STP Toolbox for Matlab/Octave*

Hongsheng Qi, Daizhan Cheng

fKey Laboratory of Systems and Control, Chinese Academy of Sciences
fAcademy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, P.R.China
E-mail: gihongsh@amss.ac.cn, dcheng@iss.ac.cn
Last Updated on August 26, 2016

1 Introduction

The semi-tensor product (STP) of matrices is a novel matrix product, which is a generalization of con-
ventional matrix product for the case when the two factor matrices even do not meet the dimension
matching condition [1, 2, 3, 4, 5].

The STP toolbox for Matlab! and GNU Octave? is developed for calculating the semi-tensor product
(STP) of (logical) matrices and its application to the analysis and control of Boolean networks.

The semi-tensor product of matrices is defined as follows

Definition 1.1 1. Let X be a row vector of dimension np, and Y be a column vector with dimension p.
Then we split X into p equal-size blocks as X1,--- XP, which are 1 x n rows. The (left) STP, denoted
by X, is defined as

4 .
XxY =Y Xiy eR",

=1y] (1)
YT x XT = Z:lyi(X’)T € R™.

2. Let A € Myxn and B € Myxy. If either n is a factor of p, say nt = p and denote it as A < B,
or p is a factor of n, say n = pt and denote it as A = B, then the (left) STP of A and B , denoted by
C = A x B, is defined as the following: C consists of m x q blocks as C = (C¥) and each block is

CZJ:A’LD(B]? i:17"'7ma j:17"'7q7
where A" is i-th row of A and Bj is the j-th column of B.

The above definition is for the two matrices satisfying multiple dimension condition, the following

definition is a general case for two arbitrary matrices.

Definition 1.2 Let A € My,xn, and B € Myyq. The (left) semi-tensor product of A and B is defined
as

Ax B=(A®1;,)(B® L), (2)

where t is the least common multiple of n and p, and ® is the Kronecker product.

*Supported partly by National Natural Science Fundation of China under Grants 60674022, 60736022, 60221301, and
61104065.

Thttp:/ /www.mathworks.com

2http://www.octave.org

mailto:qihongsh@amss.ac.cn
mailto:dcheng@iss.ac.cn

We use some simple numerical examples to describe it.

Example 1.3 1. Let X — {1 2 3 —1} and Y =

Then

Xwy=[1 2 -1+[3 —1]-2=]7 o].

2. Let
1 2 1 1] 9
A=1|2 3 1 2|, B=]
2 -1
3 2 10
Then ~ _
1 -2
(1211)2(1211)71
1 5 3 4 -3 -5
AxB:(2312)2(2312)1:47—5—8,
) 5 5 2 -7 —4
(3210)2(3210)71
or
1 0 -2 -0
1 2 1 1 0 1 0 9 3 -3 -5
AxB=AB®L)=[2 3 1 2 = 5 -8
(Bol) 2 0 -1 —0
3 210 5 2 -7 —4
0 2 -0 -1
O
Definition 1.4 1. An n X p matriz, A, is called a logical matriz if
A= [5;’11 52 .. 5:'5]7 (3)
where 8% is the i-th column of the identity matriz I,.
2. The condense form of a logical matriz (as A in (3)) is denoted as
A=08pin,00, -, 0p). (4)

Remark 1.5 According to (4), an n X p logical matriz is described by a vector of dimension p and a

parameter n. In the toolbox lm object is used to express a logical matriz as

lmn =n,
o : ()
imv = [i1,d2, -+ ,ip].
Example 1.6 Consider
10 0 0
0 010
A=
01 00
0 0 01
It is a logical matriz and it can be expressed in condensed form as
A =64]1,3,2,4)].
Ezxpressing A to a Im object, we have
An =4,
Av=1[1324].
In this expression we only need 5 bytes instead of 16 bytes in the memory. O

Definition 1.7 The swap matriz Wi, ,,) is an mn X mn matriz constructed in the following way: label
its columns by (11,12,--- ;In,--- ,ml,m2,--- ;mn) and its rows by (11,21,--- ,m1,--- ,1In,2n,--- ;mn).

Then its element in the position ((I,J), (i,7)) is assigned as

1, I'=tandJ =
I1,J ’ ’
wry, (i) = 0;; = (6)
{.09) ’j 0, otherwise.

