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a b s t r a c t

This paper introduces identification algorithms for finite impulse response systems under quantized
output observations and general quantized inputs. While asymptotically efficient algorithms for
quantized identification under periodic inputs are available, their counterpart under general inputs has
encountered technical difficulties and evaded satisfactory resolutions. Under quantized inputs, this paper
resolves this issue with constructive solutions. A two-step algorithm is developed, which demonstrates
desired convergence properties including strong convergence, mean-square convergence, convergence
rates, asymptotic normality, and asymptotical efficiency in terms of the Cramér–Rao lower bound.
Some essential conditions on input excitation are derived that ensure identifiability and convergence.
It is shown that by a suitable selection of the algorithm’s weighting matrix, the estimates become
asymptotically efficient. The strong and mean-square convergence rates are obtained. Optimal input
design is given. Also the joint identification of noise distribution functions and system parameters is
investigated. Numerical examples are included to illustrate the main results of this paper.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

To reduce costs of sensors and accommodate communication
system limitations (Akyildiz, Su, Sankarasubramaniam, & Cayirci,
2002; Li, Zhang, Cui, Fan, &Athanasios, 2014), system identification
under quantized observation has drawn great research effort
and experienced substantial advancement during the past decade
(Agüero, Goodwin, & Yuz, 2007; Casini, Garulli, & Vicino, 2011;
Wang, Yin, Zhang, & Zhao, 2010; Wang, Zhang, & Yin, 2003).
Compared with conventional system identification, quantized
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observations provide very limited information on system output
signals, and consequently introduce essential difficulties in
system identification. Fundamental progress has been achieved
in methodology development, identification algorithms, essential
convergence properties, and applications (Casini, Garulli, & Vicino,
2012; Cerone, Piga, & Regruto, 2013; Chen, Zhao, & Ljung, 2012;
Colinet & Juillard, 2010; Gustafsson&Karlsson, 2009; You, Xie, Sun,
& Xiao, 2011).

Under full rank periodic inputs, for both linear systems and
nonlinear Wiener and Hammerstein systems under stochastic
and bounded noises, quantized identification algorithms and their
key convergence properties have been obtained, including strong
and mean-square convergence, convergence rates, asymptotic
normality, asymptotic efficiency, and large deviation principles
(Agüero et al., 2007; Casini et al., 2011; He, Wang, & Yin,
2013; Mei, Yin, & Wang, 2014; Wang & Yin, 2007; Zhao, Wang,
Yin, & Zhang, 2007). Also, related time and space complexities,
identification accuracy with respect to the disturbances and
unmodeled dynamics, and optimal input design have been
investigated comprehensively. For example, Agüero et al. (2007)
studied quantized identification of linear systems with colored
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noises based onmulti-sine input signals and quantized data. Casini
et al. (2011) proposed a method for designing optimal input
sequences to minimize time complexity on parameter estimation
using binary sensors under bounded disturbances. Wang et al.
(2003) gave a strong consistent identification algorithm with
binary-valued observations. For general quantization thresholds
under full-rank periodic inputs, Wang and Yin (2007) introduced
the optimal quasi-convex combination estimator (QCCE) which
was shown to achieve the Cramér–Rao (CR) lower bound
asymptotically.

However, commonly encountered persistent excitation inputs
are not necessarily periodic. Input signals often cannot be
arbitrarily selected to be periodic (Ljung, 1987), and in adaptive
control the control input is adjusted in real time and is usually
non-periodic (Guo, 1993). Great effort has been made to resolve
this issue.While it iswell understood that themaximum likelihood
(ML) estimates are efficient algorithms, they are not constructive.
Onemain direction of research is to approximate theML functions,
such as expectationmaximization (EM)methods, under quantized
observations and general inputs. Another approach is to construct
directly identification algorithms of stochastic approximation
type by using innovation of quantized observations. Based on
the ML criterion, Godoy, Goodwin, Agüero, Marelli, and Wigren
(2011) introduced an iterative batch algorithm for identifying
finite impulse response (FIR) systems with quantized output
data and persistent excitations, and proved that the ML criterion
was achieved as the iterative step goes to infinity. Marelli, You,
and Fu (2013) extended the work in Godoy et al. (2011) to
ARMA models with intermittent quantized output observations,
where the joint effect of finite-level quantization and random
packet dropouts on identification accuracy was characterized.
Under a regularity assumption on the parametricmodel describing
the data, Chiuso (2008) showed that the ML estimator can be
found from quantized data. Guo and Zhao (2013) proposed a
recursive projection algorithm for FIR systems with binary-valued
observations, proved its strong and mean-square convergence,
and obtained convergence rates under sufficiently rich inputs. For
gain systems and time-varying thresholds, Guo and Zhao (2014)
discussed the quantized identification problem with general
persistent excitation inputs, and provided an optimal scheme of
selecting thresholds and quantization values.

Despite comprehensive progress on quantized system identi-
fication under both periodic and general inputs, asymptotically
efficient algorithms for quantized identification under general
inputs have encountered technical difficulties and evaded satisfac-
tory resolutions. Under quantized inputs, this paper resolves this
issuewith constructive solutions. Focusing on FIR systems,we con-
sider quantized system identification under quantized inputs. By
classifying the regressor sequence into distinct pattern sets accord-
ing to the values of the regressor vector, we show that the informa-
tion on the system can be divided, without losing any information,
on the basis of both quantized output observations and input re-
gressor patterns. A modified optimal QCCE (Wang & Yin, 2007) is
employed together with a weighted least-squares optimization to
combine optimally the set of information to derive an estimate of
the unknown parameters. By adjusting the weighting matrix, dif-
ferent asymptotic behavior of the estimate can be obtained. It is
shown that the algorithms can achieve the CR lower bound asymp-
totically by a suitable design of the weighting matrix, and hence,
is asymptotically efficient. Construction of the optimal weight-
ing matrix is presented. Other related and desired convergence
properties of the algorithms are established, including strong
convergence, mean-square convergence, convergence rates, and
asymptotic normality. Some essential conditions on inputs for
ensuring identifiability and strong convergence are derived. The
scaled sequence of estimation errors is shown to be asymptotically
Fig. 1. System configuration.

normal. Optimal input design problems are also studied, which
aim to increase convergence rates by selecting input patterns and
adjusting their frequencies of occurrence. Furthermore, we also
investigate the case where the noise distribution functions are un-
known. The identifiability, algorithmdesign and convergence anal-
ysis are discussed.

