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Abstract

We propose in this paper a set-valued (SV) system model, which is a generalized form of Logistic 

(LG) and Probit (Probit) regression, to be considered as a method for discovering genetic 

variants, especially rare genetic variants in next generation sequencing studies, for a binary 

phenotype. We propose a new set-valued system identification method to estimate all the 

underlying key system parameters for the Probit model and compare it with the LG model in the 

setting of genetic association studies. Across an extensive series of simulation studies, the Probit 
method maintained Type I error control and had similar or greater power than the LG method 

which is robust to different distributions of noise: logistic, normal or t distributions. Additionally, 

the Probit association parameter estimate was 2.7–46.8 fold less variable than the LG log-odds 

ratio association parameter estimate. Less variability in the association parameter estimate 

translates to greater power and robustness across the spectrum of minor allele frequencies 

(MAFs), and these advantages are the most pronounced for rare variants. For instance, in a 

simulation that generated data from an additive logistic model with odds ratio of 7.4 for a rare 

single nucleotide polymorphism with a MAF of 0.005 and a sample size of 2300, the Probit 
method had 60% power whereas the LG method had 25% power at the α=10−6 level. Consistent 

with these simulation results, the set of variants identified by the LG method was a subset of those 
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identified by the Probit method in two example analyses. Thus, we suggest the Probit method 

may be a competitive alternative to the LG method in genetic association studies such as 

candidate gene, genome-wide, or next generation sequencing studies for a binary phenotype.
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Set-valued system model; binary phenotype; threshold model; genetic variants; rare variants; next-
generation sequencing studies

Introduction

For the past 10 years, genome-wide association studies (GWAS) have been an effective and 

successful method to detect common genetic variations associated with various phenotypes 

[1–3]. To date, the majority of phenotypes studied have been binary/categorical, continuous, 

or survival phenotypes. The standard linear regression model is the main method to analyze 

continuous phenotypes if the normality assumption holds approximately for its original or 

transformed scale. The Cox proportional hazard regression model is the key method to 

analyze the survival outcomes if the proportional hazard assumption holds approximately.

The logistic regression (LG) model is widely used to analyze the binary/categorical 

phenotype in GWAS. Often a binary phenotype is derived from a continuous variable by 

splitting the range at some threshold and categorizing individuals above and below that point 

into 2 separate groups of “affected” and “unaffected.” Examples of such designations 

include obesity defined based on body index mass [4], hypertension defined based on 

systolic blood pressure and/or diastolic blood pressure [5], and diabetes defined based on 

hemoglobin A1c level [6]. Moreover, some binary phenotypes may manifest from 

complicated unobserved or unobservable continuous variables such as expression of an 

unknown protein in a particular organ that causes the disease. Therefore, the simple LG 
model may be too naive to adequately reflect the underlying biology, resulting in 

performance reduction in studies of phenotypes as such.

The Cochran-Armitage trend test (CATT) is a widely used test for the binary phenotype 

(case-control) which assumes an additive mode of inheritance. CATT is equivalent to the 

score test for a logistic regression and has high power for additive and multiplicative disease 

models but much lower power for the recessive disease model [7–10]. The genotypic 

association test using Pearson’s Chi-square test for a 2×3 contingency table is robust for 

different disease models [11] but generally has lower power than CATT for the additive 

disease model. MAX3 is another widely used method that is robust for different disease 

models [12]. MAX3 is the maximum of the absolute values of CATT test statistics, 

assuming the additive, dominant and recessive disease modes of inheritance. The p-value of 

MAX3 can be estimated by the approximation method implemented in the software [13] 

because of its complicated asymptotic distribution. Other innovative methods include the 

entropy-based method which is generally as good as or more powerful than the genotypic 

association test [11, 14], and some genetic model selection and genetic model exclusion 

methods based on Hardy Weinberg disequilibrium information [15–17]. Although these 

methods have some advantages in certain situations, they either cannot adjust for 
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confounding factors such as genetic ancestry, which is commonly adjusted in genetic 

association studies as the LG model does; or are time consuming when applied to GWAS; 

or can have lower power than CATT when the underlying disease model is additive or 

multiplicative [18], especially for a small sample size.

