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Boolean Gossip Networks
Bo Li, Junfeng Wu, Hongsheng Qi, Member, IEEE, Alexandre Proutiere, and Guodong Shi , Member, IEEE

Abstract— This paper proposes and investigates a Boolean
gossip model as a simplified but non-trivial probabilistic Boolean
network. With positive node interactions, in view of standard the-
ories from Markov chains, we prove that the node states asymp-
totically converge to an agreement at a binary random variable,
whose distribution is characterized for large-scale networks by
mean-field approximation. Using combinatorial analysis, we also
successfully count the number of communication classes of the
positive Boolean network explicitly in terms of the topology of the
underlying interaction graph, where remarkably minor variation
in local structures can drastically change the number of network
communication classes. With general Boolean interaction rules,
emergence of absorbing network Boolean dynamics is shown to
be determined by the network structure with necessary and
sufficient conditions established regarding when the Boolean
gossip process defines absorbing Markov chains. Particularly,
it is shown that for the majority of the Boolean interaction
rules, except for nine out of the total 216 − 1 possible nonempty
sets of binary Boolean functions, whether the induced chain is
absorbing has nothing to do with the topology of the underlying
interaction graph, as long as connectivity is assumed. These
results illustrate the possibilities of relating dynamical properties
of Boolean networks to graphical properties of the underlying
interactions.

Index Terms— Boolean networks, gossiping process, Markov
chains, communication classes.

I. INTRODUCTION

A. Background

AVARIETY of random network dynamics with nodes
taking logical values arises from biological, social, engi-

neering, and artificial intelligence systems [1]–[4]. In the
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1960s, Kauffman introduced random Boolean iteration rules
over a network [1] to describe proto-organisms as randomly
aggregated nets of chemical reactions where the underlying
genes serve as a binary (ON-OFF) device. Inspired by neuron
systems, the so-called Hopfield networks [2] provided a way
of realizing collective computation intelligence, where nodes
having binary values behave as artificial neurons by a weighted
majority voting via random or deterministic updating. Rumors
spreading over a social network [3] and virus scattering over a
computer network [4] can be modeled as epidemic processes
with binary nodes states indicating whether a peer has received
a rumor, or whether a computer has been infected by a type
of virus.

Boolean dynamical networks, consisting of a finite set of
nodes and a set of deterministic or random Boolean inter-
action rules among the nodes, are natural and primary tools
for the modeling of the above node dynamics with logical
values. The study of Boolean networks received considerable
attention for aspects ranging from steady-state behaviors and
input-output relations to limit cycle attractors and model
reduction, e.g., [5]–[15]. It has been well understood that
deterministic Boolean rules are essentially linear in the state
space [5], [10], while probabilistic Boolean networks are
merely standard Markov chains [6], [11]–[15]. There how-
ever exist fundamental challenges in establishing explicit and
precise theoretical results due to computation complexity
barriers [16] and the lack of analytical tools.

In this paper, we propose and study a randomized Boolean
gossip process, where Boolean nodes pairwise meet over an
underlying graph in a random manner at each time step, and
then the two interacting nodes update their states by random
logical rules in a prescribed set of Boolean operations.

B. The Model

We consider n nodes indexed by the set V = {1, . . . , n}.
The underlying interaction structure of the network is modeled
by an undirected graph G = (V, E), where E is the edge
set with each entry being an unordered pair of two distinct
nodes in V. The set Ni = {j : {i, j} ∈ E} represents the
neighbourhood of node i. Throughout our paper we assume
that the graph G = (V, E) is connected.

Time is slotted at t = 0, 1, . . .. Node interactions follow a
random gossip process [17], where independently at each time
t ≥ 0, a pair of nodes i and j with {i, j} ∈ E is randomly
selected over the graph. Each node i holds a binary value from
the set {0, 1} at each time t, denoted xi(t). Note that, there are
a total of 16 Boolean functions with two arguments mapping
from {0, 1}2 to {0, 1}. Using hexadecimal numbers, we index
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Fig. 1. The 16 Binary operators mapping from {0, 1}2 to {0, 1}. Each diagram visualizes a Boolean mapping: the first column represents values of the first
argument (in black); the second column represents values of the second argument (in red); the third column (in blue) represents the outcome of the operation
following the direction of the same type of lines. For example, the first diagram reads as 0 �0 0 = 0, 0 �0 1 = 0, 1 �0 0 = 0, 1 �0 1 = 0.