The rest of the paper is arranged as follows. Section 2 formulates
the problem with system structures, noise characterizations, and
other related conditions. Section 3 reviews some key techniques
on quantized system identification under periodic inputs that are
used in this paper for quick reference. Section 4 designs the identi-
fication algorithms based on the optimal QCCE andweighted least-
squares optimization. Input excitation conditions are introduced.
Section 5 analyzes convergence properties, including strong and
mean-square convergence, convergence rates, asymptotical nor-
mality, and asymptotic efficiency. Section 6 discusses optimal in-
put design problems. Section 7 investigates the joint identification
of noise distribution functions and system parameters. Numerical
examples are presented in Section 8 to demonstrate the main re-
sults of this paper. Finally, findings of the paper are summarized in
Section 9, together with some potential future directions.

2. Problem formulation

Consider a single-input–single-output linear time-invariant
stable discrete-time systemG represented by yk = Guk+dk, k =

1, 2, . . . , where uk is the input and dk is the system noise. For
simplicity, in this paper, G is an FIR (finite impulse response)
system. In this case,

yk = a1uk + · · · + anuk−n+1 + dk = φ′

kθ + dk, (1)

whereφ′

k = [uk, . . . , uk−n+1] is the regressor and θ = [a1, . . . , an]′
is the parameter vector to be identified and z ′ denotes the
transpose.

The system structure is shown in Fig. 1, in which the input is
finitely quantized with r possible values, uk ∈ U = {µ1, . . . , µr}.
The output yk is measured by a sensor of m thresholds −∞ <
C1 < · · · < Cm < ∞. The output sensor can be represented
by a set of m indicator functions sk = [s1k, . . . , s

m
k ]

′, where sik =

I{−∞<yk≤Ci} for i = 1, . . . ,m, and I{yk∈A} =


1, if yk ∈ A,
0, otherwise. An

alternative representation of I{yk∈A} is by definingsik = I{Ci−1<yk≤Ci}

andsk =
m+1

i=1 isik. Hence,sk = i, for i = 1, . . . ,m + 1,
implying that yk ∈ (Ci−1, Ci] with C0 = −∞ and Cm+1 = ∞

(with the interval (Cm,∞)). This representation will be used in
deriving the Cramér–Rao lower bound. This paper aims to design
an asymptotically efficient algorithm to estimate the unknown
parameter vector θ based on {uk} and {sk}.

Assumption 1. {dk} is a sequence of i.i.d. (independent and identi-
cally distributed) random variables. The accumulative distribution
function F(·) of d1 is invertible and its inverse function, denoted by
F−1(·) = G(·), is twice continuously differentiable. The moment
generating function of d1 exists.

For convenience, we denote Fi(x) = F(Ci − x) and define the
matrix functions

U(x) = diag


∂F1(x)
∂x

−1

, . . . ,


∂Fm(x)
∂x

−1


(2)
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3)
P(x) =


F1(x)− F 2

1 (x) F1(x)− F1(x)F2(x) · · · F1(x)− F1(x)Fm(x)
F1(x)− F1(x)F2(x) F2(x)− F 2

2 (x) · · · F2(x)− F2(x)Fm(x)
...

. . .
...

F1(x)− Fm(x)F1(x) F2(x)− Fm(x)F2(x) · · · Fm(x)− F 2
m(x)

 (

Box I.
and P(x) (given by (3) in Box I) for any x ∈ R, where diag[. . .]
represents a diagonal matrix.

3. Review on quantized system identification

This section summarizes a few related key results in quantized
system identification, including the QCCE and its convergence
properties. Themain content comes fromWang et al. (2010),Wang
and Yin (2007), and Mei et al. (2014).

Consider the special case of a gain system: yk = ukθ+dk. Choose
uk to be a constant.Without loss of generality, assume uk ≡ 1. Then

yk = θ + dk. (4)

Under Assumption 1, {yk} is an i.i.d. sequence that has the
accumulative distribution function F(·−θ). For the system (4), the
probability of {sik = 1} is

pi = Pr{−∞ < yk ≤ Ci} = F(Ci − θ) = Fi(θ). (5)

We begin with estimation of pi in (5). Take N measurements
on sk. Then for i ∈ {1, . . . ,m}, ξ iN =

1
N

N
k=1 s

i
k is the sample

relative frequency of yk taking values in (−∞, Ci] and an unbiased
estimator of pi for each N , i.e., Eξ iN = pi.

An estimator θ iN of θ can be derived from ξ iN = Fi(θ iN). Con-
sequently, θ iN = F−1

i (ξ iN) = Gi(ξ
i
N) is an estimator for θ ; and

θ iN , i = 1, . . . ,m, are m asymptotically unbiased estimators of
θ based on samples of size N . Denote the estimation errors by
eN = [e1N , . . . , e

m
N ]

′ with eiN = θ iN − θ , and use the notation
ΘN = [θ1N , . . . , θ

m
N ]

′, 1 = [1, 1, . . . , 1]′ of compatible dimension.
It is readily seen that eN = ΘN − θ1. Define VN(θ) = EeNe′

N . Since
EeN → 0 as N → ∞, VN(θ) is a covariance matrix of eN , and is
positive semi-definite.

Define γ = [γ1, . . . , γm]
′ such that γ1 + · · · + γm = 1. One

can construct an estimator of θ byaN =
m

i=1 γiθ
i
N = γ ′ΘN . aN

is called a Quasi-Convex Combination Estimator (QCCE). The term
‘‘quasi-convex’’ is used since γi may not be nonnegative. Since θ iN
is asymptotically unbiased,

EaN = γ ′EΘN → γ ′θ1 = θ as N → ∞. (6)

Hence, aN is an asymptotically unbiased estimator of θ . More-
over, the variance of the estimation error aN − θ is given by
σ 2

N : = E(γ ′ΘN − θ)2γ ′EeNe′

Nγ = γ ′VN(θ)γ . That is, the vari-
ance is a quadratic form with respect to the vector γ . The optimal
QCCEminimizesσ 2

N which is obtained fromσ 2
N = minγ ,γ ′1=1 σ

2
N =

minγ ,γ ′1=1 γ
′VN(θ)γ .