Set-valued system widely exists in reality. And in some cases, it can degenerate to the well-

known threshold model. The corresponding set-valued system identification was first 

investigated for sensor systems [19]. In contrast to the traditional system identification 

method, set-valued system identification can estimate the model by set-valued information 

rather than the precise output. Although set-valued system identification is technically 

challenging, it has been successfully used in various fields such as sensor networks and 

telecommunications [20–21]. If the outcome is a linear function of covariates and the noise 

follows a normal distribution, then the set-valued system model is referred to as the Probit 
model, which is a viable choice for genetic association studies. If the noise follows a logistic 

distribution, then the set-valued system model is referred to as the logistic model, which is 

widely used in genetic association studies.

While it is widely believed that LG and Probit give very similar statistical analysis results 

in most applications because the cumulative distribution function of the standard normal 

distribution is very similar to that of the logistic distribution with mean 0 and scale 1 [22], 

some published research suggests that there may be some GWAS applications in which the 

two models have very different statistical properties. The LG model can be poorer than the 

Probit model in terms of goodness of fit in small sample size settings because the logistic 

distribution has heavier tails than the normal distribution [23]. Also, linear discriminate 

analysis, which like Probit regression is based on a normal distribution instead of the logistic 

distribution, has much greater asymptotic efficiency than LG regression [24]. Furthermore, 

it has been shown that a toxicology study that evaluates a binary response at three drug dose 

levels (−0.79, +0.79, and +2.69 on an arbitrary scale) with most subjects assigned to one of 

the extreme doses is optimal for differentiating between a LG and Probit regression model 

in terms of goodness of fit [25]. Furthermore, since changes of +/− 0.2 in the dose levels 

have minimal impact on the power to distinguish between the logistic and probit models 

[24] and the statistical results are invariant to shift and scale transformations of the dose 

levels, the result holds for transformed dose levels 0, 1, and 2, which is equivalent to the 

common representation of genotype data as the number of copies of the minor alleles. This 

result suggests that the logistic and probit models may have very different performance in 

terms of Type I error control and power in the analysis of the association of rare variants 

with disease status.

In this study, we propose a set-valued (SV) system model, which considers the 

dichotomization process of continuous phenotypes to model the relationship between the 

binary outcome and possible genetic or non-genetic explanatory factors in GWAS or next-

generation sequencing (NGS) studies. We propose a set-valued system identification 

approach for the Probit model to estimate the parameter of interest and use a Wald test 

statistic for testing the null hypothesis of no genotype-binary phenotype association. We 

performed extensive simulation studies to compare the type I error rate and power of the 
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Probit and LG methods. Finally, we applied both methods to a mini-exome sequencing data 

set and a candidate gene study.

Materials and methods

Notation

We assume that there are N0 cases and N1 controls in a case-control genetic association 

study (total sample size N = N0+N1) and that the genetic polymorphism of interest is 

diallelic [e.g., single nucleotide polymorphism (SNP)]. The 2 alleles at a SNP are denoted as 

A and a, where A is the minor allele. The three genotypes are therefore AA, Aa, and aa. 

Suppose that observations (si, Xi, Gi) are available for N individuals, i = 1, 2, … N, where si 

is the case-control status of the subject i; Xi = [xi1, xi2, …, xim]T is the vector of m covariates 

that we need to adjust for (e.g., demographic or clinical variables); and Gi = 0, 1, or 2 is the 

numerical coding of the 3 genotype aa, Aa or AA of the SNP for the same individual.

Logistic Regression (LG) Model

The LG model [26] commonly used to test association between SNP and a binary phenotype 

with adjustment for some covariates is

(1)

where α0 is an intercept term, θ is the regression coefficient for the SNP and γ = [γ1, γ2, .., 

γm]T is a vector of regression coefficients for m covariates. The above equation is equivalent 

to . Evaluating whether the genetic variant SNP influences the 

phenotype, adjusting for covariates, corresponds to testing the null hypothesis of H0: θ = 0. 

The Wald test will be used to test for the null hypothesis in order to be consistent with the 

Probit method below.