these functions in the set (see Fig. 1)

H := {�0, . . . ,�9,�A, . . . ,�F},
where1 each �k specifies a binary Boolean function in the
way that a �k b is the value of the function with argu-
ments (a, b). Let C �= ∅ be a subset of H specifying
potential node interaction rules along the edges. Let q :=
|C| be the cardinality of the set C. We index the elements
in C by

�C1 , . . . ,�Cq .

Suppose the node pair {i, j} is selected at time t. Introduce
pkl > 0 for 1 ≤ k, l ≤ q, satisfying

∑

k,l

pkl = 1. At time t,

nodes i and j jointly choose (�Ck
,�Cl

) ∈ C × C with
probability pkl. Under such a choice, the evolution of xm(t)
is determined by

⎧
⎪⎨

⎪⎩

xi(t + 1) = xi(t) �Ck
xj(t),

xj(t + 1) = xj(t) �Cl
xi(t),

xm(t + 1) = xm(t), m /∈ {i, j}.
(1)

C. Induced Markov Chain

Let Xt = (x1(t), . . . , xn(t)), t = 0, 1, . . . be the random
process driven by the gossip algorithm and the Boolean
rules (1). This random process Xt, t ≥ 0 defines a 2n-state
Markov chain MG(C) = (Sn, P ), where

Sn =
{
[s1 . . . sn] : si ∈ {0, 1}, i ∈ V

}

1These Boolean functions have their respective names, for which we refer
to [30].

is the state space, and P is the state transition matrix. Then
the state transition matrix P is given by

P =
[
P[s1...sn][q1...qn]

] ∈ R
2n×2n

with its rows and columns indexed by the elements in Sn, i.e.,

P[s1...sn][q1...qn] := P

(
Xt+1 = [q1 . . . qn]

∣
∣
∣Xt = [s1 . . . sn]

)
.

D. Related Work

The proposed randomized Boolean gossip model appar-
ently cover the classical gossip process [17]–[20] as a
special case. The process (1) is also a special case of the
probabilistic Boolean network model [7], [8], where random
Boolean interactions are posed pairwise. Therefore conceptu-
ally the model (1) under consideration can certainly be placed
into the studies of general probabilistic Boolean networks,
e.g., [9], [12], [13]. Since the node interaction rules can be an
arbitrary set of Boolean functions, this Boolean gossip model
is a useful approximation or generalization to existing charac-
terizations to gene regulation [1], social opinion evolution [3],
and virus spreading [4].

Gene Regulation: The evolution of gene expressions can
be naturally described as a dynamical system where the
two quantized levels, ON and OFF, are represented by logic
states 1 and 0, respectively. Each gene normally would only
interact with a small number of neighbouring genes.2 There-
fore, the proposed Boolean gossip network model at least
serves as a good approximation for gene regulator networks,

2Such number is two or three in Kauffman’s original proposal [1].
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where a pair of genes interact at any given time and the
Boolean function rules C describe random outcomes of the
interactions.

Social Voting: Social peers hold binary opinions for certain
political or economical issues, where 1 represents a supportive
opinion and 0 represents a non-supportive one. Peers meet
with each other in pairs randomly and exchange their opinions.
The two peers independently decide their opinions after the
meeting; the Boolean function rules C describe how they might
revise their opinions.

Virus Spreading: Virus spreading across a computer net-
work can be modeled as a Boolean network, where 0 and
1 represent infected and healthy computers, respectively [4].
The proposed Boolean gossip process may characterize more
possibilities for two computers during an interaction: two com-
puters, infected or not, are both infected (�1); two computers,
infected or not, are both cured (�F ), etc.

The graphical nature of the model (1) makes it possible to go
beyond these existing work [9], [12], [13] for more direct and
explicit results. Additionally, majority Boolean dynamics [27]
and asynchronous broadcast gossiping [28] are related to the
model (1) in the way that they describe Boolean interactions
between one node and all its neighbors at a given time
instant, in contrast to the gossip interaction rule which happens
between one node and one of its selected neighbors.

