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1 Introduction

The semi-tensor product (STP) of matrices is a novel matrix product, which is a generalization of con-
ventional matrix product for the case when the two factor matrices even do not meet the dimension
matching condition [1, 2, 3, 4, 5].

The STP toolbox for Matlab! and GNU Octave? is developed for calculating the semi-tensor product
(STP) of (logical) matrices and its application to the analysis and control of Boolean networks.

The semi-tensor product of matrices is defined as follows

Definition 1.1 1. Let X be a row vector of dimension np, and Y be a column vector with dimension p.
Then we split X into p equal-size blocks as X1,---  XP, which are 1 x n rows. The (left) STP, denoted
by X, is defined as

4 .
XxY =Y Xiy eR",

=1y ] (1)
YT x XT = Z:lyi(X’)T € R™.

2. Let A € Myxn and B € Myxy. If either n is a factor of p, say nt = p and denote it as A < B,
or p is a factor of n, say n = pt and denote it as A = B, then the (left) STP of A and B , denoted by
C = A x B, is defined as the following: C consists of m x q blocks as C = (C¥) and each block is

CZJ:A’LD(B]? i:17"'7ma j:17"'7q7
where A" is i-th row of A and Bj is the j-th column of B.

The above definition is for the two matrices satisfying multiple dimension condition, the following

definition is a general case for two arbitrary matrices.

Definition 1.2 Let A € My,xn, and B € Myyq. The (left) semi-tensor product of A and B is defined
as

Ax B=(A®1;,)(B® L), (2)

where t is the least common multiple of n and p, and ® is the Kronecker product.
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We use some simple numerical examples to describe it.

Example 1.3 1. Let X — {1 2 3 —1} and Y =

Then

Xwy=[1 2 -1+[3 —1]-2=]7 o].

2. Let
1 2 1 1 ] 9
A=1|2 3 1 2|, B= ]
2 -1
3 2 10
Then ~ _
1 -2
(1211)2(1211)71
1 5 3 4 -3 -5
AxB:(2312)2(2312)1:47—5—8,
) 5 5 2 -7 —4
(3210)2(3210)71
or
1 0 -2 -0
1 2 1 1 0 1 0 9 3 -3 -5
AxB=AB®L)=[2 3 1 2 = 5 -8
(Bol) 2 0 -1 —0
3 210 5 2 -7 —4
0 2 -0 -1
O
Definition 1.4 1. An n X p matriz, A, is called a logical matriz if
A= [5;’11 52 .. 5:'5]7 (3)
where 8% is the i-th column of the identity matriz I,.
2. The condense form of a logical matriz (as A in (3)) is denoted as
A=08pin,00, -, 0p). (4)

Remark 1.5 According to (4), an n X p logical matriz is described by a vector of dimension p and a

parameter n. In the toolbox lm object is used to express a logical matriz as

lmn =n,
o : ()
imv = [i1,d2, -+ ,ip].
Example 1.6 Consider
10 0 0
0 010
A=
01 00
0 0 01
It is a logical matriz and it can be expressed in condensed form as
A =64]1,3,2,4)].
Ezxpressing A to a Im object, we have
An =4,
Av=1[1324].
In this expression we only need 5 bytes instead of 16 bytes in the memory. O



Definition 1.7 The swap matriz Wi, ,,) is an mn X mn matriz constructed in the following way: label
its columns by (11,12,--- ;In,--- ,ml,m2,--- ;mn) and its rows by (11,21,--- ,m1,--- ,1In,2n,--- ;mn).

Then its element in the position ((I,J), (i,7)) is assigned as

1, I'=tandJ =
I1,J ’ ’
wry, (i) = 0;; = (6)
{.09) ’j 0, otherwise.

