

)
fk,k + πk,k+1

]
+
∑p

i,j=1 γij
k (Di

k ,k )T

×
(
Pk,k+1 + Tk,k+1

)
dj

k,k + ρk,k

k ∈ Tt

(29)

with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tk,	 = AT
k,	Tk,	+1A	,	

+
∑p

i,j=1 γij
	 (Ci

k,	)
T Tk,	+1Cj

	,	

−
{

AT
k,	Pk,	+1Bk,	 + AT

k,	Tk,	+1B	,	

+
∑p

i,j=1 γij
	

[
(Ci

k,	)
T Pk,	+1D

j
k,	

+ (Ci
k,	)

T Tk,	+1Dj
	,	

]}
W†

	H	

Tk,	 = AT
k,	Tk,	+1A	,	

+
∑p

i,j=1 γij
	 (Ci

k ,	)
T Tk,	+1Cj

	,	

−
{
AT

k,	Pk,	+1Bk,	 + AT
k,	Tk,	+1B	,	

+
∑p

i,j=1(Ci
k ,	)

T Pk,	+1Dj
k ,	

+ CT
k,	Tk,	+1D	,	

)
W†

	H	

Tk,N = 0, Tk,N = 0

	 ∈ Tk

k ∈ Tt

(30)

and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

πk,	 = AT
k,	Pk,	+1

(
fk,	 − Bk,	W†

	 β	

)
+ AT

k,	Tk,	+1
(
f	,	 − B	,	W†

	 β	

)
+
∑p

i,j=1 γij
	

[
(Ci

k ,	)
T Pk,	+1

×
(
dj

k,	 −Dj
k ,	W

†
	 β	

)
+ (Ci

k ,	)
T Tk,	+1

(
dj

	,	 −Dj
	,	W

†
	 β	

)]
+ AT

k,	πk,	+1 + qk,	

πk,N = gk

k ∈ Tt .

(31)

Furthermore, in (28) Ran(Wk ) is the range of Wk , and
Xt,x,∗

k is computed via

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xt,x,∗
k+1 =

[(
Ak,k − Bk,kW†

kHk

)
Xt,x,∗

k

− Bk,kW†
kβk + fk,k

]
+
∑p

i=1

[(
Ci

k ,k −Di
k ,kW

†
kHk

)
Xt,x,∗

k

−Di
k ,kW

†
kβk + di

k,k

]
wi

k

Xt,x,∗
t = x, k ∈ Tt .

(32)
Under any of the above conditions, ut,x,∗ in (17) is

selected as

ut,x,∗
k = −W†

kHkXt,x,∗
k −W†

kβk , k ∈ Tt (33)

with Xt,x,∗ given in (32). Furthermore, we have

Zk,t,x
	 = Pk,	

(
Xk,t,x

	 − EkXk,t,x
	

)
+ Pk,	EkXk,t,x

	

+ Tk,	

(
Xt,x,∗

	 − EkXt,x,∗
	

)
+ Tk,	EkXt,x,∗

	 + πk,	 , 	 ∈ Tk . (34)

Proof: See Appendix D. �
Remark III.2: Noting that Pk,	 and Pk,	 are symmetric, Tk,	

and T̄k,	 are generally nonsymmetric asA	,	 ,B	,	 , C	,	 , andD	,	

appear in the expressions of Tk,	 and T̄k,	 . Let the stationary
condition (17) hold. From Lemma III.4 and “i)⇒ii)” of the proof
of Theorem III.3, we indeed have that control of the following
form

ut,x,∗
k = −W†

kHkXt,x,∗
k −W†

k β̃k + Ỹk , k ∈ Tt (35)

satisfies (17). Here, Ỹk = (I −W†
kWk )Yk with Yk ∈ Rm , and

{β̃k , k ∈ Tt} is given by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

β̃k = BT
k,k

[(
Pk,k+1 + Tk,k+1

)
fk,k + π̃k ,k+1

]
+
∑p

i,j=1 γij
k (Di

k ,k )T
(
Pk,k+1 + Tk,k+1

)
dj

k,k

+ ρk,k

k ∈ Tt

with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π̃k ,	 = AT
k,	Pk,	+1

[
fk,	 − Bk,	(W†

	 β̃	 − Ỹk )
]

+ AT
k,	Tk,	+1

[
f	,	 − B	,	(W†

	 β̃	 − Ỹk )
]

+
∑p

i,j=1 γij
	

[
(Ci

k ,	)
T Pk,	+1

×
(
dj

k,	 −Dj
k ,	(W

†
	 β̃	 − Ỹk )

)
+ (Ci

k ,	)
T Tk,	+1

(
dj

	,	 −Dj
	,	(W

†
	 β̃	 − Ỹk )

)]
+ AT

k,	 π̃k ,	+1 + qk,	

π̃k,N = gk

k ∈ Tt .
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Furthermore, Xt,x,∗ in (35) is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xt,x,∗
k+1 =

[(
Ak,k − Bk,kW†

kHk

)
Xt,x,∗

k

− Bk,k (W†
k β̃k − Ỹk ) + fk,k

]
+
∑p

i=1

[(
Ci

k ,k −Di
k ,kW

†
kHk

)
Xt,x,∗

k

−Di
k ,k (W†

k β̃k − Ỹk ) + di
k,k

]
wi

k

Xt,x,∗
t = x, k ∈ Tt .

D. Second Characterization on the Existence of
Open-Loop Equilibrium Control

By Theorem III.1, Theorem III.2, Theorem III.3, and Re-
mark III.2, we have the following result, which gives conditions
on the existence of open-loop equilibrium control.

Theorem III.4: The following statements are equivalent.
i) Problem (LQ)tx admits an open-loop equilibrium control.

ii) The conditions (24) and (28) hold.
Under any of the above conditions, control of the following

form:

ut,x,∗
k = −W†

kHkXt,x,∗
k −W†

k β̃k + Ỹk , k ∈ Tt (36)

is an open-loop equilibrium control.
Above-mentioned theorem is concerned with the existence of

open-loop equilibrium control. Another important issue is the
uniqueness of open-loop equilibrium control, which is studied
in the following theorem.