Theorem 1 (Mei et al., 2014; Wang & Yin, 2007). If Assump-
tion 1 holds, then the QCCEaN converges strongly to θ , i.e., aN → θ
w.p.1, and has the strong and mean-square convergence ratesaN −

θ = O

N−

1
2
√
log logN


w.p.1, Nσ 2

N → γ ′U(θ)P(θ)U(θ)γ as
N → ∞, where U(·) and P(·) are given by (2) and (3). Also the cen-
tered and scaled sequence of aN is asymptotically normal in the sense
that

√
N (aN − θ)

d
−→ N


0, γ ′U(θ)P(θ)U(θ)γ


, where

d
−→ denotes

convergence in distribution.
Theorem 2 (Wang & Yin, 2007). Suppose that Assumption 1 holds
and VN(θ) is positive definite. Then the optimal QCCE can be obtained

by choosing γ ∗
=

V−1
N (θ)1

1′V−1
N (θ)1

, aN = (γ ∗)′ΘN , and the minimal

variance is σ 2
N =

1
1′V−1

N (θ)1
.

Theorem 3 (Wang & Yin, 2007). The Cramér–Rao Lower Bound for
estimating θ based on observations {sk, 1 ≤ k ≤ N} is σ 2

CR(N,m) =
N
m+1

i=1
h2ipi
−1

wherepi = Fi(θ) − Fi−1(θ) andhi = ∂pi/∂θ ,
i = 1, . . . ,m + 1.

Theorem 4 (Wang & Yin, 2007). The optimal QCCE is asymptotically
efficient in the sense that Nσ 2

N − Nσ 2
CR(N,m) → 0 as N → ∞.

4. Identification algorithms

Suppose that u = {uk, k = 1, 2, . . .} is an arbitrary input
sequence taking quantized values in U = {µ1, . . . , µr}. The input
u generates a regressor sequence {φ′

k} that takes values in l = rn
possible (row vector) patterns denoted by P = {π1, . . . , πl}.
For example, π1 = [µ1, . . . , µ1, µ1], π2 = [µ1, . . . , µ1, µ2],
etc. For k = n + 1, . . . , n + N , we partition the regressor set
QN = {φ′

n+1, . . . , φ
′

n+N} according to their patterns πj. Assume
that QN contains Nj of pattern πj, and note that Nj may be zero andl

j=1 Nj = N . The input pattern set is MN = {πj : Nj ≠ 0}, i.e., MN
is the collection of all πj’s that have appeared in QN .

Assumption 2. There exists βj ≥ 0 such that limN→∞ Nj/N = βj
for j ∈ L = {1, . . . , l}.

Definition 1. We use the following notion throughout the paper.

(1) The pattern πj is said to be persistent if βj > 0. Without loss of
generality, suppose that βj ≠ 0 for j ∈ L0 = {1, . . . , l0} and
βj = 0 for j ∈ L−

0 = {l0 + 1, . . . , l}.
(2) Pu = {π1, . . . , πl0} is called the persistent pattern set of u.
(3) The persistent pattern set Pu of u is said to be full rank if the

matrix

Ψ = (π ′

1, . . . , π
′

l0)
′
∈ Rl0×n (7)

is full column rank.
(4) The input u is said to be persistently exciting if Pu is full rank.

Remark 1. Non-persistent patterns may exist or appear even
infinitely many times. But they do not have impact on asymptotic
behavior of the estimates.

We introduce the following two-step estimation algorithms
based on the QCCE and weighted least-squares optimization.
Identification algorithm:
(1) At N , if πj ∈ MN , the observation equations under πj are

yjk = wj
+ djk, k = 1, . . . ,Nj, (8)

wherewj
= πjθ , is unknown and must be estimated. Let

γ j
= [γ

j
1, . . . , γ

j
m]

′
∈ Rm such that γ j

1 + · · · + γ j
m = 1, (9)
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and the corresponding QCCE estimate ofwj be denoted by wj
Nj

with estimation error eNj , which gives

wj
Nj

= wj
+ eNj . (10)

(2) The weighted vector-valued estimate WN is defined as

WN =



N1w

1

...
Nlw

l

+



N1eN1
...
NleNl


= ΦNθ + DN , (11)

where

ΦN =



N1π1
...
Nlπl

 and DN =



N1eN1
...
NleNl


are the weighted regression matrix and the scaled estimation
error vector, respectively.

Suppose thatΦ ′

NΛΦN is full rank, whereΛ = diag[λ1, . . . ,
λl] > 0 will be designed later for improving asymptotic
properties and convergence rates. Then, the estimate of θ is

θN =


1
N
Φ ′

NΛΦN

−1 1
N
Φ ′

NΛ
WN . (12)

Remark 2. To highlight the dependence of Nj on l, we write
Nj = Nj(l), which depends on the actual input and frequency of
occurrence of a given pattern. Typically, a large l generates more
data to estimate θ because the dimension of [w1

N1(l̄)
, . . . ,w l̄

Nl̄(l̄)
]
′ is

higher than that of [w1
N1(l)

, . . . ,wl
Nl(l)

]
′. From Theorems 6 and 7 it

can be seen thatθN −θ = O

N−1/2√log logN


and E(θN −θ)(θN −

θ)′ = O(1/N), whichmeans that the order of the convergence rate
of the estimation error only depends on N , and has little to do with
l.

It is noted that the total number l of ‘‘possible’’ patterns can
be very big. However, in practical usage, the actual complexity
depends on howmany ‘‘active patterns’’ and ‘‘persistent patterns’’
are actually contained in the given input. The algorithm creates
a new pattern only when it appears, and within these active
patterns, only the ‘‘persistent patterns’’ contribute to asymptotic
convergence properties. The number of ‘‘active patterns’’ can be
far less than l, depending on the input design. In other words, in
implementing the algorithms, the input should be designed with
both convergence and complexity in mind.

5. Convergence properties

This section establishes convergence properties of the identifi-
cation algorithms under certain persistent excitation conditions on
the input. We will consider strong and mean-square convergence,
strong andmean-square convergence rates, asymptotic normality,
and asymptotic efficiency.
Σ(N) denotes the covariance matrix of the estimation error,

i.e.,Σ(N) = E(θN − θ)(θN − θ)′, and

H1 = diag[λ1β1, . . . , λl0βl0 ] (13)

where λj, j ∈ L0, is the jth diagonal element ofΛ and βj is given by
Assumption 2.

5.1. Convergence, convergence rate and asymptotic normality

Theorem 5. For system (1) with quantized observations I{yk∈A},
if Assumption 1 holds and the input u is persistently exciting, then
θN from (12) converges strongly to the true value,θN → θ w.p.1 as
N → ∞.