The Set-Valued (SV) Model

Instead of directly modeling the relationship between the genetic variant and the phenotype 

using the logistic regression, we propose an new SV system model in which the observation 

of cases and controls are measured by a set-valued sensor [20–21]

where I(y ∈ A)I is the indicate function of the set A, f is a deterministic function of G and X, 

y is a latent continuous variable, and e is the random noise. The most common simplified 

case of set-valued sensor is to introduce a threshold c to dichotomize the continuous 

variable. In this case, the SV model is very similar to the well-known threshold model.
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Furthermore, when the function f is a linear function of G and X and e follows a normal 

distribution, the SV model becomes the Probit model [26]

(2)

where yi is a latent continuous variable that can be dichotomized as case/control, ei is the 

independent and identically distributed random noise which follows a normal distribution 

with a mean of 0 and a variance of σ2, c is the threshold used to define case/control status, 

and the observation si is determined by a threshold c and the latent variable yi. The null 

hypothesis of H0: θ = 0 corresponds to no genetic effect of the SNP on the phenotype. The 

parameter θ is to be identified to test for the null hypothesis using the expectation-

maximization (EM) algorithm below.

Note if the function f is a linear function of G and X but e follows a logistic distribution with 

a location 0 and a scale of 1, then the SV model becomes the LG model:

If c=0, then it becomes the LG model (1).

Similarly, it can be seen that

where Φ is the cumulative distribution function for standard normal distribution, 

. However, an important deviation from the usual probit regression 

modeling is that here we take a novel system identification approach to estimate all the key 

underlying system parameters θ, γ, and c (see below). We call (2) the Probit model but 

coupled with the new algorithm in the remaining of the paper. The core algorithm of the 

system identification is the EM algorithm, instead of the traditional Newton-like method 

which is widely used in the usual probit regression method. EM algorithm has outstanding 

robustness and without calculating the Hessian-like matrix for every iteration step, the EM 

algorithm takes much less time per iteration. Hence, we expect that this approach will be 

more efficient when the binary observations approximately follow model (2). The details 

about the algorithm and the efficiency discussions can be seen in the Discussions, 

Supplementary Section 1 and Supplementary Table S2.
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Estimation of θ and the Test Statistic

The system parameters in (1) can be estimated by maximum likelihood through the EM 

algorithm [21]. Denote the vector of parameters (θ, γT, c) by Θ, the vector (G, X,−1) by φ, 

and the maximum likelihood estimator of Θ by Θ̂. The iteration process of the EM-based 

system identification and the fisher Fisher information matrix of Θ at Θ̂, denoted as i(Θ̂), can 

be obtained as (for details see Supplementary Section 1)

and

where L(Θ) is the likelihood function, F(.) and f(.) are the cumulative distribution function 

and probability distribution function of a normal distribution with mean 0 and variance σ2, 

respectively. Testing for no genetic effect of SNP on the phenotype, that is, H0: θ = 0, can be 

constructed for the Probit method from the Wald statistic

where i(Θ̂)−1 [1,1] is the variance of θ̂, that is, the element at the first row and column of the 

inverse Fisher information matrix. Asymptotically, for large sample sizes, W is distributed 

approximately as a central χ2 distribution with 1 degree of freedom under the null hypothesis 

of no association of SNP and phenotype.

Simulations

Data Generation

Simulation studies were performed to compare the relative performance of the Probit 
method coupled with the proposed EM algorithm and the LG method. In these simulations, 

given the minor allele frequency (MAF) pA, the genotype frequencies p(G=g) were 

calculated according to Hardy–Weinberg equilibrium (HWE) law, that is, p(G=0)=(1–pA)2, 

p(G=1)=2pA (1− pA), p(G=2)=(pA)2. Two covariates were considered: x1 was a binary 

variable that is 1 with a probability of 0.5 and 0 otherwise, and x2 was a continuous variable 

that follows a standard normal distribution. The genotypes and 2 covariates for a population 

of 2,000,000 individuals were independently generated from their respective distributions.
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The case-control status was determined from the generated genotype and covariate data 

according to two models respectively:

1. Logistic regression model (LGsimu): 

, where α0 = −2.2 is the 

parameter chosen so that the disease prevalence is 0.1 among the subpopulation 

with x1 = x2 = G = 0.