E. Contributions and Paper Organization

The proposed random Boolean gossip model is fully deter-
mined by the underlying graph G and the Boolean interaction
set C. Classical (deterministic or probabilistic) Boolean net-
works also have graphical characterization [7] where a link
appears if the state of the end nodes depend on each other in
the Boolean updating rules. To the best of our knowledge, few
results have been obtained regarding how the structure of the
interaction graph influences detailed network state evolution
in the study of Boolean networks.

First of all, we study a special network where the Boolean
interaction rules in the set C do not involve the negation,
which is termed positive Boolean networks. Using standard
theories from Markov chains, we show that the network
nodes asymptotically converge to a consensus represented
by a binary random variable, whose distribution is studied
for large-scale networks in light of mean-field approximation
methods. Moreover, by combinatorial analysis the number of
communication classes of positive Boolean networks is fully
characterized with respect to the structure of the underlying
interaction graph G, where surprisingly local cyclic structures
can drastically change the number of communication classes
of the entire network.

Next, we move to general Boolean interaction rules and
study the relation between emergence of absorbing network
Boolean dynamics and the network structure. Necessary and
sufficient conditions are provided for the induced Markov
process MG(C) to be an absorbing chain. Interestingly, for the
majority of the Boolean interaction rules, except for nine of the
216 − 1 possible nonempty sets of binary Boolean functions,
whether the induced chain is absorbing does not rely on the

network topology as long as the underlying graph is connected;
for the remaining nine sets of binary Boolean functions,
absorbing property of the induced chain is fully determined
by whether the underlying graph G contains an odd cycle.

The remainder of this paper is organized follows. Section II
investigates positive Boolean dynamics in terms of steady-state
distribution and communication classes. Section III further
studies general Boolean dynamics with a focus on how the
interaction graph determines absorbing Markov chains along
the random Boolean dynamics. Finally Section IV concludes
the paper with a few remarks. A notation table is provided
in the Appendix B.

II. POSITIVE BOOLEAN GOSSIPING

In this section, we consider a special case where the
Boolean interaction rules in the set C do not involve the
negation ¬. Note that conventionally “∧” represents Boolean
“AND” operation, while “∨” represents Boolean “OR” oper-
ation. We term such types of Boolean interaction as positive
Boolean dynamics, and define

Cpst = {∨,∧}
as the set of positive Boolean functions. Let us denote
�C1 = ∨ and �C2 = ∧.

A. State Convergence

Recall that a state in a Markov chain is called absorbing if it
is impossible to leave this state [26]. A Markov chain is called
absorbing if it contains at least one absorbing state and it is
possible to go from any state to at least one absorbing state
in a finite number of steps. In an absorbing Markov chain,
the non-absorbing states are called transient.

It is not hard to find that the Markov chain MG(Cpst) is
an absorbing chain with [0 . . . 0] and [1 . . . 1] being the two
absorbing states. Let Ik denote the k-by-k identity matrix for
any integer k. The state transition matrix P therefore will have
the form

P =
[

I2 0
R Q

]

,

where the I2 block corresponds to the two absorbing states
[0 . . . 0] and [1 . . . 1], R is a (2n − 2) × 2 matrix describing
transition from the 2n−2 transient states to the two absorbing
states, and Q is a (2n − 2)× (2n − 2) matrix describing the
transition between the transient states.

Note that following the definition of P , the rows of the
matrix (I2n−2 − Q)−1R are indexed by the entries in Sn \
{[0 . . .0], [1 . . . 1]}, and the columns are indexed by [0 . . . 0]
and [1 . . . 1]. Let

[
(I2n−2−Q)−1R

]
X0[1...1]

be the X0-[1 . . .1]
entry of the matrix (I2n−2 − Q)−1R. We can conclude the
following result from standard theories for absorbing Markov
chains (see [26, Th. 11.6, p. 420]).

Proposition 1: Let X0 = X(0) ∈ Sn \ {[0 . . . 0], [1 . . .1]}.
There exists a Bernoulli random variable x∗ such that

P
(

lim
t→∞ xi(t) = x∗, for all i ∈ V

)
= 1.
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Fig. 2. A four-node cycle graph.