Theorem III.5: The following statements are eqivalent.
i) Problem (LQ)tx admits a unique open-loop equilibrium

control.
ii) The following assertions hold.

a) The condition (24) is satisfied.
b) Wk , k ∈ Tt , are invertible, where Wk is given

in (29).
Under any of the above conditions, the unique open-loop

equilibrium control is given by

ut,x,∗
k = −W−1

k HkXt,x,∗
k −W−1

k βk , k ∈ Tt (37)

with Xt,x,∗ given by⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Xt,x,∗
k+1 =

[(
Ak,k − Bk,kW−1

k Hk

)
Xt,x,∗

k

− Bk,kW−1
k βk + fk,k

]
+
∑p

i=1

[(
Ci

k ,k −Di
k ,kW−1

k Hk

)
Xt,x,∗

k

−Di
k ,kW−1

k βk + di
k,k

]
wi

k

Xt,x,∗
t = x, k ∈ Tt .

Proof: i)⇒ii). The condition (24) naturally holds. We further
have b). Otherwise, controls of form (35) are also open-loop
equilibrium control.

ii)⇒i). According to Theorem III.1 and Theorem III.4,
Problem (LQ)tx admits an open-loop equilibrium control. Due
to the nonsingularity of Wk , k∈Tt and the proof of Theorem
III.3, the open-loop equilibrium control is unique, which is given
by (37). �

IV. CASE WITH ALL THE INITIAL PAIRS

In this section, we will let the initial time t and initial state x
range over T and l2F (t; Rn ), respectively; this is referred to as

the case with all the initial pairs. Problem (LQ) for the initial
pair (t, x) will be simply denoted as Problem (LQ)tx , and similar
meanings hold for other initial pairs.

First, we give an interesting result on the unique existence
of open-loop equilibrium control, which follows from Theo-
rem III.5.

Proposition IV.1: Let t ∈ T and x ∈ l2F (t; Rn ). Then, the
following statements are equivalent.

i) Problem (LQ)tx admits a unique open-loop equilibrium
control.

ii) For any k ∈ Tt and any ξ ∈ l2F (k; Rn ), Prob-
lem (LQ)kξ admits a unique open-loop equilibrium
control.

Unfortunately, result similar to Proposition IV.1 does not hold
if we just consider the existence of open-loop equilibrium con-
trol. Alternatively, the following assertion holds.

Theorem IV.1: The following statements are equivalent.
i) For any t ∈ T and any x ∈ l2F (t; Rn ), Problem (LQ)tx

admits an open-loop equilibrium control.
ii) The set of constrained LDEs

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Pk,	 = Qk,	 + AT
k,	Pk,	+1Ak,	

+
∑p

i,j=1 γij
	 (Ci

k,	)
T Pk,	+1C

j
k,	

Pk,	 = Qk,	 + AT
k,	Pk,	+1Ak,	

+
∑p

i,j=1 γij
	 (Ci

k ,	)
T Pk,	+1Cj

k ,	

Pk,N = Gk, Pk,N = Gk , 	 ∈ Tk

Wk � 0

k ∈ T

(38)

and the set of constrained GDREs

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tk,	 = AT
k,	Tk,	+1A	,	

+
∑p

i,j=1 γij
	 (Ci

k,	)
T Tk,	+1Cj

	,	

−
{

AT
k,	Pk,	+1Bk,	 + AT

k,	Tk,	+1B	,	

+
∑p

i,j=1 γij
	

[
(Ci

k,	)
T Pk,	+1D

j
k,	

+ (Ci
k,	)

T Tk,	+1Dj
	,	

]}
W†

	H	

Tk,	 = AT
k,	Tk,	+1A	,	

+
∑p

i,j=1 γij
	 (Ci

k ,	)
T Tk,	+1Cj

	,	

−
{
AT

k,	Pk,	+1Bk,	 + AT
k,	Tk,	+1B	,	

+
∑p

i,j=1(Ci
k ,	)

T Pk,	+1Dj
k ,	

+ CT
k,	Tk,	+1D	,	

}
W†

	H	

Tk,N = 0, Tk,N = 0

	 ∈ Tk

WkW†
kHk −Hk = 0

k ∈ T

(39)
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and the set of constrained LDEs⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

πk,	 = AT
k,	Pk,	+1

(
fk,	 − Bk,	W†

	 β	

)
+ AT

k,	Tk,	+1
(
f	,	 − B	,	W†

	 β	

)
+
∑p

i,j=1 γij
	

[
(Ci

k ,	)
T Pk,	+1

×
(
dj

k,	 −Dj
k ,	W

†
	 β	

)
+ (Ci

k ,	)
T

× Tk,	+1
(
dj

	,	 −Dj
	,	W

†
	 β	

)]
+ AT

k,	πk,	+1 + qk,	

πk,N = gk

WkW†
kβk − βk = 0

k ∈ T

(40)

are solvable in the sense that⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Wk � 0

WkW†
kHk −Hk = 0

WkW†
kβk − βk = 0

k ∈ T

(41)

holds, i.e., the solutions of (38)–(40) satisfy (41). Here⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Wk = Rk,k + BT
k,kPk,k+1Bk,k

+
∑p

i,j=1 γij
k (Di

k ,k )T Pk,k+1Dj
k ,k

Wk = Rk,k + BT
k,k

(
Pk,k+1 + Tk,k+1

)
Bk,k

+
∑p

i,j=1 γij
k (Di

k ,k )T
(
Pk,k+1 + Tk,k+1

)
Dj

k ,k

Hk = BT
k,k

(
Pk,k+1 + Tk,k+1

)
Ak,k

+
∑p

i,j=1 γij
k (Di

k ,k )T
(
Pk,k+1 + Tk,k+1

)
Cj

k ,k

βk = BT
k,k

[(
Pk,k+1 + Tk,k+1

)
fk,k + πk,k+1

]
+
∑p

i,j=1 γij
k (Di

k ,k )T
(
Pk,k+1 + Tk,k+1

)
dj

k,k

+ ρk,k

k ∈ T .