2. Probit regression model (PRsimu): First a continuous variable was generated from 

yi = α0 + θGi + 0.5xi1 + 0.5xi2 + ei, where ei follows the standard normal 

distribution and α0 = −2.2. Then, the individuals with a large value of yi greater 

than the threshold c = Φ−1 (1 − 0.1) + α0 were declared as cases and the remaining 

individuals as controls. This model also gives a disease prevalence of 0.1 among 

the subpopulation with x1 = x2 = G = 0.

Then, n cases and n controls were randomly selected from a population of 2,000,000 

individuals.

Type I Error Rate Simulations

Eight values for MAFs of SNPs were considered: 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4 and 

0.5. The case-control status was determined from the generated genotype and covariate data 

by using the two models mentioned above, with θ = 0. To estimate the type I error rate of the 

Probit and LG method, 10,000,000 replicated datasets were simulated for each case-control 

study, with a small sample size of 500 cases and 500 controls and a large sample size of 

2000 cases and 2000 controls for larger significant levels α = 0.05 or 0.01 and stringent 

genome-wide levels α = 10−5 or 10−6 under the null hypothesis of H0: θ = 0, respectively.

Power Simulations

Three genetic disease models were considered: additive, dominant, and recessive. The case-

control status was determined from the generated genotype and covariate data according to 

the simulation methods given above, with θ varying from 0.3 to 2 at an increment of 0.1. 

Datasets were generated 10,000 times for each configuration. The LG and Probit methods 

used for the type I error simulations were applied to each data-set, and power was estimated 

as the proportion of p-values less than α = 10−6.

Simulation Results

Type I Error Rate

Table 1 shows empirical type I error rates estimated for both the LG and Probit methods. 

Regardless of significance levels, both methods correctly maintained type I error rates at the 

given levels but both are conservative if SNPs are rare and the sample size is small because 

of large variance of parameter estimate (Table 2 and Supplementary Figure S1).
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Power of the LG and Probit methods

Figures 1–2 show the power of the LG and Probit methods as a function of effect size (θ) 

for additive and dominant disease models for n= 500 and 1000. As expected, the power of 

both methods increased with the increase in effect size. For a common SNP with an MAF of 

0.2 or 0.05, the estimated coefficient of the Probit method was 1.6 to 1.8 times that of the 

LG method (Table 2), which is the case when both models fit well [22], so it is not 

surprising that the power of the Probit method was almost identical to or slightly greater 

than that of the LG method (Figures 1 and 2),, regardless of effect sizes of SNP (θ) and the 

genetic disease model. For a rare SNP with an MAF of 0.01 or 0.005, the power of the 

Probit method was much greater than that of the LG method regardless of genetic disease 

models. The gain in efficiency for the new Probit method was noticeable in detecting rare 

variants with moderate sample sizes (Figures 1–3). If the phenotype was simulated using 

LGsimu under additive model, with a total sample size of 1,000, the power of the Probit 
method was 31% whereas that of the LG method was 0.05% for detecting a rare SNP with 

an MAF of 0.01 and an effect size of 2 (Figure 1B). For a total sample size of 2,000, the 

power of the Probit method was 34% whereas that of the LG method was only 6% for 

detecting a rare SNP with an MAF of 0.005 and an effect size of 2 (Figure 1D). If the 

phenotype was simulated using PRsimu under additive model, with a total sample size of 

1,000, the power of the Probit method was 81% whereas that of the LG method was 43% 

for detecting a rare SNP with an MAF of 0.01 and an effect size of 1.8 (Figure 2B). For a 

total sample size of 2,000, the power of the Probit method was 77% whereas that of the LG 
method was only 39% for detecting a rare SNP with an MAF of 0.005 and an effect size of 

1.8 (Figure 2D).