The limit x∗ satisfies

E{x∗} =
[
(I2n−2 − Q)−1R

]
X0[1...1]

.

B. Communication Classes

We continue to investigate the communication classes of
MG(Cpst). Recall that a state [s1 . . . sn] is said to be acces-
sible from state [q1 . . . qn] if there is a nonnegative integer t
such that P

(
Xt = [s1 . . . sn]

∣
∣ X0 = [q1 . . . qn]

)
> 0. It is

termed that [s1 . . . sn] communicates with state [q1 . . . qn] if
[s1 . . . sn] and [q1 . . . qn] are accessible from each other [26].
This communication relationship forms an equivalence relation
among the states in Sn. The equivalence classes of this relation
are called communication classes of the chain MG(Cpst). The
number of communication classes of MG(Cpst) is denoted as
χ

Cpst
(G). The following theorem provides a full characteriza-

tion to χ
Cpst

(G).
Theorem 1: There hold

(i) χ
Cpst

(G) = 2n, if G is a line graph;
(ii) χ

Cpst
(G) = m+3, if G is a cycle graph with n = 2m;

χ
Cpst

(G) = m + 2, if G is a cycle graph with
n = 2m + 1;

(iii) χ
Cpst

(G) = 5, if G is neither a line nor a cycle, and
contains no odd cycle;

(iv) χ
Cpst

(G) = 3, if G is not a cycle graph but contains an
odd cycle.

Established by constructive proofs that can overcome the
fundamental computational obstacle in analyzing large-scale
Boolean networks, Theorem 1 reveals how local structures can
drastically change the number of communication classes as a
global property of networks. The detailed proof of Theorem 1
has been put in the Appendix. Below we present a few
examples illustrating the statements of Theorem 1.

Example 1: Let the underlying graph G be the four-node
cycle graph as displayed in Figure 2. With the positive
Boolean rules Cpst, the state transition map of the induced
Markov chain is illustrated in Figure 3. Clearly the chain has
5 communication classes, consistent with Theorem 1.

Example 2: Let the underlying graph G be the four-node
graph containing a three-node cycle subgraph as displayed
in Figure 4. With the positive Boolean rules Cpst, the state
transition map of the induced Markov chain is illustrated
in Figure 5. In this case the chain has 3 communication
classes, again verifying Theorem 1.

Fig. 3. Full state transitions of the induced Markov chain by the positive
Boolean gossip process Cpst = {∨,∧} over the four-node cycle graph as
shown in Figure 2. States within the same communication class are marked
with the same color.

Fig. 4. A four-node graph consisting of a three-node cycle subgraph.

Fig. 5. Full state transitions of the induced Markov chain by the positive
Boolean gossip process Cpst = {∨,∧} over the four-node graph as shown
in Figure 4. States within the same communication class are marked with the
same color.

C. Continuous-Time Approximation

It has been clear from Proposition 1 that starting from
X0 ∈ Sn \ {[0 . . . 0], [1 . . .1]}, the limit of the node states
is fully characterized by

[
(I2n−2−Q)−1R

]
X0[1...1]

. However,
computing the exact value or even obtaining an approximation
for the matrix (I2n−2 −Q)−1R is difficult for large networks
due to the exponentially increasing dimension of the matrix.
In this subsection, using mean-field method [4], [25], we con-
struct a continuous-time differential equation to approximate
the behavior of X(t) for large scale networks (see [29] for
a detailed survey on differential equation approximations for
Markov chains). To this end, we assume that the xi(0) are
i.i.d Bernoulli random variables, and at time t the two selected
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nodes i and j update their states by independently3 selecting
∨ with some probability p∗ > 0.

1) Complete Graph: Define

δ(t) =
n∑

i=1

xi(t)/n

as the proportion of nodes that take value 1 at time t. Assume
the underlying network forms a complete graph. Let the edges
be selected uniformly at random at each time step. Denote δ(t)
as the expected value of δ(t), i.e., δ(t) = E{δ(t)}.