Under any of the above conditions, control of the form (36)
is an open-loop equilibrium control of Problem (LQ)tx .

Proof: i)⇒ii). From Theorem III.4, the constrained LDEs
(38) are solvable, and for any t ∈ T , x ∈ l2F (t; Rn ), the condi-
tion (28) holds, i.e.,

HkXt,x,∗
k + βk ∈ Ran(Wk ), k ∈ Tt .

Especially, we have

Htx + βt ∈ Wt , t ∈ T

equivalently

WtW†
t (Htx + βt) = Htx + βt, t ∈ T . (42)

Let x = 0 in (42), we have

WtW†
t βt = βt, t ∈ T

which further implies

WtW†
t Htx = Htx, t ∈ T . (43)

Noting that (43) holds for any x ∈ l2F (t; Rn ), we obtain

WkW†
kHk −Hk = 0, t ∈ T .

Hence, (39) and (40) are solvable.
ii)⇒i). As (38)–(40) are solvable and by Theorem III.4, for

any t ∈ T and any x ∈ l2F (t; Rn ) Problem (LQ)tx admits an
open-loop equilibrium control. �

Corollary IV.1: Let

Qk,	, Q̄k,	 � 0, Rk,	 , R̄k,	 
 0, k ∈ T , 	 ∈ Tk . (44)

Then, the following statements are equivalent.
1) For any t ∈ T and any x ∈ l2F (t; Rn ), Problem (LQ)tx

admits an open-loop equilibrium control.
2) Equations (39) and (40) are solvable.
Proof: In this situation, Wk , k ∈ T are positive definite, i.e.,

Wk 
 0, k ∈ T . Hence, the conclusion follows. �
Let us make some rough observations under the condi-

tion (44). Assuming (44), consider Problem (LQ)tx for t ∈ T
and x ∈ l2F (t; Rn ). Let us begin with t = N − 1. Noting that
WN −1 = WN −1 
 0, Problem (LQ)N −1,x admits a unique
open-loop equilibrium control and uN −1,x,∗

N −1 is easily obtained

uN −1,x,∗
N −1 = −W−1

N −1HN −1x −W−1
N −1βN −1 .

Now move to the case t = N − 2. If we have selected uN −2,x,∗
N −1 ,

from Lemmas III.1 and III.2 we have

J(N − 2, x; (uN −2 , u
N −2,x,∗
N −1 ))

= uT
N −2WN −2uN −2

+ 2
[
ρN −2,N −2 + BT

N −2,N −2EN −2Z
N −2,0
N −1

+
p∑

i=1

(Di
N −2,N −2)

T EN −1(Z
N −2,0
N −1 wi

N −2)
]T

uN −2

+ J(N − 2, x; (0, uN −2,x,∗
N −1 ))

� 〈WN −2uN −2 , uN −2〉 + 2〈MN −2(Z
N −2,0
N −1 ), uN −2〉

+ J(N − 2, x; (0, uN −2,x,∗
N −1 )). (45)

In the above, ZN −2,0
N −1 is computed via

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ZN −2,0
	 = AT

N −2,	E	Z
N −2,0
	+1 + ĀT

N −2,	EN −2Z
N −2,0
	+1

+
∑p

i=1

[
(Ci

N −2,	)
T E	(Z

N −2,0
	+1 wi

	)

+ (C̄i
N −2,	)

T EN −2(Z
N −2,0
	+1 wi

	)
]

+ QN −2,	X
N −2,0
	 + Q̄N −2,	EN −2X

N −2,0
	

+ qN −2,	

ZN −2,0
N = GN −2X

N −2,0
N + ḠN −2EN −2X

N −2,0
N

+ gN −2

	 ∈ {N − 2, N − 1}
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where XN −2,0 is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

XN −2,0
N =

(
AN −2,N −1X

N −2,0
N −1

+ ĀN −2,N −1EN −2X
N −1,0
N −2

+ BN −2,N −1u
N −2,x,∗
N −1

+ B̄N −2,N −1EN −2u
N −2,x,∗
N −1

+ fN −2,N −1
)

+
∑p

i=1

[
Ci

N −2,N −1X
N −2,0
N −1

+ C̄i
N −2,N −1EN −2X

N −1,0
N −2

+ Di
N −2,N −1u

N −2,x,∗
N −1

+ D̄i
N −2,N −1EN −2u

N −2,x,∗
N −1

+ di
N −2,N −1

]
wi

N −1

XN −2,0
N −1 =

(
AN −2,N −2X

N −2,0
N −2 + fN −2,N −2

)
+
∑p

i=1

[
Ci

N −2,N −2X
N −2,0
N −2

+ di
N −2,N −2

]
wi

N −2

XN −2,0
N −2 = x

	 ∈ {N − 2, N − 1}

(46)

and 〈·, ·〉 is the inner product on Rm , and

MN −2(Z
N −2,0
N −1 ) = ρN −2,N −2 + BT

N −2,N −2EN −2Z
N −2,0
N −1

+
p∑

i=1

(Di
N −2,N −2)

T EN −1(Z
N −2,0
N −1 wi

N −2).

If we “select”

uN −2,x,∗
N −2 = −W −1

N −2MN −2(Z
N −2,0
N −1 ) (47)

then the following inequality

J(N − 2, x; (uN −2,x,∗
N −2 , uN −2,x,∗

N −1 ))

≤ J(N − 2, x; (uN −2 , u
N −2,x,∗
N −1 ))

seems to hold.
However, it should be mentioned that it is questionable about

(47). If uN −2,x,∗ exists, we should have

uN −2,x,∗
N −1 = −W−1

N −1HN −1X
N −2,x,∗
N −1 −W−1

N −1βN −1

and

XN −2,x,∗
N −1 = AN −2,N −2x + BN −2,N −2u

N −2,x,∗
N −2

+
p∑

i=1

(
Ci

N −2,N −2x + Di
N −2,N −2u

N −2,x,∗
N −2

)
wi

N −2 .