Figure 3 display the power of the LG and Probit methods as a function of sample size for 

the additive and dominant disease models. As expected, the power of both LG and Probit 
methods increased with an increase in sample size. For a common SNP with an MAF of 0.2 

or 0.05 and an effect size of 0.4 or 0.8, respectively, the power of the Probit method was 

almost identical to that of the LG method regardless of the phenotype simulation model, 

sample size, and disease model. For a rare SNP with an MAF of 0.01 or 0.005 and an effect 

size of 1.6 or 2, respectively, the power of the Probit method was generally greater than that 

of the LG method regardless of the phenotype simulation model and disease model. The 

power difference became larger with moderate sample sizes. If the phenotype was simulated 

using LGsimu under additive model, with a total sample size of 2,100, the power of the 

Probit method was 80% whereas that of the LG method was 73% for detecting a rare SNP 

with an MAF of 0.01 and an effect size of 1.6. For a total sample size of 2,700, the power of 

the Probit method was 81% but that of LG method was only 56% for detecting a rare SNP 

with an MAF of 0.005 and an effect size of 2 (Figure 3A). If the phenotype was simulated 

using PRsimu under additive model, with a total sample size of 1,000, the power of the 

Probit method was 65% whereas that of the LG method was 30% for detecting a rare SNP 

with an MAF of 0.01 and an effect size of 1.6. For a total sample size of 2,000, the power of 

the Probit method was 83% whereas that of LG method was only 48% for detecting a rare 

SNP with an MAF of 0.005 and an effect size of 2 (Figure 3B).
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The relationship between all parameter values and ratio of the power of the Probit method 

to that of the LG method was quantified by simulation studies. The relative power for a 

wide range of parameter setups (θ (≠0), n, pA, and PRsimu or LGsimu) was first obtained 

and linear regression analysis was then performed using the log relative power as the 

outcome variable and the true parameter values as explanatory variables. The estimated 

mean log relative power of Probit to LG for testing H0: θ = 0 was 2.90 − 0.85log10(n) − 

2.47pA + 0.13θ − 0.11I(PRsimu). This indicates that the magnitude of θ, sample size N, and 

MAF of the SNP pA play dominant role in the relative power for testing H0: θ = 0.

Next we study the performance of the Probit method compared to entropy-based method 

[11] by simulations. Parameter setups were the same as those for Figures 1–2 except here we 

did not include any covariates and we used sample sizes of n=1000 and 2000. Figure 4 

displays the power difference between Probit and entropy-based method for three disease 

models. The power of Probit was greater than that of entropy-based method for additive and 

dominant disease models if MAFs of SNP were 0.2, 0.05 and 0.01 (Figure 4A–4B). If the 

sample size was 2000, then Probit outperformed the entropy-based method for a SNP with 

MAF of 0.005. The maximum of the absolute values of the power differences between 

Probit and entropy-based method for additive and dominant models was 0.1. However, for 

recessive disease model, the entropy-based method was dominant over Probit. The power 

difference between Probit and entropy-based method could be as large as 0.80 (Figure 4C). 

For SNPs with MAF 0.01 and 0.005, there is no power difference between two methods for 

recessive disease model because the power of two methods was 0 due to small sample size 

(Figure 4C). These results are in fact consistent with the comparisons between LG and 

entropy-based method in the literature [11, 14].

Variance of the Genetic Association Parameter Estimate

To show how the MAF of a SNP, sample size, genetic disease model, and different 

distribution of noise affect the parameter estimate of Probit and LG, respectively; and how 

they affect the ultimate power or type one error rate of both methods, respectively, we have 

conducted a series of simulations with a small sample size n=500, and large sample sizes of 

n=2000, 3000, 5000 and 10000 to investigate the genetic association parameter estimates 

and variance of genetic association parameter estimate.

Table 2 and Supplementary Figure S1 show the mean estimates of the genetic effect size 

association parameter, averaged estimated asymptotic variances, and empirical variances for 

the LG and Probit methods. Data were generated using the same parameter setup as given 

in Table 1 and Figures 1–2, except sample sizes. If θ = 0, regardless of the phenotype 

simulation model, the mean estimates with both the LG and Probit methods were close to 0, 

but estimates with the Probit method were closer to 0 than those with the LG method 

(Table 2, Supplementary Figure S1B). If θ ≠ 0, the mean estimates with the LG (Probit) 
method appeared to be much closer to the true parameter values than those with Probit 
(LG) if the phenotype was generated from the LG model using LGsimu (Probit model 

using PRsimu) (Table 2, Supplementary Figure S1B). On average, the parameter estimates 

by the LG method were 2.11 times greater than those by the Probit method for a small 

sample size of 500, but decreased to 1.83, 1.80, 1.77, and 1.74 for large sample sizes of 
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2000, 3000, 5000 and 10000, respectively (Table 2, Supplementary Figure S1A). As 

expected, with the increase of sample size, the estimates become more robust and closer to 

their true parameter values regardless of the estimation method (Table 2, Supplementary 

Figure S1A and S1B). Not surprisingly, more common the SNP and/or larger the sample 

size, smaller was the bias of its estimate.