Remark 1.8 Let X €¢ R™ and Y € R" be two columns. Then
Winn X X XY =Y x X. (7)
Example 1.9 Let m =2 and n = 3, the swap matriz Wi 3) is constructed as

(11) (12) (13) (21) (22) (23)

Wig =

o = O O O O
S O = O O O
—_ o O O O O

S O O O O
S O O = O O
o O o O~ O

In condensed form we have
W[273] = 66[17 3a 57 27 47 6]

O
Definition 1.10 Let A be an m X n matriz, m = pq, n = rs. Express A in blocks as
A A - Ags
A1 Azp -or Ags
A= | ; (8)
Aql Aq2 e Aqs
where A;; are p X v matrices. Then the block transpose AT@1) s defined as
Ann A o Ap
Aig A -+ Ap
A= | . (9)
Als AQS o Aqs

2 Functions and Objects

This section provides detailed description for the basic functions in this toolbox. Both Matlab and Octave
support the object-oriented programming, thus the toolbox defines stp object for the calculations of STP
and 1m object for the logical matrices.

2.1 Basic Functions
1. C =sp(A,B)

Description: The function performs the (left) semi-tensor product of two matrices A and B based
on Definition 1.2.

Argument(s): Two matrices A and B with arbitrary dimensions.

Returned Value: C = A x B.

2. C =spl(A,B)

Description: The function performs the (left) semi-tensor product of two matrices A and B

according to Definition 1.1.
Argument(s): Two matrices A and B with arbitrary dimensions.
Returned Value: C = A x B.
Note that sp and spl are functionally same. Because they use different algorithms inside, spl should
be faster than sp for multiple dimension condition.
3. C=spn(Ay, A, , Ap)
Description: The function performs the (left) semi-tensor product of finite set of matrices Ay, - -+ , A,,.
Argument(s): Finite matrices Ay, -+, A, which are of arbitrary dimension.

Returned Value: C = x}_, A;.

4. B="bt(A,p,r)
Description: The function performs the block transpose of A (refer to Definition 1.10).
Argument(s): A is the matrix to be transposed, the size of fixed blocks is p X r.

Returned Value: B = AT®7),

5. W =wij(m,n)
Description: The function produces an mn x mn swap matrix (refer to Definition 1.7).
Argument(s): Two positive integers m and n. n is optional, default n is m.

Returned Value: Matrix W of dimension mn X mn.

6. v =wvc(A)
Description: The function converts a matrix to its column stacking form.
Argument(s): Matrix A = (aij)mxn-
Returned Value: v =[a11 *** Gm1 “ Q1 - Gmn) T
7. v=uvr(A)
Description: The function converts a matrix to its row stacking form.

Argument(s): Matrix A = (a;;)mxn-

Returned Value: v =[a11 - G1n *** Gm1 -+ G L.
8. A = invve(x, m)

Description: Let @ = (z1,22, - ,2p). The function will reshape z into a matrix A with row
number m as

T xm+1 e xpferl

T2 Tm42 0 Tp—m+2

A =
T Tom e mp

If p is not a multiple of m, the least number of zeros will be added at the end of = such that the

length of = becomes a multiple of m.

Argument(s): z is a vector; m is the row number of the resulting matrix, and it is optional.
Default m is ceil(sqrt(length(v))).

Returned Value: Matrix A with row number m.

9.

10.

2.2

A = invor(x,n)

Description: Let © = (21,22, -+ ,xp). The function will reshape z into a matrix A with column
number n as
xl IQ DY xn
xn+1 $n+2 e Ton
A =
Tp—n+1 Tp—n+2 - Lp

If p is not a multiple of n, the least number of zeros will be added at the end of x such that the

length of x becomes a multiple of n.

Argument(s): z is a vector; m is the column number of the resulting matrix, and it is optional.
Default m is ceil(sqrt(length(v))).

Returned Value: Matrix A with column number m.

v = dec2any(a, k,len)

Description: The function converts a decimal number a into a k-based number as
a=ask®+as_ 1k P+ +ark+ay, as>0.

[Say, k = 2, the result is a binary number in vector form. In fact the function dec2binv(a,len) is
for binary case, which is a wrapper of this function. Note that in Matlab/Octave there is dec2base

(or dec2bin) to do the same thing, but its returned value is a string.]