Proof. For j ∈ L0, by Theorem 1 we have wj
Nj

→ πjθ w.p.1 as
N → ∞. From this and (11), when N → ∞ it can be verified that

1
N
Φ ′

NΛΦN =

l
j=1

λj
Nj

N
π ′

jπj →

l0
j=1

λjβjπ
′

jπj = Ψ ′H1Ψ (14)

and

1
N
Φ ′

NΛ
WN =

l
j=1

λj
Nj

N
π ′

jwj
Nj

→

l0
j=1

λjβjπ
′

jπjθ = Ψ ′H1Ψ θ (15)

where Ψ and H1 are given by (7) and (13). Since Λ > 0 and
βj > 0 for j ∈ L0, we know that H1 > 0 and Ψ ′H1Ψ > 0 due
to the persistent excitation condition. From (14)–(15) and (12), the
theorem follows. �

Corollary 1. Under the conditions of Theorem 5,θN is an asymptoti-
cally unbiased estimator of θ , i.e., EθN → θ as N → ∞.

Proof. Since Ewj
Nj

→ πjθ as N → ∞ by (6), in view of (14) and
(15) we obtain the desired result. �

Theorem 6. Under the conditions of Theorem 5, the algorithm (12)

has the convergence rateθN − θ = O


log logN
N


w.p.1 as N → ∞.

Proof. In light of (11) and (12), by (14) and Ψ ′H1Ψ > 0 we have

θN − θ =


1
N
Φ ′

NΛΦN

−1 1
N
Φ ′

NΛ(ΦNθ + DN)− θ

=


1
N
Φ ′

NΛΦN

−1 1
N
Φ ′

NΛDN (16)

for sufficiently large N . LetL0 = {j ∈ L : Nj → ∞ as N → ∞}

andL−

0 = L/L0 = {j ∈ L : Nj is bounded}. According to Theorem 1,

it follows that eNj = O

N−1/2

j


log logNj


for j ∈L0 and Nj/N =

O (1/N) for j ∈L−

0 , which implies

1
N
Φ ′

NΛDN

=


j∈L0

λj
Nj

N
π ′

j eNj +


j∈L−0

λj
Nj

N
π ′

j eNj

=


j∈L0

λj
Nj

N
π ′

jO


log logNj

Nj


+


j∈L−0

λjO


1
N


π ′

j eNj

= O


log logN

N


w.p.1 as N → ∞. (17)

This and (16) prove the theorem. �

Remark 3. For the strong convergence and convergence rate,
Assumption 2 can be relaxed. If βj := lim infN→∞ Nj/N and
Definition 1 remains the same, then under the conditions of
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Theorem 5 it can be seen that

lim inf
N→∞

1
N
Φ ′

NΛΦN ≥

l0
j=1

λj


lim inf
N→∞

Nj/N

π ′

jπj

=

l0
j=1

λjβjπ
′

jπj = Ψ ′H1Ψ > 0.

From this and (16)–(17), we still haveθN w.p.1
−−→ θ andθN − θ =

O

N−1/2√log logN


as N → ∞.

Theorem 7. Under the conditions of Theorem5, the algorithm (12)has
the mean-square convergence rate

NΣ(N) →

Ψ ′H1Ψ

−1
Ψ ′H2Ψ


Ψ ′H1Ψ

−1 as N → ∞, (18)

where H2 = [β1λ
2
1σ

2
1 , . . . , βl0λ

2
l0
σ 2
l0
] and σ 2

j = (γ j)′ U(πjθ)P(πjθ)

U(πjθ)γ
j with U(·), P(·) and γ j being given by (2), (3) and (9).

Proof. With (16) and∆N :=
1
NΦ

′

NΛ

EDND′

N


ΛΦN , we have

NΣ(N) =


1
N
Φ ′

NΛΦN

−1

∆N


1
N
Φ ′

NΛΦN

−1

. (19)

For j ∈ L0, by virtue of Theorem 1 we have

NjEe2Nj
→ σ 2

j and

NjEeNj → 0 as N → ∞. (20)

As a result, EDND′

N →


diag{σ 2

1 , . . . , σ
2
l0

} 0
0 ∗


. Since

1
√
N
Φ ′

NΛ =
1

√
N


N1λ1π

′

1, . . . ,

Nlλlπ

′

l


→


β1λ1π

′

1, . . . ,

βl0λl0π

′

l0 , 0, . . . , 0

, (21)

we obtain

∆N =


1

√
N
Φ ′

NΛ

 
EDND′

N

  1
√
N
Φ ′

NΛ

′

→


β1λ1π

′

1, . . . ,

βl0λl0π

′

l0


diag{σ 2

1 , . . . , σ
2
l0}

= Ψ ′H2Ψ

which together with (14) and (19) completes the proof. �

Theorem 8. Under the conditions of Theorem 5, the centered and
scaled sequence of θN is asymptotically normal, i.e.,
√
N
θN − θ

 d
−→ N


0,

Ψ ′H1Ψ

−1
Ψ ′H2Ψ


Ψ ′H1Ψ

−1


as N → ∞.

Proof. By (16), one can derive

√
N
θN − θ


=


1
N
Φ ′

NΛΦN

−1 1
√
N
Φ ′

NΛDN . (22)

Theorem 1 implies that

NjeNj

d
−→ N (0, σ 2

j ) for j ∈ L0.

Consequently, asN → ∞,DN
d
−→


N

0, diag[σ 2

1 , . . . , σ
2
l0

]


∗

∗ ∗


which

together with (14), (21) and (22) indicates the theorem. �

Theorems 5–8 establish some convergence properties of the
algorithm (12). The key technical methods are to classify the
quantized observations according to the patterns and deal with
them respectively. For j ∈ L0, the results in Section 3 are fully
used. For j ∈ L−

0 , we mainly employ the properties of the patterns’
frequency of occurrence. The following subsection will construct
the optimal weighting matrix such that the algorithm (12) can
achieve the CR lower bound asymptotically.

5.2. Asymptotic efficiency

Theorem 9. The Cramér–Rao Lower Bound for estimating θ based on
observations {sk, 1 ≤ k ≤ N} is

ΣCR(N) =

l
j=1 Njπ

′

jπj
m+1

i=1
η2i,j
ζi,j

−1

where ζi,j(θ) = Fi(πjθ) −

Fi−1(πjθ) and ηi,j(θ) = ∂ζi,j/∂(πjθ), i = 1, . . . ,m + 1, j ∈ L.