The averaged estimated asymptotic variance for the parameter estimate appeared to be close 

to its empirical counterpart for both the LG and Probit methods for the common SNP 

(Table 2 and Supplementary Figure S1C and S1D). Interestingly, for a small sample size, the 

averaged estimated asymptotic variance for the LG method was much larger than (mean: 

26.9, range: 0.7~470.6) its empirical counterpart, especially for rare SNPs (mean: 90, range: 

7.6~470.6), but not for the Probit method (mean: 1.2, range: 0.6~2.9), regardless of the 

phenotype simulation model (Table 2, Supplementary Figure S1C and S1D). The association 

parameter estimate for the Probit method was 2.66–46.8 fold less variable than that for the 

LG method. On average, for a SNP with MAF of 0.2, the empirical variance obtained by the 

LG method was 3.48 (Range: 2.67~38) times than that obtained by the Probit method, 

which is close to the ratio of the variance of the logistic distribution with scale of 1, i.e., 

π2/3, to that of the standard normal distribution, i.e., 1. However, this value increased to 4.94 

for a small sample size of 500 (Table 2, supplementary Figure S1F). Interestingly, for a SNP 

with MAF of 0.005, the empirical variance obtained by the LG method was 24.3 (Range: 

2.67~195) times than that obtained by the Probit method which is about 7 times larger than 

that for a SNP with MAF of 0.2. This value increased to 35.1 for a small sample size of 500 

(Table 2, supplementary Figure S1F). All these simulation results obviously demonstrate 

that Probit can give more robust and much less variable parameter estimate than LG, 

especially dominant for small sample sizes and rare variants, which translate to higher 

power of Probit than that of LG.

Application to the Mini-Exome Data of Genetic Analysis Workshop 17

To evaluate the performance of the Probit method coupled with the new proposed 

algorithm, we analyzed data from the Genetic Analysis Workshop 17 (GAW17) which 

contained “mini-exome” sequence genotype data of 24,487 SNPs in 3,205 genomic regions 

of 697 unrelated individuals provided by the 1000 Genome Project [27]. Three quantitative 

phenotypes were simulated from the normal distribution. Two quantitative phenotypes and 

one latent disease liability were influenced by 39 SNPs in 9 genes, 72 SNPs in 13 genes, and 

51 SNPs in 15 genes, respectively. The third quantitative phenotype was influenced only by 

the environments and not genetic variants. One qualitative phenotype denoted by Q4 was 

simulated based on the three quantitative phenotypes and the latent liability and the top 30% 

of the distribution was declared affected. Furthermore, 200 replicate datasets were generated 

for each phenotype, using one fixed genotype data. First, quality control analysis was 

performed on the SNPs and SNPs with MAFs less than 0.00075 or HWE test p-values less 

than 0.00001 were excluded. The 1st, 10th, 100th and 200th qualitative traits were used as our 

outcomes and included age, gender, and smoking status as covariates in both the LG and 

Probit models.
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At a significance level of 0.0001, no SNP was statistically significant for both the LG and 

Probit methods for 10th replicate data. Both methods identified the same causal SNP 

(C13S523) for the 1st and 100th replicate data. The Probit method identified two causal 

SNPs (C13S523 and C13S522) but the LG method only identified the causal SNPC13S522 

for the 200th replicate data (Table 3). Neither method identified no-causal SNPs at the 

significance level of 0.0001. On average, the Probit method identified fewer number of 

non-causal SNPs but the same number of causal SNPs associated with the qualitative 

phenotype than the LG method at significance levels of 0.05, 0.01, and 0.001 

(Supplementary Table S1).