Argument(s): a is a positive integer; k is optional, and k > 2. Default k is 2. Default len is 0, it
means as # 0, but if len > 0 and len > s+ 1, len — s — 1 zeros should be added at the beginning

of returned value.

Returned Value: v = [as as—1 -+ a; ag).

stp Object

Here we would like to introduce the functions for stp object.

1.

M = stp(A)

Description: stp class constructor.
Argument(s): Matrix A.
Returned Value: stp object M.

Since stp object is a simple wrapper, more usage could be found in the examples in Section 3.

2.3

1m Object

Now we will introduce the functions for logical matrices or 1m object.

1.

M =1m(A) or M =Im(v,n)
Description: 1m class constructor.

Argument(s): i) Logical matrix A; ii) vector v = [v1 v2 --- v,] and positive integer n satisfying
0<wv;<n, 1<i<p. (Case i, refer to Definition 1.4 and Example 1.6; Case ii, Im.n = n, Im.v =
v.)

Returned Value: 1m object M.

10.

. C =1Isp(A,B)

Description: The function performs the semi-tensor product of logcial matrices A and B.
Argument(s): A, B are 1m objects. (refer to Definition 1.4 and Remark 1.5 for the structure.)
Returned Value: C = A x B is an 1m object.

. C= lspn(AhAQv e 7A7L)

Description: The function performs the semi-tensor product of logical matrices Ay, Aa, -+ , A,.
Argument(s): A, -+, A, are 1m objects. (refer to Definition 1.4 and Remark 1.5 for the struc-
ture.)

Returned Value: C = x}_; A; is an 1m object.

M = leye(n)

Description: The function produces an n x n identity matrix.
Argument(s): Positive integer n.

Returned Value: 1m object M.

. M =1Imn(k)

Description: The function produces the structure matrix of negation for k-valued logic (k > 2).
Argument(s): k is optional, default k is 2.
Returned Value: 1m object M.

. M =Imc(k)

Description: The function produces the structure matrix of conjunction for k-valued logic (k > 2).
Argument(s): k is optional, default & is 2.
Returned Value: 1m object M.

M = lmd(k)
Description: The function produces the structure matrix of disjunction for k-valued logic (k > 2).

Argument(s): k is optional, default & is 2.
Returned Value: 1m object M.

. M =1Imi(k)

Description: The function produces the structure matrix of implication for k-valued logic (k > 2).
Argument(s): k is optional, default & is 2.
Returned Value: 1m object M.

. M =lme(k)

Description: The function produces the structure matrix of equivalance for k-valued logic (k > 2).
Argument(s): k is optional, default k is 2.

Returned Value: 1m object M.

M = lmr(k)

Description: The function produces the power-reducing matrix for k-valued logic (k > 2).

Argument(s): k is optional, default % is 2.
Returned Value: 1m object M.

11. M =Imu(k)

Description: The function produces the dummy matrix for k-valued logic (k > 2). The dummy
matrix M satisfies the following property

MXY =Y, VX,Y €D,

Argument(s): k is optional, default k is 2.
Returned Value: 1m object M.

12. M = Imrand(m,n)
Description: The function produces an m x n logical matrix randomly.
Argument(s): Positive integers m and n. n is optional, default n is m.
Returned Value: 1m object M.

13. M = lwij(m,n)
Description: The function produces an mn X nn swap matrix.
Argument(s): Positive integers m and n. n is optional, default n is m.

Returned Value: 1m object M.

14. M = randlm(m,n)

Description: Alias function of Imrand.

More usage on 1m object please find in the examples in Section 3.

3 Examples

Some examples which illustrate the basic usages are listed below with codes, and more examples could
be found in the toolbox.