Remark 1.8 Let X €¢ R™ and Y € R" be two columns. Then
Winn X X XY =Y x X. (7)
Example 1.9 Let m =2 and n = 3, the swap matriz Wi 3) is constructed as

(11) (12) (13) (21) (22) (23)

Wig =

o = O O O O
S O = O O O
—_ o O O O O

S O O O O
S O O = O O
o O o O~ O

In condensed form we have
W[273] = 66[17 3a 57 27 47 6]

O
Definition 1.10 Let A be an m X n matriz, m = pq, n = rs. Express A in blocks as
A A - Ags
A1 Azp -or Ags
A= | ; (8)
Aql Aq2 e Aqs
where A;; are p X v matrices. Then the block transpose AT@1) s defined as
Ann A o Ap
Aig A -+ Ap
A= | . (9)
Als AQS o Aqs

2 Functions and Objects

This section provides detailed description for the basic functions in this toolbox. Both Matlab and Octave
support the object-oriented programming, thus the toolbox defines stp object for the calculations of STP
and 1m object for the logical matrices.

2.1 Basic Functions
1. C =sp(A,B)

Description: The function performs the (left) semi-tensor product of two matrices A and B based
on Definition 1.2.

Argument(s): Two matrices A and B with arbitrary dimensions.

Returned Value: C = A x B.



2. C =spl(A,B)

Description: The function performs the (left) semi-tensor product of two matrices A and B

according to Definition 1.1.
Argument(s): Two matrices A and B with arbitrary dimensions.
Returned Value: C = A x B.
Note that sp and spl are functionally same. Because they use different algorithms inside, spl should
be faster than sp for multiple dimension condition.
3. C=spn(Ay, A, , Ap)
Description: The function performs the (left) semi-tensor product of finite set of matrices Ay, - -+ , A,,.
Argument(s): Finite matrices Ay, -+, A, which are of arbitrary dimension.

Returned Value: C = x}_, A;.

4. B="bt(A,p,r)
Description: The function performs the block transpose of A (refer to Definition 1.10).
Argument(s): A is the matrix to be transposed, the size of fixed blocks is p X r.

Returned Value: B = AT®7),

5. W =wij(m,n)
Description: The function produces an mn x mn swap matrix (refer to Definition 1.7).
Argument(s): Two positive integers m and n. n is optional, default n is m.

Returned Value: Matrix W of dimension mn X mn.

6. v =wvc(A)
Description: The function converts a matrix to its column stacking form.
Argument(s): Matrix A = (aij)mxn-
Returned Value: v =[a11 *** Gm1 “ Q1 - Gmn) T
7. v=uvr(A)
Description: The function converts a matrix to its row stacking form.

Argument(s): Matrix A = (a;;)mxn-

Returned Value: v =[a11 - G1n *** Gm1 -+ G L.
8. A = invve(x, m)

Description: Let @ = (z1,22, - ,2p). The function will reshape z into a matrix A with row
number m as

T xm+1 e xpferl

T2  Tm42 0 Tp—m+2

A =
T Tom e mp

If p is not a multiple of m, the least number of zeros will be added at the end of = such that the

length of = becomes a multiple of m.

Argument(s): z is a vector; m is the row number of the resulting matrix, and it is optional.
Default m is ceil(sqrt(length(v))).

Returned Value: Matrix A with row number m.



9.

10.

2.2

A = invor(x,n)

Description: Let © = (21,22, -+ ,xp). The function will reshape z into a matrix A with column
number n as
xl IQ DY xn
xn+1 $n+2 e Ton
A =
Tp—n+1 Tp—n+2 - Lp

If p is not a multiple of n, the least number of zeros will be added at the end of x such that the

length of x becomes a multiple of n.

Argument(s): z is a vector; m is the column number of the resulting matrix, and it is optional.
Default m is ceil(sqrt(length(v))).

Returned Value: Matrix A with column number m.

v = dec2any(a, k,len)

Description: The function converts a decimal number a into a k-based number as
a=ask®+as_ 1k P+ +ark+ay, as>0.

[Say, k = 2, the result is a binary number in vector form. In fact the function dec2binv(a,len) is
for binary case, which is a wrapper of this function. Note that in Matlab/Octave there is dec2base

(or dec2bin) to do the same thing, but its returned value is a string.]