Proof. Augment sk to vk = [s′k, 1]
′

∈ Rm+1, where the added
element represents 1 = Pr{−∞ < yk < ∞}. Let xk be
some possible sample value of vk. Noting that xk always takes
the form of [0, . . . , 0, 1, 1, . . . , 1]′, we have Pr{vk = xk; θ} =

Pr{Ci0(k)−1 < yk ≤ Ci0(k)} = Fi0(k)(φ
′

kθ) − Fi0(k)−1(φ
′

kθ), where
i0(k) is the index of the first 1 in xk. Since {dk} is i.i.d, the likelihood
function of v1, . . . , vN taking values x1, . . . , xN , conditioned on
θ , is ℓ (x1, . . . , xN; θ) = Pr{v1 = x1, . . . , vN = xN; θ} =N

k=1


Fi0(k)(φ

′

kθ)− Fi0(k)−1(φ
′

kθ)

.

Replace the particular realizations xk by their corresponding
random variables vk, and denote the resulting quantity by ℓ =

ℓ (v1, . . . , vN; θ). Set M j
N = {k : φ′

n+k = πj, 1 ≤ k ≤

N} and χi,j =
1
Nj


k∈M j

N
sik. It is apparent that M j

N has Nj el-

ements and Eχi,j = ζi,j. Then, we have ℓ =
l

j=1


k∈M j
N

Fi0(k)(πjθ)− Fi0(k)−1(πjθ)


=
l

j=1
m+1

i=1 ζ
Njχi,j
i,j . Consequently,

one can get ∂
∂θ

log ℓ =
l

j=1
m+1

i=1 Njχi,j
ηi,j
ζi,j
πj and

∂2

∂θ2
log ℓ =

l
j=1

Nj

m+1
i=1

χi,j

∂
∂θ
ηi,j

ζi,j
πj

−

l
j=1

Njπ
′

jπj

m+1
i=1

χi,j
η2i,j

ζ 2
i,j
. (23)

Noticing that
m+1

i=1 ζi,j = 1, we have

E
l

j=1

Nj

m+1
i=1

χi,j

∂
∂θ
ηi,j

ζi,j
πj =

l
j=1

Nj


∂2

∂θ2

m+1
i=1

ζi,j


πj = 0,

which together with (23) andΣCR(N) = −


E ∂2

∂θ2
log ℓ

−1
implies

the theorem. �

Theorem 10. Under the conditions of Theorem 5, if the optimal QCCE
is used in (8)–(10) and

Λ = Λ∗
= diag


m+1
i=1

η2i,1

ζi,1
, . . . ,

m+1
i=1

η2i,l0

ζi,l0
, λl0+1, . . . , λl


, (24)

then θN from (12) is asymptotically efficient in the sense that
NΣ(N)− NΣCR(N) → 0 as N → ∞.

Proof. Under hypothesis, by Theorems 3 and 4 we have σ 2
j =m+1

i=1
η2i,j
ζi,j

−1

for j ∈ L0. Furthermore, by (24) it can be verified

that

H1 = H2 = diag


β1

m+1
i=1

η2i,1

ζi,1
, . . . , βl0

m+1
i=1

η2i,l0

ζi,l0


:= H∗.
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From (18), we have

NΣ(N) →

Ψ ′H∗Ψ

−1 as N → ∞. (25)

On the other hand, according to Theorem 9

NΣCR(N) =


l

j=1

Nj

N
π ′

jπj

m+1
i=1

η2i,j

ζi,j

−1

→


l0
j=1

βjπ
′

jπj

m+1
i=1

η2i,j

ζi,j

−1

=

Ψ ′H∗Ψ

−1
. (26)

Then, the theorem follows from (25) and (26). �

Since θ is unknown, the optimal QCCE is not implementable and
Λ∗ is also unknown.Hence, Theorem10 is not a constructive result,
and the corresponding asymptotically efficient algorithm cannot
be implemented directly. Two implementable algorithms have
been developed to approximate the optimal QCCE inWang and Yin
(2007). The next subsection will focus on the implementation of
Λ∗.

5.3. Algorithm implementation

Assume that the optimal QCCE is used in (8)–(10). We use an
estimate of Λ∗ to substitute for its real value to yield an adaptive
approximate asymptotically efficient estimation algorithm. It can
be recursively expressed by

θN =


1
N
Φ ′

NΛNΦN

−1 1
N
Φ ′

NΛNWN (27)

ΛN = diag[σ−2
1 (N), . . . ,σ−2

l (N)] (28)

σ 2
j (N) =


m+1
i=1


ηi,j(θN−1)

2 
ζi,j(θN−1)

−1

−1

. (29)

Similar to (16), by (11) it is known thatθN − θ =
 1
NΦ

′

NΛNΦN
−1

1
NΦ

′

NΛNDN and

1
N
Φ ′

NΛNDN =


j∈L0

σ−2
j (Nj)

Nj

N
π ′

j eNj +


j∈L−0

λj
Nj

N
π ′

j eNj .

In addition, we have eNj → 0 for j ∈ L0 and Nj/N → 0 for j ∈ L−

0 ,
as N → ∞. Thus,θN → θ w.p.1, and it follows that

ΛN → diag


m+1
i=1

η2i,1

ζi,1
, . . . ,

m+1
i=1

η2i,l

ζi,l


w.p.1 as N → ∞. (30)

Another possible construction is to use the sample covariance
in place ofΛ∗, which gives

WN =

N
i=1

Wi/N

ΛN = Diag


1

N − 1

N
i=1

Wi − W i
 Wi − W i

′

θN =


1
N
Φ ′

NΛNΦN

−1 1
N
Φ ′

NΛNWN

where Diag(B) means a diagonal matrix whose elements come
from the diagonal elements of matrix B. By (20), one can get

ΛN → diag


m+1
i=1

η2i,1

ζi,1
, . . . ,

m+1
i=1

η2i,l0

ζi,l0
, ∗, . . . , ∗


w.p.1 (31)

as N → ∞.
In view of (24)–(26), we know that only the first l0 diagonal
elements of Λ∗ contribute to the asymptotical efficiency of the
algorithms. Thus, (30) and (31) constitute a constructive imple-
mentation ofΛ∗ with the desired asymptotic efficiency.

6. Optimal input design

This section discusses how to design the input optimally
for improving mean-square convergence rates. The input design
problem is formulated as amax–min optimization problem, which
can be solved explicitly in some cases. In particular, when the
numbers of output thresholds are large, limiting cases of optimal
input design are obtained. Some properties of the solutions are
given and an adaptive realization process of the optimal input
sequence is provided.