Hence, uN −2,x,∗
N −1 depends on uN −2,x,∗

N −2 , and it is so for ZN −2,0
N −1 .

Therefore, the right-hand side of (47) is a functional of uN −2,x,∗
N −2 ,

and it cannot be concluded that (47) makes sense under the
assumption WN −2 
 0. Recall that {{Tk,	 , 	 ∈ Tk}, k ∈ T} is
also needed to characterize the open-loop equilibrium control,
and that for k ∈ T

Wk = Wk + BT
k,kTk,k+1Bk,k +

p∑
i,j=1

(Di
k ,k )T Tk,k+1Dj

k ,k .

Note that elements in {{Tk,	 , 	 ∈ Tk}, k ∈ T} are generally
nonsymmetric. So far, it is not known now whether or not Wk 

0 could ensure the nonsingularity of Wk . Therefore, we have to
check case by case the solvability of (39), (40) [by validating
(41)].

V. MULTIPERIOD MEAN–VARIANCE PORTFOLIO SELECTION

Consider a capital market consisting of one riskless asset
and n risky assets within a time horizon N . Let sk (> 1) be
a given deterministic return of the riskless asset at time pe-
riod k and ek = (e1

k , . . . , en
k )T the vector of random returns of

the n risky assets at period k. We assume that vectors ek , k =
0, 1, . . . , N − 1, are statistically independent and the only in-
formation known about the random return vector ek is its first
two moments: its mean E(ek ) = (Ee1

k , Ee2
k , . . . , Een

k )T and
its covariance Cov(ek ) = E[(ek − Eek )(ek − Eek )T ]. Clearly,
Cov(ek ) is nonnegative definite, i.e., Cov(ek ) � 0.

Let Xk be the wealth of the investor at the beginning of the
kth period, and let ui

k , i = 1, 2, . . . , n, be the amount invested
in the ith risky asset at period k. Then, Xk −

∑n
i=1 ui

k is the
amount invested in the riskless asset at period k, and the wealth
at the beginning of the (k + 1)th period [22] is given by

Xk+1 =
n∑

i=1

ei
kui

k +

(
Xk −

n∑
i=1

ui
k

)
sk = skXk + OT

k uk

(48)
where Ok is the excess return vector of risky assets [22]
defined as

Ok = (O1
k , O2

k , . . . , On
k )T

= (e1
k − sk , e2

k − sk , . . . , en
k − sk )T . (49)

Clearly, Xk ∈ R, k ∈ T . In this section, we consider the case
where short selling of stocks is allowed, i.e., ui

k , i = 1, ..., k,
could take values in R, which leads to an unconstrained mean–
variance portfolio selection formulation.

Let

Fk = σ(e	, 	 = 0, 1, . . . , k − 1)

which contains F′
k = σ(X	, 	 = 0, 1, . . . , k). Then, the time-

inconsistent version of multiperiod mean–variance problem [22]
can be formulated as follows.

Problem (MV): Letting t ∈ T and x ∈ l2F (t; Rn ), find u∗ ∈
l2F (Tt ; Rn ) such that

Jm (t, x;u∗) = inf
u∈l2F (Tt ;Rn )

Jm (t, x;u).

Here

Jm (t, x;u) = λEt(XN − EtXN )2 − EtXN

which is subject to{
Xk+1 = skXk + OT

k uk

Xk = x

with λ > 0 the tradeoff parameter between the mean and the
variance of the terminal wealth.

It is noted that some nondegenerate assumptions are posed
in [2], [6], [9], [10], [17], and [18]. Specifically, the volatilities
of the stocks in [2], [6], [17], and [18] and the return rates
of the risky securities in [9], [10], and [22] are assumed to be
nondegenerate. In this section, we do not pose the nondegenerate
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constraint on Cov(ek ), Cov(Ok ), k ∈ T , and want to see what is
the weakest condition on the existence of open-loop equilibrium
portfolio control of Problem (MV)

To solve Problem (MV), we shall transform (48) into a linear
controlled system of form (4), by which the general theory in
above sections will work. Precisely, define⎧⎪⎨

⎪⎩
wi

k = ei
k − sk − E(ei

k − sk )

Di
k = (0, . . . , 0, 1, 0, . . . , 0)

i = 1, · · · , n, k = 0, 1, · · · , N − 1

where the ith entry of Di
k is 1. Then, {wk = (w1

k , ..., wn
k )T , k ∈

T} is a martingale difference sequence as ek , k = 1, .., N − 1,
are statistically independent. Furthermore

Ek [wkwT
k ] = E[wkwT

k ] = Cov(ek ) = (γij
k )n×n .

This leads to{
Xk+1 = (skXk + (EOk )T uk ) +

∑n
i=1 Di

kukwi
k

Xk = x.
(50)

Due to Theorem IV.1, we have the following result.
Theorem V.1: The following statements are equivalent.
1) For any t ∈ T and any x ∈ l2F (t; R), Problem (MV) ad-

mits an open-loop equilibrium portfolio control.
2) EOk ∈ Ran(Cov(Ok )), k ∈ T .

Under any of the above conditions

ut,x,∗
k = −W†

kβk , k ∈ Tt (51)

is an open-loop equilibrium portfolio control for the initial pair
(t, x), where ⎧⎪⎨

⎪⎩
Wk = Pk+1Cov(Ok )

βk = πk+1EOk

k ∈ T

(52)

with ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Pk = s2
kPk+1

πk = skπk+1

PN = λ, πN = − 1
2

k ∈ T .

Proof: In this case, (38)–(40) become to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pk = s2
kPk+1

Pk = s2
kPk+1 ≡ 0

PN = λ, PN = 0

Wk =
∑n

i,j=1 γij
k (Di

k )T Pk+1D
j
k

= Pk+1Cov(Ok ) � 0

k ∈ T

(53)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Tk = s2
kTk+1 − sk (Pk+1 + Tk+1)(EOk )T W†

kHk

Tk = Tk+1
[
s2

k − sk (EOk )T W†
kHk

]
≡ 0

TN = 0, TN = 0

WkW†
kHk −Hk = 0

k ∈ T

(54)

and ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

πk = skπk+1

πN = − 1
2

WkW†
kβk − βk = 0

k ∈ T

(55)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Wk =
∑n

i,j=1 γij
k (Di

k )T
(
Pk+1 + Tk+1

)
Dj

k

=
(
Pk+1 + Tk+1

)
Cov(Ok )

Hk = 0

βk = πk+1EOk

k ∈ T .