1 |% This example is to show how to perform semi—tensor product

3|x =[1 23 —1];
aly = [2 1]

5 |rl = sp(x,y)

6 |% rl = [5, 3]

7

s|x = [2 1];

9o ly =1[1 23 —1]7%

10 |r2 = sp(x,y)

11 |% r2 = [5; 3]
12

13lx =121 1;
14 231 2
15 321 0];
w6 |y = [1 —2;

17 2 —1];

18 |13 = sp(x,y)

19 |rd = spl(x,y)

20 |% 13 = 14 = [3,4,—-3,-5:4,7,—-5,-8;5,2, -7, —4]
21
22 [15 = sp(sp(x,y),y)

23 |16 = spn(x,y,y)

24 [% 15 = 16 = [~3,-6,-3,-3;-6,-9,—-3,-6;-9,—6,—3,0]

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

% This example is to show the usage of stp class.
% Many useful methods are overloaded for stp class, thus you can use stp object as

double.
x=[121 1;

231 2;

321 0];
y=1[1 -2

2 —1];

% Covert x and y to stp class
a = stp(x);
stp (y);

o
Il

% mtimes method is overloaded by semi—tensor product for stp class

c0 = spn(x,y,y)
¢ = axbxb, class(c)

% Convert an stp object to double
cl = double(c), class(cl)

% size method for stp class
size (c)

% length method for stp class
length (c)

% subsref method for stp class

c(1l,:)

% subsasgn method for stp class
c(1,1) =3

% This example is to show the usage of lm class.

% Many methods are overloaded for lm class.

% Consider classical (2—valued) logic here
k = 2;

T = lm(1,k); % True
= Im(k,k); % False

e5|
\

% Given a logical matrix, and convert it to lm class
A=1[1 00 0;
011 1]
M = Im(A)
% or we can use
%M=1m([1 2 2 2], 2)

% Use m—function to perform semi—tensor product for logical matrices
rl = Ispn(M,T,F)

% Use overloaded mtimes method for Im class to perform semi—tensor product
r2 = MxTxF

% Create an 4—by—4 logical matrix randomly
M1 = lmrand (4)
% M1 = randlm (4)

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

% Convert an lm object to double
double (M1)

% size method for Im class
size (M1)

% diag method for lm class
diag (ML)

% Identity matrix is a special type of logical matrix
13 = leye(3)

% plus method is overloaded by Kronecher product for lm class
r3 = Ml 4+ 13

% Alternative way to perform Kronecher product of two logical matrices

r4 = kron(M1,13)

% Create an lm object by assignment
M2 = Im;

M2.n = 2;

M2v = [1 1 2 2];

M2

% This example is to show how to use vector form of logic to solve the following

question :

% A said B is a liar, B said C is a liar, and C said A and B are both

the liar?
% Set A: A is honest, B: B is honest, C: C is honest

k = 2; % Two—valued logic

MC = Imc(k); % structure matrix for conjunction
ME = lme(k); % structure matrix for equivalance
MN = Imn(k); % structure matrix for negation
MR = lmr(k); % power—reducing matrix

% The logical expression can be written as
logic_expr = ’(A=!B)&(B=!C)&(C=(!A&!B)) ’;

% where = is equivalance, & is conjunction, and ! is negation

% convert the logic expresson to its matrix form
matrix_expr = lmparser(logic_expr);

% then obtain its canonical matrix form

expr = stdform (matrix_expr);

% calculate the structure matrix

L = eval (expr)

% The uniqe solution for Lxx=[1 0]"T is x=[0 0 0 0 0 1 0 0] T:=8[6]
sol = v2s(lm(6,8))

% One can see sol=[0 1 0], which means only B is honest, A and C are

liars. Who is

liars.

% Examples for Boolean network

% Initializing
k = 2;

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

options =

[1;

% Please note t
as a logica
% The following

ME = Ime(k); %
MI = Imi(k); %
MD = Imd(k); %
MN = Imn(k); %
MR = lmr(k); %
MC = Imc(k); %

MX = Im([2 1 1

hat defined

1 matrix ,

in this toolbox any variable intialized with capital M is
it

s are some commonly used logical

otherwise will be considered as logical vector.
matrices

equivalence

implicaiton

disjunction

negation

power—reducing matrix

conjunction

2], 2); % xor

% choose a number from 1-5 to select a Boolean network

n = 3;

switch n
case 1
% Dynamics of Boolean network
% A(t+1) = MCxB(t)*C(t)
% B(t+1) = MN*A(t)
% C(t+1) = MD«B(t)*C(t)
% Set X(t)=A(t)B(t)C(t), then
eqn = MC B CMN AMD B C’;
case 2
% Dynamics of Boolean network
% A(t+1) = MCxB(t)*C(t)
% B(t+1) = MN*A(t)
% C(t+1) = B(t)
eqn = 'MC B C MN A B’;
case 3
% Dynamics of Boolean network
% E(t+1) = MX«E(t)*I(t)