Argument(s): a is a positive integer; k is optional, and k > 2. Default k is 2. Default len is 0, it
means as # 0, but if len > 0 and len > s+ 1, len — s — 1 zeros should be added at the beginning

of returned value.

Returned Value: v = [as as—1 -+ a; ag).

stp Object

Here we would like to introduce the functions for stp object.

1.

M = stp(A)

Description: stp class constructor.
Argument(s): Matrix A.
Returned Value: stp object M.

Since stp object is a simple wrapper, more usage could be found in the examples in Section 3.

2.3

1m Object

Now we will introduce the functions for logical matrices or 1m object.

1.

M =1m(A) or M =Im(v,n)
Description: 1m class constructor.

Argument(s): i) Logical matrix A; ii) vector v = [v1 v2 --- v,] and positive integer n satisfying
0<wv;<n, 1<i<p. (Case i, refer to Definition 1.4 and Example 1.6; Case ii, Im.n = n, Im.v =
v.)

Returned Value: 1m object M.



10.

. C =1Isp(A,B)

Description: The function performs the semi-tensor product of logcial matrices A and B.
Argument(s): A, B are 1m objects. (refer to Definition 1.4 and Remark 1.5 for the structure.)
Returned Value: C = A x B is an 1m object.

. C= lspn(AhAQv e 7A7L)

Description: The function performs the semi-tensor product of logical matrices Ay, Aa, -+ , A,.
Argument(s): A, -+, A, are 1m objects. (refer to Definition 1.4 and Remark 1.5 for the struc-
ture.)

Returned Value: C = x}_; A; is an 1m object.

M = leye(n)

Description: The function produces an n x n identity matrix.
Argument(s): Positive integer n.

Returned Value: 1m object M.

. M =1Imn(k)

Description: The function produces the structure matrix of negation for k-valued logic (k > 2).
Argument(s): k is optional, default k is 2.
Returned Value: 1m object M.

. M =Imc(k)

Description: The function produces the structure matrix of conjunction for k-valued logic (k > 2).
Argument(s): k is optional, default & is 2.
Returned Value: 1m object M.

M = lmd(k)
Description: The function produces the structure matrix of disjunction for k-valued logic (k > 2).

Argument(s): k is optional, default & is 2.
Returned Value: 1m object M.

. M =1Imi(k)

Description: The function produces the structure matrix of implication for k-valued logic (k > 2).
Argument(s): k is optional, default & is 2.
Returned Value: 1m object M.

. M =lme(k)

Description: The function produces the structure matrix of equivalance for k-valued logic (k > 2).
Argument(s): k is optional, default k is 2.

Returned Value: 1m object M.

M = lmr(k)

Description: The function produces the power-reducing matrix for k-valued logic (k > 2).

Argument(s): k is optional, default % is 2.
Returned Value: 1m object M.



11. M =Imu(k)

Description: The function produces the dummy matrix for k-valued logic (k > 2). The dummy
matrix M satisfies the following property

MXY =Y, VX,Y €D,

Argument(s): k is optional, default k is 2.
Returned Value: 1m object M.

12. M = Imrand(m,n)
Description: The function produces an m x n logical matrix randomly.
Argument(s): Positive integers m and n. n is optional, default n is m.
Returned Value: 1m object M.

13. M = lwij(m,n)
Description: The function produces an mn X nn swap matrix.
Argument(s): Positive integers m and n. n is optional, default n is m.

Returned Value: 1m object M.

14. M = randlm(m,n)

Description: Alias function of Imrand.

More usage on 1m object please find in the examples in Section 3.

3 Examples

Some examples which illustrate the basic usages are listed below with codes, and more examples could
be found in the toolbox.