(56)

Noting that Pk+1 > 0,Hk = 0, k ∈ T , (53) and (54) are solv-
able, and Tk = 0, k ∈ T . As πk+1 �= 0, k ∈ T , the solvability
of (55) is then equivalent to the fact EOk ∈ Ran(Cov(Ok )), k ∈
T . By Theorem IV.1, we achieve the conclusion. �

Concerned with the uniqueness of open-loop equilibrium con-
trol, we have the following result.

Theorem V.2: The following statements are equivalent.
1) For any t ∈ T and any x ∈ l2F (t; R), Problem (MV) ad-

mits a unique open-loop equilibrium portfolio control.
2) Cov(Ok ) 
 0, k ∈ T .

Under any of the above conditions, the unique open-loop
equilibrium portfolio control for the initial pair (t, x) is given
by

ut,x,∗
k = −W−1

k βk , k ∈ Tt (57)

with Wk , βk , k ∈ T given in (52).
Proof: The proof follows from Theorem III.5,

Proposition IV.1 and Theorem V.1. �
Note that Cov(Ok ) 
 0, k ∈ T is a common assumption in

multiperiod mean–variance portfolio selection [9], [11], [22].
In this situation, the open-loop equilibrium portfolio control for
the initial pair (t, x) is

ut,x,∗
k = − 1

2λsk+1 · · · sN −1
(Cov(Ok ))−1EOk , k ∈ Tt .

This section just studied the simplest dynamic mean–variance
model [22]. In the future, dynamic mean–variance portfolio
optimizations are much desirable for the more general models.

VI. CONCLUSION

In this paper, the open-loop time-consistent equilibrium con-
trol is investigated for a kind of mean-field stochastic LQ prob-
lem, where both the system matrices and the weighting matrices
are depending on the initial time, and the conditional expecta-
tions of the control and state enter quadratically into the cost
functional. Necessary and sufficient conditions are presented
for both the case with a fixed initial pair and the case with
all the initial pairs. Furthermore, a set of constrained GDREs
and two sets of constrained LDEs are introduced to character-
ize the open-loop equilibrium control. Note that this paper is
concerned with the time consistency of open-loop control. For
future research, the time consistency of the strategy should be
studied.
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APPENDIX

A. Proof of Lemma III.1

Let us replace uk with uk + λūk in the forward SΔE of (15),
and denote its solution by Xk,λ. Then, we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X k , λ
	 + 1 −X k

	 + 1
λ

=
(
Ak,	

X k , λ
	 −X k

	

λ
+ Āk,	

Ek X k , λ
	 −Ek X k

	

λ

)
+
∑p

i=1

(
Ci

k,	
X k , λ

	 −X k
	

λ
+ C̄i

k,	
Ek X k , λ

	 −Ek X k
	

λ

)
wi

	

X k , λ
k + 1 −X k

k + 1
λ

=
(
Ak,k

X k , λ
k −X k

k

λ
+ Āk,k

Ek X k , λ
k −Ek X k

k

λ

+Bk,k ūk + B̄k,k ūk

)
+
∑p

i=1

(
Ci

k,k
X k , λ

k −X k
k

λ

+C̄i
k,k

Ek X k , λ
k −Ek X k

k

λ
+ Di

k,k ūk + D̄i
k,kEk ūk

)
wi

k

X k , λ
k −X k

k

λ
= 0, 	 ∈ Tk+1 .

Denoting X k , λ
	 −X k

	

λ
by Y k,ūk

	 , we get (14). Note that Xk,λ
	 =

Xk
	 + λY k,ūk

	 , ∀	 ∈ Tk . Then, we have

J(k, ζ; (uk + λūk , u|Tk + 1 )) − J(k, ζ;u)

=
N −1∑
	=k

Ek

[
(Xk

	 + λY k,ūk

	 )T Qk,	(Xk
	 + λY k,ūk

	 )

+ [Ek (Xk
	 + λY k,ūk

	 )]T Q̄k,	Ek (Xk
	 + λY k,ūk

	 )

+ 2qT
k,	(X

k
	 + λY k,ūk

	 ) − (Xk
	 )T Qk,	X

k
	

− [EkXk
	 ]T Q̄k,	E	X

k
	 − 2qT

k,	X
k
	

]
+ (uk + λūk )T (Rk,k + R̄k,k )(uk + λūk )

+ 2ρT
k,	(uk + λūk ) − uT

k (Rk,k + R̄k,k )uk − 2ρT
k,	uk

+ [Ek (Xk
N + λY k,ūk

N )]T ḠkEk (Xk
N + λY k,ūk

N )

+ Ek

[
(Xk

N + λY k,ūk

N )T Gk (Xk
N + λY k,ūk

N )
]

+ 2Ek [gT
k (Xk

N + λY k,ūk

N )]

− Ek

[
(Xk

N )T GkXk
N

]
− (EkXk

N )T ḠkEkXk
N

− 2Ek gT
k Xk

N

= 2λ

{
N −1∑
	=k

Ek

[
(Xk

	 )T Qk,	Y
k,ūk

	 + qT
k,	Y

k
	

+ [EkXk
	 ]T Q̄k,	EkY k,ūk

	

]
+ uT

k (Rk,k + R̄k,k )ūk

+ ρT
k,	 ūk + Ek

[
(Xk,uk

N )T GkY k,ūk

N

]
+ Ek [gT

k Y k,ūk

N ]

+ [EkXk
N ]T ḠkEkY k,ūk

N

}

+ λ2

{
N −1∑
	=k

Ek

[
(Y k,ūk

	 )T Qk,	Y
k,ūk

	