From (25) and (26), it can be seen that

lim
N→∞

NΣ(N) = lim
N→∞

NΣCR(N) =

Ψ ′H∗Ψ

−1
,

which implies that the smaller the size ∥

Ψ ′H∗Ψ

−1
∥ is, the faster

the convergence rate of the estimation algorithm (12) becomes.
Thus, we can increase the convergence rate by selecting suitable
input patterns πj’s from P , the set of all patterns, and adjusting
their frequencies of occurrences to minimize ∥


Ψ ′H∗Ψ

−1
∥. In

this sense, the optimal input design problem can be stated as a
constrained minimization problem

min
l0,π1,...,πl0 ,β1,...,βl0

∥

Ψ ′H∗Ψ

−1
∥

s.t. Ψ is full column rank (u is persistently exciting)
l0
j=1

βj = 1, βj > 0, πj ∈ P , j ∈ L0

(32)

where ∥ · ∥ is the spectral norm of a matrix and ‘‘s.t.’’ denotes
‘‘subject to’’.

Since l0 is the number of nonzero βj (1 ≤ j ≤ l) and
∥

Ψ ′H∗Ψ

−1
∥ = σmax(


Ψ ′H∗Ψ

−1
) = (σmin


Ψ ′H∗Ψ


)−1, the

optimization problem (32) can be reformulated as

max
β1,...,βl

Q (β1, . . . , βl)

s.t. Q (β1, . . . , βl) > 0,
l

j=1

βj = 1, βj ≥ 0, j ∈ L,
(33)

where Q (β1, . . . , βl) := σmin

Ψ̄ ′HΨ̄


with

Ψ̄ =

π1
...
πl

 , H = diag


β1

m+1
i=1

η2i,1

ζi,1
, . . . , βl

m+1
i=1

η2i,l

ζi,l


,

and σmax(·) and σmin(·) represent the maximum and minimum
eigenvalues, respectively.

In the case of large numbers of output thresholds, this
problem is simplified. As we can see, Ψ ′H∗Ψ is dependent on
the system input, output thresholds, system parameters, and the
distribution and density functions of the disturbance. When the
number of output thresholds goes to infinity, the following lemma
demonstrates that Ψ ′H∗Ψ will converge to a limit that depends
only on the input and variance of the disturbance.

Lemma 1. If dk is a sequence of i.i.d. Gaussian random variables
with zero mean and variance σ 2, and C1 → −∞, Cm → ∞,
max1≤i≤m |Ci − Ci−1| → 0 as m → ∞, then limm→∞ Ψ̄ ′HΨ̄ =

Ψ̄ ′diag[β1, . . . , βl]Ψ̄ /σ
2.
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Proof. By Theorem 13 in Wang and Yin (2007), we have

limm→∞

m+1
i=1

η2i,j
ζi,j

=
1
σ 2 . Thus, asm → ∞,

Ψ̄ ′HΨ̄ =

l
j=1

βjπ
′

jπj

m+1
i=1

η2i,j

ζi,j

→
1
σ 2

l
j=1

βjπ
′

jπj =
1
σ 2
Ψ ′diag[β1, . . . , βl]Ψ ,

which gives the lemma. �

Under the conditions of Lemma 1, the optimization problem
(33) is reduced to

max
β1,...,βl

Q (β1, . . . , βl)

s.t. Q (β1, . . . , βl) > 0
l

j=1

βj = 1, βj ≥ 0, j ∈ L,
(34)

with Q (β1, . . . , βl) = σmin

Ψ̄ ′diag[β1, . . . , βl]Ψ̄


.

To solve (33), one can diagonalize Ψ̄ ′HΨ̄ . Since

Ψ̄ ′HΨ̄

′
=

Ψ̄ ′HΨ̄ , there exists an invertible matrix V such that V−1Ψ̄ ′HΨ̄ V
is a diagonal matrix, denoted as diag[a1, . . . , an], where ai is a
function of β1, . . . , βl. Then, the problem becomes maxβ1,...,βl
min{a1, . . . , an}. This is a max–min optimization problem. We use

∗
= [β∗

1 , . . . , β
∗

l ]
′ to represent a solution of (33). To reflect

the relationship between ∗ and θ , we also write ∗(θ) =

[β∗

1 (θ), . . . , β
∗

l (θ)]
′. Its properties are given by the following

proposition.

Proposition 1. The following assertions hold.

(i) ∗ may be non-unique.
(ii) ∗ has at least n nonzero elements.

(iii) Q (β∗

1 , . . . , β
∗

l ) ≤ max1≤j≤l
m+1

i=1
η2i,j
ζi,j
πjπ

′

j .

Proof. (i) This will be shown by Example 2.
(ii) This follows from the fact that Ψ is full column rank under

∗.
(iii) For any β1, . . . , βl, by

Φ ′HΦ =

l
j=1

βj

m+1
i=1

η2i,j

ζi,j
π ′

jπj (35)

and 0 ≤ βj ≤ 1 we have

Q (β1, . . . , βl)

≤

l
j=1

σmax


βj

m+1
i=1

η2i,j

ζi,j
π ′

jπj



=

l
j=1

βj

m+1
i=1

η2i,j

ζi,j
πjπ

′

j ≤

l
j=1

βj max
1≤j≤l


m+1
i=1

η2i,j

ζi,j
πjπ

′

j



which together with
l

j=1 βj = 1 indicates that Q (β1, . . . , βl) ≤

max1≤j≤l
m+1

i=1
η2i,j
ζi,j
πjπ

′

j . Hence, (iii) is true. �

Consequently, a question arises naturally on the realiza-
tion of ∗, i.e., how to design an input sequence such that
limN→∞[N1, . . . ,Nl]

′/N =
∗. If ∗ is known, one candefine a se-

quence {xk, k ≥ 1} of i.i.d. discrete random variables with Pr(x1 =

j) = β∗

j for j ∈ L, which is also denoted as x1 = x1(1 : l; ∗). At N ,
let φ′

n+1 = πx1 , . . . , φ
′

n+N = πxN . Then, Nj =
N

i=1 I{xi=j}, and by
the laws of large numbers,

lim
N→∞

Nj

N
=

1
N

N
i=1

I{xi=j} = EI{x1=j} = Pr(x1 = j) = β∗

j .