% H(t+1) = MX«F(t)=*H(t)
% F(t+1) = MX«F(t)*J(t)
% 1(t+1) = MX«G(t)*I(t)
% G(t+1) = MX«G(t)*MX«F (t)«H(t)
% J(t+1) = MX«MX«E(t)*I(t)*J(t)
% Set X(t)=E(t)H(t)F(t)I(t)G(t)J(t), then
if k # 2
error (’This example is only for the case k=2.7);
end
eqn = 'MXE I MXFHMXF JMXGIMXGMXFHMKMXETI J ’;
% set the variables’ order, otherwise they will be sorted in the dictionary
order
options = lmset (’vars’ ,{'E’,’H’,’F’,’1’,’G’,’J"});

case 4

% Dynamics of Boolean network

% A(t+1) = MN«MI*K(t)*H(t)
% B(t+1) = MN«MIxA(t)*C(t)
% C(t+1) = MI«sD(t)*I(t)

% D(t+1) = MCxJ (t)*K(t)

% E(t+1) = MI«C(t)=*F(t)

% F(t+1) = MN«MI<E(t)*G(t)
% G(t+1) = MN«MCx+B(t)«E(t)
% H(t+1) = MN«MIxF(t)«G(t)
% 1(t+1) = MN«MIxH(t)*I(t)
% J(t+1) = J(t)

% K(t+1) = K(t)

% Set X(t)=A(t)B(t)C(t)D(t)E(t)F(t)G(t)H(t)I(t)J(t)K(t), then

10

63 eqn = MNMIKHMNMIACMIDIMCJKM CFMI M EGMI M:BEMN M F G
MNMIHI JK?;

64 case 5

65 % Dynamics of Boolean network

66 % A(t+1) = MN«MD«C(t)*F(t)

67 % B(t+1) = A(t)

68 % C(t+1) = B(t)

69 % D(t+1) = MC«MC*MN« I (t) «VN«C(t) «MN+F (t)

70 % E(t+1) = D(t)

71 % F(t+1) = E(t)

72 % G(t+1) = MN«MD«F (t)*1(t)

73 % H(t+1) = G(t)

74 % I(t+1) = H(t)

75 % Set X(t)=A(t)B(t)C(t)D(t)E(t)F(t)G(t)H(t)I(t), then
76 eqn = MNMDCF ABMCMCMN I MNCMNF DEMNMDF I G H’;
77 otherwise

78 return

79 | end

80
81 |% Convert the equation to a canonical form
s2 | [expr,vars] = stdform (eqn,options ,k);

83
84 |% Calculate the network transition matrix
85 |L = eval (expr)

86
87 |% Analyze the dynamics of the Boolean network
88 | [n,1,c,r0,T] = bn(L,k);

89
90 | fprintf (’Number of attractors: %d\n\n’,n);

o1 | fprintf(’Lengths of attractors:\n’);

92 | disp (1)}

93 | fprintf(’\nAll attractors are displayed as follows:\n\n’);
94 | for i=1l:length(c)

95 fprintf(’No. %d (length %d)\n\n’,i,1(i));

96 disp (c{i});

97 | end

98 | fprintf(’Transient time: [r0, T] = [%d %d]\n\n’,r0,T);
References

[1] D. Cheng, Matriz and Polynomial Approach to Dynamics Control Systems, Beijing: Science Press,
2002.

[2] D. Cheng, H. Qi, Semi-tensor Product of Matrices — Theory and Applications, Beijing: Science
Press, 2007. (Second Edition, 2011, Both in Chinese)

[3] D. Cheng, Sime-tensor product of matrices and its applications — A survey, Proc. ICCM 2007,
Higher Education Press, Hangzhou, 641-668, 2007.

[4] D. Cheng, H. Qi, Z.Q. Li, Analysis and Control of Boolean Networks: A Semi-tensor Product Ap-
proach, London: Springer, 2011.

[5] D. Cheng, H. Qi, Y. Zhao, An Introduction to Semi-tensor Product of Matrices and Its Applications,
Singapore: World Scientific, 2012.

11

	Introduction
	Functions and Objects
	Basic Functions
	stp Object
	lm Object

	Examples
	References