+ (EkY k,ūk

	 )T Q̄k,	EkY k,ūk

	

]

+ Ek

[
ūT

k (Rk,k + R̄k,k )ūk

]
+ Ek

[
(Y k,ūk

N )T GkY k,ūk

N

]

+ (EkY k,ūk

N )T ḠkEkY k,ūk

N

}
. (58)

From (15), it holds that EkZk
N = GkEkXk

N + gk and Zk
N −

EkZk
N = Gk (Xk

N − EkXk
N ). Noting Y k,ūk

k = 0, then, we have

N −1∑
	=k

Ek

[
(Xk

	 )T Qk,	Y
k,ūk

	 + qT
k,	Y

k,ūk

	

+[EkXk
	 ]T Q̄k,	EkY k,ūk

	

]
+ uT

k (Rk,k + R̄k,k )ūk

+ ρT
k,	 ūk + Ek

[
(Xk,uk

N )T GkY k,ūk

N

]
+ [EkXk

N ]T ḠkEkY k,ūk

N + Ek [gT
k Y k,ūk

N ]

=
N −1∑
	=k

Ek

[(
Qk,	(X

k,uk

	 − EkXk,uk

	 )

+ AT
k,	(E	Z

k
	+1 − EkZk

	+1)

+
p∑

i=1

(Ci
k,	)

T
(
E	(Zk

	+1w
i
	) − Ek (Zk

	+1w
i
	)
)

− (Zk
	 − EkZk

	 )
)T

(Y k,ūk

	 − EkY k,ūk

	 )

+
(
Qk,	EkXk,uk

	 + qk,	 + AT
k,	EkZk

	+1

+
p∑

i=1

(Ci
k ,	)

T Ek (Zk
	+1w

i
	) − EkZk

	

)T

EkY k,ūk

	

]

+
[
Rk,kuk + BT

k,kEkZk
k+1

+
p∑

i=1

(Di
k ,k )T Ek (Zk

k+1w
i
k ) + ρk,k

]T
ūk

=
[
Rk,kuk + BT

k,kEkZk
k+1

+
p∑

i=1

(Di
k ,k )T Ek (Zk

k+1w
i
k ) + ρk,k

]T
ūk .

This together with (58) implies the conclusion. �

B. Proof of Theorem III.1

i)⇒ii). Let ut,x,∗ be an open-loop equilibrium control. As
(18) is a decoupled FBSΔE, (18) is solvable. From (12), we
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have

J(k,Xt,x,∗
k ; (ut,x,∗

k + λūk , ut,x,∗|Tk + 1)) − J(k,Xt,x,∗
k ;ut,x,∗)

= 2λ
[
Rk,kut,x,∗

k + BT
k,kEkZk,t,x

k+1 +
p∑

i=1

(Di
k ,k)

T Ek (Zk,t,x
k+1 wi

k)

+ ρk,k

]T
ūk + λ2 Ĵ(k, 0; ūk )

≥ 0. (59)

Noting that (59) holds for any λ ∈ R and ūk ∈ L2
F (k; Rm ), we

have (16) and (17). In fact, if (16) was not satisfied, then there
would be a ūk such that limλ �→∞J̄(k,Xt,x,∗

k ;ut,x,∗
k + λūk ) −

J̄(k,Xt,x,∗
k ;ut,x,∗

k ) = −∞. This is impossible. Furthermore, if
for some k0 ∈ Tt

γk0 = Rk0 ,k0 u
t,x,∗
k0

+ BT
k0 ,k0

Ek0 Z
k0 ,t,x
k0 +1

+
p∑

i=1

(Di
k0 ,k0

)T Ek0 (Z
k0 ,t,x
k0 +1 wi

k0
) + ρk0 ,k0

�= 0

we let ūk0 = γk0 . Then, (59) implies that

2λ|γk0 |2 + λ2 Ĵ(k0 , 0; γk0 ) ≥ 0

holds for any λ ∈ R. However, for negative number λ with
sufficient small magnitude, it holds that

2λ|γk0 |2 + λ2 Ĵ(k0 , 0; γk0 ) < 0

and contradiction arises. Therefore, γk0 must be 0, and (17)
holds.

ii)⇒i). In this case, for any λ ∈ R and ūk ∈ L2
F (k; Rm ) we

have

J(k,Xt,x,∗
k ; (ut,x,∗

k + λūk , ut,x,∗|Tk + 1)) − J(k,Xt,x,∗
k ;ut,x,∗)

= λ2 Ĵ(k, 0; ūk )

≥ 0.

Hence, ut,x,∗ is an open-loop equilibrium control. �

C. Proof of Lemma III.3

It is assumed that ut,x,∗
	 = Ψ	X

t,x,∗
	 + α	, 	 ∈ Tτ . Then, we

have

Xk,t,x
N = Ak,N−1X

k,t,x
N −1 + Āk,N−1EkXk,t,x

N −1

+ Bk,N−1ΨN −1X
t,x,∗
N −1 + B̄k,N−1ΨN −1EkXt,x,∗

N −1

+ Bk,N−1αN −1 + fk,N−1

+
p∑

i=1

[
Ci

k,N−1X
k,t,x
N −1 + C̄i

k,N−1EkXk,t,x
N −1

+ Di
k,N−1ΨN −1X

t,x,∗
N −1 + D̄i

k,N−1ΨN −1EkXt,x,∗
N −1

+ Di
k ,N−1αN −1 + di

k,N−1

]
wi

N −1 .