Thus, [N1, . . . ,Nl]
′/N →

∗ as N → ∞.
However, ∗ is unknown since θ is unknown. Suppose that

∗
=

∗(θ) = [β∗

1 (θ), . . . , β
∗

l0
(θ), 0, . . . , 0]′ and there exists

a constant β
j
> 0 such that β∗

j ≥ β
j
for j ∈ L0. For any Y =

[y1, . . . , yl0 ]
′

∈ Rl0 , define ψ(Y ) = [z1, . . . , zl0 ]
′

∈ Rl0 , where
[z1, . . . , zl0 ] = [y1, . . . , yl0 ] if yj ≥ β

j
for j ∈ L0; otherwise,

zj =


β

j
, if yj ≤ β

j
;

β
j
+ vj(yj − β

j
), if yj > β

j
,

where vj ≥ 0 satisfy


j: yj>β j
vj(yj − β

j
) = 1 −

l0
j=1 β j

. It can be

verified that
l0
j=1

zj =


j: yj≤β j

β
j
+


j: yj>β j


β

j
+ vj(yj − β

j
)


= 1.

Given θ0 ∈ Rn, let Y0 = [β∗

1 (θ0), . . . , β
∗

l0
(θ0)]

′, x1 = x1(1 :

l0;ψ(Y0)) and φ′

n+1 = πx1 . By (12), θ1 can be calculated. Then,
let Y1 = [β∗

1 (
θ1), . . . , β∗

l0
(θ1)]′, x2 = x2(1 : l0;ψ(Y1)), φ′

n+2 =

πx2 . From φ2 and φ1, we can get θ2. In general, let YN−1 =

[β∗

1 (
θN−1), . . . , β

∗

l0
(θN−1)]

′, xN = xN (1 : l0;ψ(YN−1)), φ′

n+N =

πxN , and by (12) calculateθN from φn+N ,φn+N−1, . . . , φn+1. Gener-
ate a sequence {φn+1, φn+2, . . .} by repeating the process. It can be
seen that lim infN→∞ Nj/N ≥ β

j
for j ∈ L0. According to Remark 3,

we haveθN → θ as N → ∞. Furthermore, we have Pr(xN = j) =

β∗

j (
θN−1) → β∗

j (θ) = β∗

j and Nj/N =
1
N

N
i=1 I{xi=j} → β∗

j for
j ∈ L0. Hence, [N1, . . . ,Nl0 , 0 . . . , 0]

′/N →
∗ as N → ∞.

7. Joint identification of noise distribution functions and
system parameters

The developments above rely on the knowledge of the
distribution function F(·) and its inverse. However, in most
applications, the noise distributions are not known, or only limited
information is available. On the other hand, input/output data
from the system contain information about the noise distribution.
By viewing unknown distributions and system parameters jointly
as uncertainties, this section investigates the joint identification
of them. To avoid undue complexity, we consider the case that
m = 1 (the output sensor has only one threshold C) and the
noise distribution function F(·) contains n̄ unknown parameters
ρ1, . . . , ρn̄, i.e., F(z) = F(z; ρ) for any z ∈ R by denoting ρ =

[ρ1, . . . , ρn̄]
′
∈ Rn̄.

7.1. Identifiability

Since πl0+1, . . . , πl are sparse in the regressor sequence
{φ′

k, k ≥ 1} (i.e., βj = 0 for j ∈ L−

0 ), for simplicity they will not be
used to design algorithms in this section. From {sk}, F(C − wj

; ρ)
can be estimated by the empirical-measure-based method for j ∈

L0. If F(C − wj
; ρ) are precisely known, then there exists a vector

α = [α1, . . . , αl0 ]
′
∈ Rl0 such that

F(wj
; ρ) = αj, j = 1, . . . , l0. (36)

The equations above are usually unsolvable because there are l0+n̄
unknowns (w1, . . . , wl0 and ρ) but only l0 equations. Thus, at least
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another n̄ independent equations are needed, This is achieved by
special input design. Assume that the input can makew1, . . . , wl0

satisfy the following T (≥n̄) equations

Fi(w
1, . . . , wl0) = 0, i = 1, . . . , T , (37)

where Fi(·) is a function from Rl0 to R, i = 1, . . . , T .
If we can obtain w1, . . . , wl0 and ρ from (36) and (37), then θ

will be given byw1, . . . , wl0 , i.e.,

θ =

Ψ ′Ψ

−1
ΨW 0, with W 0

= (w1, . . . , wl0)′ (38)

if Ψ is full column rank.

Remark 4. A simple way for realizing (37) is the scaling factor
method proposed in Wang et al. (2010).

Assumption 3. There exists a convex compact set Ξ ⊆ Rl0 such
that α ∈ Ξ and for any ς = [ς1, . . . , ςl0 ]

′
∈ Ξ the equations

F

xj; ρ


= ςj, j = 1, . . . , l0, Fi


x1, . . . , xl0


= 0, i = 1, . . . , T

have a unique solution [x1, . . . , xl0 , ρ
′
]
′
∈ Rl0+n̄, also denoted by

τ(ς) that is continuous inΞ with respect to some vector norm.

7.2. Identification algorithms

Under Assumption 3, by (36) and (38)

τ(α) = [w1, . . . , wl0 , ρ ′
]
′
= (W 0, ρ ′)′. (39)

This, together with the continuity of τ(·), implies that one can
derive an estimate of α from the estimates ofW 0 and ρ. A detailed
process is given by the following algorithm.
Identification algorithm:

(1) At N , for j ∈ L0, the system outputs under πj are yjk =

wj
+ djk and the corresponding binary-valued observations are

sjk = I
{yjk≤C}

. Define S
j
N =


1
Nj

Nj
i=1 sji, Nj ≠ 0;

1
2
, Nj = 0,

and letα0
N =

[S
1
N , . . . , S

l0
N ]

′ andαN = ΠΞ (α0
N) where ΠΞ (·) is a projection

operator given byΠΞ (z) = argminω∈Ξ∥z−ω∥ for any z ∈ Rl0 ,
and ∥ · ∥ is the vector norm in Assumption 3.

(2) By Assumption 3, let τN = τ (αN). Using τN,i to represent the
ith component of τN for i = 1, . . . , l0 + n̄, the estimates ofW 0

and ρ are W 0
N = [τN,1, . . . , τN,l0 ]

′,ρN = [τN,l0+1, . . . , τN,l0+m]
′.

(3) Suppose that (Φ0
N)

′Λ̄Φ0
N is full rank, the estimate of θ is

θN =


1
N
(Φ0

N)
′Λ̄Φ0

N

−1 1
N
(Φ0

N)
′Λ̄diag[


N1, . . . ,


Nl0 ]

W 0
N

(40)

where Φ0
N = [

√
N1π1, . . . ,


Nl0πl0 ]

′ and Λ̄ = diag[λ̄1, . . . ,
λ̄l0 ] > 0 is a weighting matrix.