Application to ARID5B Gene in Acute Lymphoblastic Leukemia

Acute lymphoblastic leukemia (ALL) is the most common type of cancer in children and has 

different incidence rates in different racial/ethnic groups [28]. Genetic variants in ARID5B 

associated with risk of ALL have been reported recently [29–30]. We analyzed ARID5B 

genetic polymorphisms in childhood ALL in two populations of white and Hispanic children 

[31]. 978 white and 330 Hispanic children enrolled on Children’s Oncology Group clinical 

trials [32] and 1046 white controls from the Genetic Association Information Network 

schizophrenia cohort [33–34] and 541 Hispanic control from HapMap II, the Human 

Variation Panel and Mexican participants in the Genetics of Asthma in Latino Americans 

study [35] were genotyped using Affymetrix SNP Array 6.

After quality control analysis, 49 SNPs within 10kb upstream or downstream of the gene 

were included for association testing of SNP with ALL susceptibility. Table 3 shows the 

SNPs with p-values less than 0.001 (0.05/49). We can see that in whites based on the LG 
method, 6 of the 49 SNPs, rs10821936, rs10821938, rs10994982, rs7087125, rs7896246, 

and rs7923074, had the p-values less than 0.001, and rs2893881 had a p-value of 0.001024, 

close to 0.001. Based on the Probit method, all these seven SNPs had p-values less than 

0.001 (Table 3). In Hispanics, both methods identified the same set of SNPs associated with 

ALL susceptibility (Table 3). At more liberal significance levels of 0.05 and 0.01, both 

methods identified the same set of SNPs too (data not shown).

Discussion

With the availability of data from whole-genome sequencing and whole-exome sequencing 

studies in which moderate sample sizes are used due to the high cost of sequencing 

technology [36–37] or the rare diseases in cancer genomics studies such as pediatric cancers 

of retinoblastoma and Ewing’s sarcoma [38–39], there is an increasing demand for the 

development of powerful and robust association testing procedures for identifying genetic 

variations associated with a binary phenotype of interest. In this study, we propose a new SV 
system model, which is a generalized form of logistic and probit regression models, to 

model the relationship between a binary phenotype and genetic variants and a novel set-

valued system identification approach for the Probit model to identifying the parameters 

association of interest. We compare it with the LG model. Simulations and real data 

applications show that the power gain of Probit compared to LG for binary phenotypes is 

robust to the distributions of noise: logistic or normal distribution, and various genetic 
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disease models, and that Probit generally outperforms the commonly used LG. 

Furthermore, we also compared the elapsed time between our new algorithm and the built-in 

command glmfit(x, y, ‘binomial’, ‘link’, ‘probit’) in Matlab using simulations. We found that 

on average, the elapsed time of our new algorithm took 0.06 (range: 0.003~0.1022) seconds 

less time than glmfit for one SNP. For GWAS and NGS, we usually test for ~106 and 

~4×107 SNPs, respectively, and then it will save ~17 hours and ~677 hours compared to 

glmfit in matlab, respectively. But we did not find the difference of computing time between 

our new algorithm and glm function in R [40]. In addition, Probit has greater power than 

entropy-based method for additive and dominant but not recessive disease models. However, 

to the best of our knowledge, there is no program available in entropy-based method to 

include covariates in genetic association studies. In conclusion, we recommend the use of 

the Probit method coupled with our new algorithm instead of the LG method, regardless of 

the distribution of noise, sample size, and effect size of associations between variants and 

disease of interest, to identify genetic variants, especially rare variants, in genetic association 

studies.

When we estimate the parameters using system identification method, we suppose that the 

variance of noise is known as 1 because we are interested in testing genotype-phenotype 

associations not estimating the effect size of association. In real data analysis, the true 

variance of noise is usually unknown and also may not be equal to 1 which will definitely 

affect the power of the LG and Probit methods. By simulations with noise following a 

normal distribution of N(μ,σ2), where σ2 = 3 and σ2 = 1/3, not surprisingly, as the true 

variance of the noise is bigger (smaller) than 1, the power of both methods will decrease 

(increase). However, as expected, the power of the Probit method is still identical to or 

greater than that of the LG method (data not shown). Thus, conclusions about the relative 

performance of the Probit and LG methods in this study are also robust to the t distribution 

of the underlying noise. In addition, if we are interested in estimating the association effect 

size of SNP on the phenotype, the parameter of variance of noise can also be estimated 

along with other parameters using expectation conditional maximization algorithm [21].