To calculate Zk,t,x
N −1 , we need some preparations. Noting that

Zk,t,x
N = GkXk,t,x

N + ḠkEkXk,t,x
N + gk

we get

AT
k,N−1EN −1Z

k,t,x
N

= AT
k,N−1EN −1

[
GkXk,t,x

N + ḠkEkXk,t,x
N + gk

]
= AT

k,N−1GkAk,N−1X
k,t,x
N −1 +

[
AT

k,N−1GkĀk,N−1

+ AT
k,N−1ḠkAk,N−1

]
EkXk,t,x

N −1

+ AT
k,N−1GkBk,N−1ΨN −1X

t,x,∗
N −1

+ AT
k,N−1

[
GkB̄k,N−1 + ḠkBk,N−1

]
ΨN −1EkXt,x,∗

N −1

+ AT
k,N−1Gk

[
Bk,N−1αN −1 + fk,N−1

]
+ AT

k,N−1gk

and

ĀT
k,N−1EkZk,t,x

N

= ĀT
k,N−1gk + ĀT

k,N−1GkAk,N−1EkXk,t,x
N −1

+ ĀT
k,N−1GkBk,N−1ΨN −1EkXt,x,∗

N −1

+ ĀT
k,N−1Gk (Bk,N−1αN −1 + fk,N−1).

Furthermore, it holds that

(Ci
k,N−1)

T EN −1(Z
k,t,x
N wi

N −1)

= (Ci
k,N−1)

T Gk

p∑
j=1

γij
N −1

[
Cj

k,N−1X
k,t,x
N −1

+ C̄j
k,N−1EkXk,t,x

N −1 + Dj
k,N−1ΨN −1X

t,x,∗
N −1

+ D̄j
k,N−1ΨN −1EkXt,x,∗

N −1 + Dj
k ,N−1αN −1 + dj

k,N−1

]

and

(Ci
k,N−1)

T Ek (Zk,t,x
N wi

N −1)

= (C̄i
k,N−1)

T Gk

p∑
j=1

γij
N −1

[
Cj

k ,N−1EkXk,t,x
N −1

+ Dj
k ,N−1ΨN −1EkXt,x,∗

N −1 + Dj
k ,N−1αN −1 + dj

k,N−1

]
.

Therefore

Zk,t,x
N −1

=
{

Qk,N−1 + AT
k,N−1GkAk,N−1

+
p∑

i,j=1

γij
N −1(C

i
k,N−1)

T GkCj
k,N−1

}
Xk,t,x

N −1

+
{

Q̄k,N−1 + AT
k,N−1GkĀk,N−1

+ AT
k,N−1ḠkAk,N−1 + ĀT

k,N−1GkAk,N−1
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+
p∑

i,j=1

γij
N −1

[
(Ci

k,N−1)
T Gk C̄j

k,N−1

+ (C̄i
k,N−1)

T GkCj
k ,N−1

]}
EkXk,t,x

N −1

+
{

AT
k,N−1GkBk,N−1

+ CT
k,N−1GkDk,N−1

}
ΨN −1X

t,x,∗
N −1

+
{

AT
k,N−1

[
GkB̄k,N−1 + ḠkBk,N−1

]

+ ĀT
k,N−1GkBk,N−1 +

p∑
i,j=1

γij
N −1

[
(Ci

k,N−1)
T GkD̄j

k,N−1

+ (C̄i
k,N−1)

T GkDj
k ,N−1

]}
ΨN −1EkXt,x,∗

N −1

+ AT
k,N−1Gk

[
Bk,N−1αN −1 + fk,N−1

]

+
p∑

i,j=1

γij
N −1CT

k,N−1Gk

[
Dk,N−1αN −1 + dk,N−1

]

+ AT
k,N−1gk + qk,N−1

= Pk,N−1X
k,t,x
N −1 + P̄k,N−1EkXk,t,x

N −1 + Tk,N−1X
t,x,∗
N −1

+ T̄k,N−1EkXt,x,∗
N −1 + πk,N−1 .

We now calculate Zk,t,x
N −2 . Note that

AT
k,N−2EN −2Z

k,t,x
N −1

= AT
k,N−2Pk,N−1Ak,N−2X

k,t,x
N −2

+
(
AT

k,N−2Pk,N−1Āk,N−2 + AT
k,N−2 P̄k,N−1Ak,N−2

)
× EkXk,t,x

N −2 +
[
AT

k,N−2Pk,N−1Bk,N−2ΨN −2

+ AT
k,N−2Tk,N−1

(
AN −2,N −2 + BN −2,N −2ΨN −2

)]
Xt,x,∗

N −2

+
[
AT

k,N−2Pk,N−1B̄k,N−2ΨN −2

+ AT
k,N−2 P̄k,N−1Bk,N−2ΨN −2

+ AT
k,N−2 T̄k,N−1

(
AN −2,N −2 + BN −2,N −2ΨN −2

)]
× EkXt,x,∗

N −2 + AT
k,N−2Pk,N−1

(
Bk,N−2αN −2 + fk,N−2

)
+ AT

k,N−2Tk,N−1
(
BN −2,N −2αN −2 + fN −2,N −2

)
+ AT

k,N−2πk,N−1

and similar expressions for CT
k,N−2EN −2(Z

k,t,x
N −1 wN −2), ĀT

k,N−2

EkZk,t,x
N −1 , and C̄T

k,N−2Ek

(
Zk,t,x

N −1 wN −2
)
. Then, from (18)

we have

Zk,t,x
N −2

=
{

Qk,N−2 + AT
k,N−2Pk,N−1Ak,N−2

+
p∑

i,j=1

γij
N −1(C

i
k,N−2)

T Pk,N−1C
j
k,N−2

}
Xk,t,x

N −2

+
{

Q̄k,N−2 + AT
k,N−2Pk,N−1Āk,N−2

+ AT
k,N−2 P̄k,N−1Ak,N−2 + ĀT

k,N−2Pk,N−1Ak,N−2

+
p∑

i,j

γij
N −1

[
(Ci

k,N−2)
T Pk,N−1C̄

j
k,N−2

+ (C̄i
k,N−2)

T Pk,N−1Cj
k ,N−2

]}
EkXk,t,x

N −2

+
{

AT
k,N−2Pk,N−1Bk,N−2ΨN −2

+ AT
k,N−2Tk,N−1

(
AN −2,N −2 + BN −2,N −2ΨN −2

}

+
p∑

i,j=1

γij
N −2

[
(Ci

k,N−2)
T Pk,N−1D

j
k,N−2ΨN −1

+ (Ci
k,N−2)