1 |% This example is to show how to perform semi—tensor product

3|x =[1 23 —1];
aly = [2 1]

5 |rl = sp(x,y)

6 |% rl = [5, 3]

7

s|x = [2 1];

9o ly =1[1 23 —1]7%

10 |r2 = sp(x,y)

11 |% r2 = [5; 3]
12

13lx =121 1;
14 231 2
15 321 0];
w6 |y = [1 —2;

17 2 —1];

18 |13 = sp(x,y)

19 |rd = spl(x,y)

20 |% 13 = 14 = [3,4,—-3,-5:4,7,—-5,-8;5,2, -7, —4]
21
22 [ 15 = sp(sp(x,y),y)

23 |16 = spn(x,y,y)

24 [% 15 = 16 = [~3,-6,-3,-3;-6,-9,—-3,-6;-9,—6,—3,0]
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% This example is to show the usage of stp class.
% Many useful methods are overloaded for stp class, thus you can use stp object as

double.
x=[121 1;

231 2;

321 0];
y=1[1 -2

2 —1];

% Covert x and y to stp class
a = stp(x);
stp (y);

o
Il

% mtimes method is overloaded by semi—tensor product for stp class

c0 = spn(x,y,y)
¢ = axbxb, class(c)

% Convert an stp object to double
cl = double(c), class(cl)

% size method for stp class
size (c)

% length method for stp class
length (c)

% subsref method for stp class

c(1l,:)

% subsasgn method for stp class
c(1,1) =3

% This example is to show the usage of lm class.

% Many methods are overloaded for lm class.

% Consider classical (2—valued) logic here
k = 2;

T = lm(1,k); % True
= Im(k,k); % False

e5|
\

% Given a logical matrix, and convert it to lm class
A=1[1 00 0;
011 1]
M = Im(A)
% or we can use
%M=1m([1 2 2 2], 2)

% Use m—function to perform semi—tensor product for logical matrices
rl = Ispn(M,T,F)

% Use overloaded mtimes method for Im class to perform semi—tensor product
r2 = MxTxF

% Create an 4—by—4 logical matrix randomly
M1 = lmrand (4)
% M1 = randlm (4)
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% Convert an lm object to double
double (M1)

% size method for Im class
size (M1)

% diag method for lm class
diag (ML)

% Identity matrix is a special type of logical matrix
13 = leye(3)

% plus method is overloaded by Kronecher product for lm class
r3 = Ml 4+ 13

% Alternative way to perform Kronecher product of two logical matrices

r4 = kron(M1,13)

% Create an lm object by assignment
M2 = Im;

M2.n = 2;

M2v = [1 1 2 2];

M2

% This example is to show how to use vector form of logic to solve the following

question :

% A said B is a liar, B said C is a liar, and C said A and B are both

the liar?
% Set A: A is honest, B: B is honest, C: C is honest

k = 2; % Two—valued logic

MC = Imc(k); % structure matrix for conjunction
ME = lme(k); % structure matrix for equivalance
MN = Imn(k); % structure matrix for negation
MR = lmr(k); % power—reducing matrix

% The logical expression can be written as
logic_expr = ’(A=!B)&(B=!C)&(C=(!A&!B)) ’;

% where = is equivalance, & is conjunction, and ! is negation

% convert the logic expresson to its matrix form
matrix_expr = lmparser(logic_expr);

% then obtain its canonical matrix form

expr = stdform (matrix_expr);

% calculate the structure matrix

L = eval (expr)

% The uniqe solution for Lxx=[1 0]"T is x=[0 0 0 0 0 1 0 0] T:=8[6]
sol = v2s(lm(6,8))

% One can see sol=[0 1 0], which means only B is honest, A and C are

liars. Who is

liars.