7.3. Convergence

Theorem 11. For system (1) with binary observations, if {dk} is i.i.d
and Assumptions 2 and 3 hold, then τN converges strongly to the real
value, τN → τ(α) w.p.1 as N → ∞.

Proof. By the law of large numbers and the definition of S
j
N , we

have S
j
N → F


C − wj

; ρ

for j ∈ L0. Thus, it follows thatαN → α

w.p.1 as N → ∞. Since τ(ς) is continuous inΞ by Assumption 3,
it is known that τN → τ(α) by (39). This completes the proof. �
Fig. 2. Convergence ofθN from (12).

Theorem 12. Under the conditions of Theorem 11, if u is persistently
exciting, thenθN from (40) converges strongly to the true value,θN →

θ w.p.1 as N → ∞.

Proof. By virtue of Theorem11, we know that τN,j → wj for j ∈ L0.
Similar to (14) and (15), one can obtain 1

N (Φ
0
N)

′Λ̄diag[
√
N1, . . . ,

Nl0 ]
W 0

N → Ψ ′H1Ψ θ and 1
N (Φ

0
N)

′Λ̄Φ0
N → Ψ ′H1Ψ , as N → ∞.

This together with Ψ ′H1Ψ > 0 proves the theorem. �

8. Numerical examples

Example 1. Consider a gain system yk = ukθ + dk, where the
true value θ = 15 and {dk} is a sequence of i.i.d. normal random
variables with zero mean and standard deviation σ = 25. The
output is measured by a sensor that has three thresholds C1 = 32,
C2 = 53, C3 = 60. The input is quantized and takes values from
U = {π1, π2, π3, π4} = {1, 2, 3.1, 5}. Since θ ∈ R, we have
P = U. At N , assume that N1 = N − N2 − N3 − N4, N2 =

⌈0.6(N−N3−N4)⌉,N3 = min{110, |⌈logN⌉|},N4 = ⌈
√
N⌉, where

⌈z⌉ denotes the smallest integer greater than or equal to z ∈ R.
Thus, π1 = 1 and π2 = 2 are persistent, Pu = {1, 2} and
Ψ = [1, 2]′.

In (8)–(10), we use the algorithm (20) proposed in Wang and
Yin (2007) to simulate the optimal QCCE, andθN is computed using
(12) with λ = diag[4, 2, 1, 1]. The convergence is shown by Fig. 2.

From Theorem 9, one can get

[ζi,j]4×4 =

0.7517 0.5319 0.2810 0.0427
0.1840 0.2893 0.3216 0.1467
0.0284 0.0637 0.1028 0.0849
0.0359 0.1151 0.2946 0.7257


and

[ηi,j]4×4 =

−0.0127 −0.0159 −0.0135 −0.0036
0.0077 0.0054 −0.0019 −0.0072
0.0018 0.0027 0.0016 −0.0025
0.0032 0.0078 0.0138 0.0133

 ,
which together with the definition of Ni, i = 1, . . . , 4, leads
to the CR lower bound ΣCR(N). Fig. 3 gives the sample vari-
ances Σ(N) with Λ = diag[4, 2, 1, 1] and Λ = Λ∗

=

diag[0.0009, 0.0012, 1, 1], and the theoretical CR bound. It can be
seen that the curve with Λ = diag[4, 2, 1, 1] is higher than the
one with Λ = Λ∗, which illustrates the impact of Λ on the con-
vergence rate. Especially, the curve withΛ = Λ∗ converges to the
CR lower bound, which indicates the asymptotic efficiency.
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Fig. 3. Asymptotic efficiency ofθN from (12).

Fig. 4. Convergence of algorithm (27)–(29).

Fig. 5. Convergence rate of algorithm (27)–(29).

Using θN to substitute for θ in Λ∗, we simulate the adaptive
asymptotically efficient algorithm (27)–(29), whose convergence
and convergence rate are shown by Figs. 4 and 5.

Example 2. If θ ∈ R, then π ′

jπj ∈ R. By (35), Q (β1, . . . , βl) =l
j=1 βj

m+1
i=1

η2i,j
ζi,j
π ′

jπj. Assume that
m+1

i=1

η2i,j0
ζi,j0
π ′

j0
πj0 = max1≤j≤lm+1

i=1
η2i,j
ζi,j
π ′

jπj. Then, βj =


1, j = j0
0, j ≠ j0

gives a solution of (33). In
addition, the uniqueness of the solution of (33) is determined by
the uniqueness of j0.

Example 3. Consider problem (34). The input is quantized and
takes values from U = {−1, 1}, which implies that P =

{π1, π2, π3, π4} = {[−1,−1], [−1, 1], [1, 1], [1,−1]}. Observe
that

Ψ̄ ′diag[β1, . . . , βl]Ψ̄ =


4

j=1

βj

4
j=1

(−1)j+1βj

4
j=1

(−1)j+1βj

4
j=1

βj

 .
From this expression, one can derive Q (β1, β2, β3, β4) =

2min{β1 + β3, β2 + β4} =
4

j=1 βj −

4
j=1(−1)j+1βj

 . Since4
j=1 βj = 1, β∗

1 , β
∗

2 , β
∗

3 , β
∗

4 is a solution of (34) if and only if
β∗

1 + β∗

3 = β∗

2 + β∗

4 = 1/2 with 0 ≤ β∗

j ≤ 1 for j = 1, . . . , 4,
and maxQ (β1, β2, β3, β4) = 1. Thus, β∗

1 = β∗

2 = 1/2 and
β∗

3 = β∗

4 = 0 is a solution, which indicates that a 2-periodic signal
with its one-period φn+1 = [−1,−1]′ and φn+2 = [−1, 1]′ is an
optimal input sequence.

9. Concluding remarks

This paper resolves a critical standing issue in quantized
system identification: When the input is periodic and full rank,
algorithms and their key convergence properties are available,
including strong andmean-square convergence, strong andmean-
square convergence rates, asymptotic normality, and asymptotic
efficiency. However, at present it is unclear what constructive
algorithms will retain all these properties when the input is
not periodic. Under quantized output observations and general
quantized inputs, this paper introduces identification algorithms
and input excitation conditions under which parameter estimates
attain all these properties. The results and methods developed in
this paper can be potentially extended to different systems, noise
characterizations, and uncertainties.
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