Besides SNP-based analysis, the Probit model coupled with the new algorithm can also be 

applied to any biologically meaningful mutants and mutant sets. It can be applied to a 

multiallelic locus, and the somatic status of structural variants such as copy number variants, 

copy-neutral regions of loss of heterogeneity, inversions and translocations. For next 

generation sequencing studies that involve rare variants, due to lack of power for single-

locus approach, Probit method can be extended to a multiple-locus such as haplotype-based, 

gene/set-based, and pathway-based approach for detecting rare variants. Furthermore, the 

proposed SV model focuses on a binary phenotype with one threshold. However, in real data 

analyses, especially in the field of pharmacogenomics, the outcome could be multiple 

ordinal categories such as dosing of drugs, adverse events scored on scales using ordinal 

values (1–5) according to the Common Terminology Criteria for Adverse Events developed 

by the National Cancer Institute, or the effect of treatment on disease (e.g., tumour response 

in which the change of tumour size is categorized as a complete response, partial response, 

stable disease or progressive disease) [39]. The concept of a multiple-input-multiple-output 

linear system with quantized outputs [21] can be applied in these cases and hence can 
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provide a comprehensive framework for a wide variety of genetic association studies. 

Similar to LG method, Probit method also has lower power than entropy-based method if 

the unknown underlying disease model is recessive. The power of Probit can be made 

robust against the underlying disease models by a computationally intensive approach: take 

as the test statistic the maximum of the absolute values of z test statistics assuming the 

additive, dominant and recessive disease models in Probit model. Then an empirical p-value 

can be obtained by a re-sampling method. In the current study, we have only investigated 

which method of the LG and Probit performs better in terms of association testing but in 

the future we will determine which method performs better in terms of model fitting and 

prediction.

We have implemented the Probit model coupled with the proposed EM algorithm in an R 

package and Matlab codes, which are available for free download from http://

www.stjuderesearch.org/site/depts/biostats/software. The method can be easily applied to 

any genetic association studies no matter candidate gene, GWAS or NGS studies for a 

binary phenotype.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Power of Probit and LG methods for the additive model using LGsimu and PRsimu
The upper and lower panels showed results using LGsimu and PRsimu, respectively. A, C 

and B, D panels were for sample sizes of n=500 and n=1000, respectively. The solid and 

dotted lines corresponded to the Probit (PR) and LG methods, respectively. The numbers of 

1–4 corresponded to MAFs of SNPs, 0.2, 0.05, 0.01 and 0.005, respectively. The 

significance level of the test was 1×10−6.

Kang et al. Page 16

Hum Hered. Author manuscript; available in PMC 2015 July 30.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2. Power of Probit and LG methods for the dominant model using LGsimu and PRsimu
The upper and lower panels showed results using LGsimu and PRsimu, respectively. A, C 

and B, D panels were for sample sizes of n=500 and n=1000, respectively. The solid and 

dotted lines corresponded to the Probit (PR) and LG methods, respectively. The numbers of 

1–4 corresponded to MAFs of SNPs, 0.2, 0.05, 0.01 and 0.005, respectively. The 

significance level of the test was 1×10−6.
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Figure 3. Power of Probit and LG methods for the additive and dominant models as a function 
of sample size
The upper and lower panels showed results for additive and dominant modelsPRsimu, 

respectively. The A, C and B, D panels corresponded to LGsimu and PRsimu, respectively. 

The solid and dotted lines correspond to the Probit (PR) and LG methods, respectively. The 

significance level of the test was 1×10−6. βg values were 0.4, 0.8, 1.6 and 2 for SNPs with 

MAFs of 0.2, 0.05, 0.01 and 0.005, respectively.
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Figure 4. Power difference between Probit and entropy-based method
The A, B and C panels corresponded to additive, dominant and recessive disease models. All 

parameter setups were the same as Figures 1–2.
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Table 3

SNPs associated with Q4 for GAW17 data with p-values less than 1×10−4

Phenotype dataset SNP MAF Probit LG

1st C13S523 0.067 6.68×10−6 6.57×10−6

100th C13S523 0.067 2.10×10−6 1.98×10−6

200th C13S522 0.03 6.16×10−5 6.52×10−5

C13S523 0.067 7.13×10−5 0.00011

MAF: minor allele frequency.
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