% Examples for Boolean network

% Initializing
k = 2;
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options =

[1;

% Please note t
as a logica
% The following

ME = Ime(k); %
MI = Imi(k); %
MD = Imd(k); %
MN = Imn(k); %
MR = lmr(k); %
MC = Imc(k); %

MX = Im([2 1 1

hat defined

1 matrix ,

in this toolbox any variable intialized with capital M is
it

s are some commonly used logical

otherwise will be considered as logical vector.
matrices

equivalence

implicaiton

disjunction

negation

power—reducing matrix

conjunction

2], 2); % xor

% choose a number from 1-5 to select a Boolean network

n = 3;

switch n
case 1
% Dynamics of Boolean network
% A(t+1) = MCxB(t)*C(t)
% B(t+1) = MN*A(t)
% C(t+1) = MD«B(t)*C(t)
% Set X(t)=A(t)B(t)C(t), then
eqn = MC B CMN AMD B C’;
case 2
% Dynamics of Boolean network
% A(t+1) = MCxB(t)*C(t)
% B(t+1) = MN*A(t)
% C(t+1) = B(t)
eqn = 'MC B C MN A B’;
case 3
% Dynamics of Boolean network
% E(t+1) = MX«E(t)*I(t)

% H(t+1) = MX«F(t)=*H(t)
% F(t+1) = MX«F(t)*J(t)
% 1(t+1) = MX«G(t)*I(t)
% G(t+1) = MX«G(t)*MX«F (t)«H(t)
% J(t+1) = MX«MX«E(t)*I(t)*J(t)
% Set X(t)=E(t)H(t)F(t)I(t)G(t)J(t), then
if k # 2
error (’This example is only for the case k=2.7);
end
eqn = 'MXE I MXFHMXF JMXGIMXGMXFHMKMXETI J ’;
% set the variables’ order, otherwise they will be sorted in the dictionary
order
options = lmset (’vars’ ,{'E’,’H’,’F’,’1’,’G’,’J"});

case 4

% Dynamics of Boolean network

% A(t+1) = MN«MI*K(t)*H(t)
% B(t+1) = MN«MIxA(t)*C(t)
% C(t+1) = MI«sD(t)*I(t)

% D(t+1) = MCxJ (t)*K(t)

% E(t+1) = MI«C(t)=*F(t)

% F(t+1) = MN«MI<E(t)*G(t)
% G(t+1) = MN«MCx+B(t)«E(t)
% H(t+1) = MN«MIxF(t)«G(t)
% 1(t+1) = MN«MIxH(t)*I(t)
% J(t+1) = J(t)

% K(t+1) = K(t)

% Set X(t)=A(t)B(t)C(t)D(t)E(t)F(t)G(t)H(t)I(t)J(t)K(t), then

10




63 eqn = MNMIKHMNMIACMIDIMCJKM CFMI M EGMI M:BEMN M F G
MNMIHI JK?;

64 case 5

65 % Dynamics of Boolean network

66 % A(t+1) = MN«MD«C(t)*F(t)

67 % B(t+1) = A(t)

68 % C(t+1) = B(t)

69 % D(t+1) = MC«MC*MN« I (t ) «VN«C(t ) «MN+F (t)

70 % E(t+1) = D(t)

71 % F(t+1) = E(t)

72 % G(t+1) = MN«MD«F (t)*1(t)

73 % H(t+1) = G(t)

74 % I(t+1) = H(t)

75 % Set X(t)=A(t)B(t)C(t)D(t)E(t)F(t)G(t)H(t)I(t), then
76 eqn = MNMDCF ABMCMCMN I MNCMNF DEMNMDF I G H’;
77 otherwise

78 return

79 | end

80
81 |% Convert the equation to a canonical form
s2 | [expr,vars] = stdform (eqn,options ,k);

83
84 |% Calculate the network transition matrix
85 |L = eval (expr)

86
87 |% Analyze the dynamics of the Boolean network
88 | [n,1,c,r0,T] = bn(L,k);

89
90 | fprintf (’Number of attractors: %d\n\n’,n);

o1 | fprintf(’Lengths of attractors:\n’);

92 | disp (1)}

93 | fprintf(’\nAll attractors are displayed as follows:\n\n’);
94 | for i=1l:length(c)

95 fprintf(’No. %d (length %d)\n\n’,i,1(i));

96 disp (c{i});

97 | end

98 | fprintf(’Transient time: [r0, T] = [%d %d]\n\n’,r0,T);
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