The density δ(t) evolves by the following rules:
• Let the two nodes in the selected pair {i, j} hold dif-

ferent values. When n is large, and the graph is com-
plete, this happens with an approximate probability 2δ(t)
(1−δ(t)). The value δ(t) will increase by 1/n if the two
selected nodes both use “∨” operations to update their
values, an event with probability p∗2. The value δ(t) will
decrease by 1/n if the two selected nodes both apply “∧”
operations, an event with probability (1 − p∗)

2.
• For all other cases, δ(t) is unchanged.
As a result, we conclude that

E{δ(t + 1) − δ(t)|δ(t)} ≈ 1
n

p∗2 · 2δ(t)(1 − δ(t))

− 1
n

(1 − p∗)
2 · 2δ(t)(1 − δ(t)).

(2)

For a complete graph with n nodes, V{δ(t)} = E{δ2(t)} −
E

2{δ(t)} can be considered very small for large n. We further
have

δ(t + 1) − δ(t) ≈ 1
n

p∗2 · 2δ(t)(1 − δ(t))

− 1
n

(1 − p∗)
2 · 2δ(t)(1 − δ(t)). (3)

Define s = t/n and δ̃(s) = δ(ns) = δ(t). Then, (3) can be
written as

δ̃(s + 1/n) − δ̃(s) ≈ 1
n

p∗2 · 2δ̃(s)(1 − δ̃(s))

− 1
n

(1 − p∗)
2 · 2δ̃(s)(1 − δ̃(s)) (4)

We can therefore approximate (4) for large n by the following
differential equation

d

ds
δ̃(s) = p∗2 · 2δ̃(s)(1 − δ̃(s))−(1−p∗)

2 · 2δ̃(s)(1−δ̃(s)),

(5)

whose solution reads analytically as

δ̃(s) =
δ̃(0)

(1 − δ̃(0))e2(1−2p∗)s + δ̃(0)
. (6)

Here δ̃(0) = δ(0) = δ0 is the mean of the i.i.d Bernoulli ran-
dom variables xi(0). Consequently, we establish the following
approximate equation for δ(t):

δ(t) =
δ0

(1 − δ0)e2(1−2p∗)t/n + δ0
. (7)

From (7), the following holds.

3Precisely, this means p11 = p2∗, p22 = (1 − p∗)2, p12 = p21 =
p∗(1 − p∗) in the dynamics (1).

Fig. 6. A complete graph with 1000 nodes is considered. The solid
lines are the approximate solution given by (7); the dashed lines are drawn
according to the simulated realization of the algorithm (1). The continuous-
time approximations match the numerical realizations rather precisely.

Conclusion: Assume G is a complete graph. For large
n, δ(t) approaches zero when p∗ < 1/2, and δ(t) approaches
one when p∗ > 1/2, as time tends to infinity.

To verify this conclusion, we give some numerical results.
Example 3: Consider a complete graph with n =

1000 nodes. Fix δ0 = 0.5, and we randomly distribute the
values of nodes according to δ0 = 0.5. For p = 0.49 and 0.51,
we let the nodes update their values randomly according
to (1), respectively. Each experiment is carried out over T =
160000 time steps, repeated for 2000 rounds. The average of
the resulting 2000 sample paths approximately give the density
of nodes with value one for every t. We compare the numer-
ical simulation with the approximate solution given by (7).
Figure 6 shows that (7) approximates the real process (1)
remarkably well.

2) Regular Graph: A regular graph is a graph where nodes
have equal degrees. Suppose node i is selected to initialize a
gossip interaction at time t. Because i is uniformly selected
from V, the probability that the selected node i is at state 1
is δ(t). If G is a regular graph with a random nature4 and
high node degrees where |Ni| = Θ(n), the distribution of the
random variable

∑
j∈Ni

xj(t)
|Ni|

will tend to have a similar distribution with
∑

j �=i xj(t)
n − 1

,

which is approximately a Bernoulli random variable with
mean δ(t). Therefore, δ(t) evolves following similar rule as
complete graphs, and the differential equation (7) will continue
to be a good approximation for high-degree regular graphs.