T Tk,N−1
(
Cj

N −2,N −2 + Dj
N −2,N −2ΨN −2

)]}
× Xt,x,∗

N −2 +
{

AT
k,N−2Pk,N−1B̄k,N−2ΨN −2

+ AT
k,N−2 P̄k,N−1Bk,N−2ΨN −2

+ AT
k,N−2 T̄k,N−1

(
AN −2,N −2 + BN −2,N −2ΨN −2

)
+

p∑
i,j=1

γij
N −2(C

i
k,N−2)

T Pk,N−1D̄
j
k,N−2ΨN −2

+ ĀT
k,N−2Pk,N−1Bk,N−2ΨN −2 + ĀT

k,N−2Tk,N−1

×
(
AN −2,N −2 + BN −2,N −2ΨN −2

)
+

p∑
i,j=1

γij
N −2

[
(C̄i

k,N−2)
T Pk,N−1Dj

k ,N−2ΨN −1

+ (C̄i
k,N−2)

T Tk,N−1
(
Cj

N −2,N −2 + Dj
N −2,N −2ΨN −2

)]}
× EkXt,x,∗

N −2 + AT
k,N−2Pk,N−1

(
Bk,N−2αN −2 + fk,N−2

)
+ AT

k,N−2Tk,N−1
(
BN −2,N −2αN −2 + fN −2,N −2

)
+

p∑
i,j=1

γij
N −2

[
(Ci

k ,N−2)
T Pk,N−1

(
Dj

k ,N−2αN −2 + dj
k,N−2

)

+ (Ci
k ,N−2)

T Tk,N−1
(
Dj

N −2,N −2αN −2 + dj
N −2,N −2

)]
+ AT

k,N−2πk,N−2 + qk,N−2

= Pk,N−2X
k,t,x
N −2 + P̄k,N−2EkXk,t,x

N −2 + Tk,N−2X
t,x,∗
N −2

+ T̄k,N−2EkXt,x,∗
N −2 + πk,N−2 .

By deduction, we achieve the conclusion. �
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D. Proof of Theorem III.3

i)⇒ii). Let ut,x,∗ be the one that satisfies the condition (17).
Noting that Xk,t,x

k = Xt,x,∗
k of (19), we have

Xk,t,x
k+1 = Xt,x,∗

k+1 , k ∈ Tt (60)

as

ZN −1,t,x
N = GN −1X

N −1,t,x
N + ḠN −1EN −1X

N −1,t,x
N + gN −1

we have

EN −1Z
N −1,t,x
N

= GN −1AN −1,N −1X
t,x,∗
N −1

+ GN −1BN −1,N −1u
t,x,∗
N −1

+ GN −1fN −1,N −1 + gN −1 . (61)

Similarly, it holds that

EN −1(Z
N −1,t,x
N wi

N −1)

=
p∑

j=1

γij
N −1GN −1Cj

N −1,N −1X
t,x,∗
N −1

+
p∑

j=1

γij
N −1GN −1Dj

N −1,N −1u
t,x,∗
N −1

+
p∑

j=1

γij
N −1GN −1d

j
N −1,N −1 . (62)

From (17), (61), and (62), we have

0 = WN −1u
t,x,∗
N −1 + HN −1X

t,x,∗
N −1 + βN −1 (63)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

WN −1 = RN −1,N −1 + BT
N −1,N −1GN −1BN −1,N −1

+
∑p

i,j=1 γij
N −1(Di

N −1,N −1)
T GN −1Dj

N −1,N −1

HN −1 = BT
N −1,N −1GN −1AN −1,N −1

+
∑p

i,j=1 γij
N −1(Di

N −1,N −1)
T GN −1Cj

N −1,N −1

βN −1 = BT
N −1,N −1

[
GN −1fN −1,N −1 + gN −1

]
+
∑p

i,j=1 γij
N −1(Di

N −1,N −1)
T GN −1d

j
N −1,N −1

+ ρN −1,N −1 .

Note that Xt,x,∗
N −1 is not influenced by ut,x,∗

N −1 . From Lemma III.4,
ut,x,∗

N −1 can be selected as

ut,x,∗
N −1 = −W†

N −1HN −1X
t,x,∗
N −1 −W†

N −1βN −1

� ΨN −1X
t,x,∗
N −1 + αN −1 (64)

and (
I −WN −1W†

N −1

)(
HN −1X

t,x,∗
N −1 + βN −1

)
= 0

holds, which is equivalent to

HN −1X
t,x,∗
N −1 + βN −1 ∈ Ran(WN −1).

Moving to the case k = N − 2 and by deduction, we then
have (28) and (33).

ii)⇒i). Let Xt,x,∗ and ut,x,∗ be given in (32) and (33). From
(28), we have

0 = Wkut,x,∗ + HkXt,x,∗
k + βk , k ∈ Tt . (65)

Furthermore, from (33) and Lemma III.3, then, (25), equiva-
lently (34), holds. Similarly to (61) and (62), we have

EkZk,t,x
k+1 = (Pk,k+1 + Tk,k+1)Ak,kXt,x,∗

k

+ (Pk,k+1 + Tk,k+1)Bk,kut,x,∗
k

+ (Pk,k+1 + Tk,k+1)fk,k + πk,k+1 (66)

and

Ek (Zk,t,x
k+1 wi

k ) =
p∑

j=1

γij
k

(
Pk,k+1 + Tk,k+1

)
Cj

k ,kXt,x,∗
k

+
p∑

j=1

γij
k

(
Pk,k+1 + Tk,k+1

)
Dj

k ,kut,x,∗
k

+
p∑

j=1

γij
k

(
Pk,k+1 + Tk,k+1

)
dj

k,k . (67)

Combining (65)–(67), we have the stationary condition (17).
�

REFERENCES

[1] M. Ait Rami, X. Chen, and X. Y. Zhou, “Discrete-time indefinite LQ
control with state and control dependent noises,” J. Global Optim., vol. 23,
pp. 245–265, 2002.

[2] S. Basak and G. Chabakauri, “Dynamic mean-variance asset allocation,”
Review Financial Studies, vol. 23, pp. 2970–3016, 2010.
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