Example 4: Consider a regular graph of degree 500 with
n = 1000 nodes. We select p = 0.49 and δ0 = 0.5. Again
each experiment is carried out over T = 160000 time steps,

4This is to say, the distribution of the links should appear somehow
independently being close to the concentration of random regular graphs. The
approximation can be quite inaccurate for graphs like lattices.
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Fig. 7. A regular graph with 1000 nodes is considered where node degree
is 500 and p∗ = 0.49. The solid line is the approximate solution given
by (7) and the dashed line is drawn according to numerical simulation. We see
that (7) continues to be a good approximation of (1).

repeated for 2000 rounds. The average of the resulting
2000 sample paths allows us to obtain the approximate density
of nodes with value 1 for all t. Figure 7 shows that (7)
continues to provide an acceptable approximation of the real
process (1).

Remark: We have shown that Eq. (7) is a good mean-field
approximation for complete and regular graphs. As indicated
in [4], Erdős-Rényi random graph with average degree p(n−1)
approximates well regular graphs when n is large. Hence,
the equation (7) may also provide ap reasonable approxima-
tion for Erdős-Rényi random graph models. However, most
real-world networks are neither regular, nor behaving like
Erdős-Rényi random graphs. In future, it is worth exploring
acceptable approximations for more real-world like graphs,
such as scale-free networks.

III. GENERAL BOOLEAN DYNAMICS

In this section, we discuss the evolution of (1) under general
Boolean interaction set C ∈ 2H, where 2H denotes the set
containing all subsets of H. We are interested in how the
induced chain MG(C) relies on the underlying graph G and
the set of Boolean interaction rules C. Particularly, we would
like to see when MG(C) defines an absorbing chain.

Recall that absorbing states are the states that can never
be left once visited. Therefore, absorbing Markov chains
behave fundamentally different with non-absorbing chains. We
introduce two subsets of Boolean mappings:

B1 =
{
C �= {�A} ∈ 2H : {�A} ⊂ C ⊆ {�2,�3,�A,�B}}

and

B2 =
{
C ∈ 2H : {�2,�B} ⊆ C ⊆ {�2,�3,�A,�B}}.

We further let B := B1

⋃
B2.

Note that there are a total of nine elements in B. As we
show below, Boolean interaction rules in the set B lead
to drastically different influences to the absorbing property
of the induced chain, compared to the rules outside the
set B.

Fig. 8. Part of the state transitions of the induced Markov chain with
C = {�2,�3} for the underlying graph in Figure 4. The chain is absorbing
with seven absorbing states, which are displayed in red.

A. Main Results

We first establish a theorem revealing the connection
between the induced Markov chains of any two different
underlying graphs when connectivity is assumed.

Theorem 2: Suppose C ∈ 2H \ B. Then, for any two
connected graphs G1 and G2 over the node set V, MG1(C)
is an absorbing Markov chain if and only if MG2(C) is an
absorbing Markov chain.

In view of Theorem 2 and the fact that G is a con-
nected graph over a certain set V, whether MG(C) being
an absorbing chain is fully determined by the interaction
rule set C when C does not belong to B. Next, we present
the following theorem establishing a necessary and sufficient
condition for the induced chain to be absorbing when the
Boolean interaction rules come outside the set B.

Theorem 3: Suppose C ∈ 2H \ B. Then MG(C) is an
absorbing Markov chain if and only if one of the following
two conditions holds

(i) C ⊆ {�0,�1,�2,�3,�4,�5,�6,�7};
(ii) C ⊆ {�1,�3,�5,�7,�9,�B,�D,�F }.

When the interaction rules C indeed comes from the set B,
the following theorem further gives a tight condition on the
absorbing property of the induced chain. Specifically, if C is
one of the nine function sets in B, the topology of G fully
determines whether the induced chain is absorbing.

Theorem 4: Suppose C ∈ B. Then MG(C) is an absorbing
Markov chain if and only if G does not contain an odd cycle.

Note that, Theorem 2 can actually be inferred from
Theorem 3. Theorem 3 and Theorem 4 together present a
comprehensive understanding of the absorbing property of the
network Boolean evolution. Below we present two examples
illustrating the usefulness of Theorems 3 and 4.

Example 5: Consider again the graph G in Figure 4. With
the set of Boolean interaction rules being C = {�2,�3},
part of pthe transition map of the induced Markov chain is
illustrated in Figure 8. The chain is absorbing with seven
absorbing states: [0000], [1010], [1001] [1000], [0100], [0010],
and [0001]. This example is consistent with Theorem 3.(i).

Example 6: Let the underlying graph G be given in Figure 2.
Let the set of Boolean interaction rules be C = {�2,�B}. The
chain is absorbing as shown in Figure 9 with two absorbing
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Fig. 9. Part of the state transitions of the induced Markov chain with
C = {�2,�B} for the four-node cycle graph in Figure 2. There exist no
outgoing transitions from [1001] and [0110], revealing that they are absorbing
states.

Fig. 10. Part of the state transitions of the induced Markov chain with
C = {�2,�B} for the underlying graph in Figure 4, which already shows
that the chain cannot be absorbing.

states [1001] and [0110]. Note that, for clarity, Figure 9 do
not display all the state transitions. This example is consistent
with Theorem 4 as the graph does not contain an odd cyle.

Example 7: Let the underlying graph G be given in Figure 4,
and let the set of Boolean interaction rules continue to be
C = {�2,�B}. The chain is not absorbing as shown
in Figure 10, further confirming the conclusion drawn in
Theorem 4 as the graph contains an odd cyle. Note that, for
clarity, Figure 10 do not display all the state transitions.

B. Key Lemma

To simplify the discussion, we introduce some new
notations. For any S = [s1 . . . sn] ∈ Sn, we denote [S0] as
[s1 . . . sn0] ∈ Sn+1 and [S1] as [s1 . . . sn1] ∈ Sn+1. For any
a ∈ {0, 1}, denote a = 1 − a. We categorize the states into
the following five classes:

C1(G) = {[s1 . . . sn] : si = 0, 1 ≤ i ≤ n},
C2(G) = {[s1 . . . sn] : si = 1, 1 ≤ i ≤ n},
C3(G) = {[s1 . . . sn] : si �= sj for any edge {i, j} of G},
C4(G) = {[s1 . . . sn]: ∃i, j, k, s.t. {i, j} is an edge of G

and 0 = si = sj �= sk}, and
C5(G) = {[s1 . . . sn]: ∃i, j, k, s.t. {i, j} is an edge of G

and 1 = si = sj �= sk}.

We may simply write Ci instead of Ci(G) whenever this
simplification causes no confusion.

In this subsection, we establish a key technical lemma
regarding whether a state in the Ci can be an absorbing state
in terms of the selection of C.

Lemma 1:

(i) The state in C1 is an absorbing state if and only if
C ⊆ {�0,�1,�2,�3,�4,�5,�6,�7}.

(ii) The state in C2 is an absorbing state if and only if
C ⊆ {�1,�3,�5,�7,�9,�B,�D,�F }.

(iii) A state in C3 is an absorbing state if and only if C ⊆
{�2,�3,�A,�B}.

(iv) A state in C4 \ C5 is an absorbing state if and only if
C ⊆ {�2,�3}.

(v) A state in C5 \ C4 is an absorbing state if and only if
C ⊆ {�3,�B}.

(vi) A state in C5

⋂
C4 is an absorbing state if and only if

C ⊆ {�3}.

Proof:

(i) Note that [0 . . . 0] ∈ C1 is a state at which any two
nodes associated with a common edge must hold the
same value 0. According to the algorithm (1), [0 . . . 0]
is an absorbing state if and only if for any �i ∈ C there
holds 0�i 0 = 0. Thus, [0 . . . 0] is an absorbing state if
and only if C ⊆ {�0,�1,�2,�3,�4,�5,�6,�7}.

(ii) The proof is similar to that in (i), whose details are
omitted.

(iii) Let S ∈ C3, at which two nodes sharing a link must
hold different values. According to the structure of the
algorithmp (1), S is an absorbing state if and only if for
any �i ∈ C, 0�i 1 = 0 and 1�i 0 = 1. That is, S is an
absorbing state, if and only if C ⊆ {�2,�3,�A,�B}.

(iv) It is clear that S ∈ C4 \C5 is an absorbing state if and
only if for any �i ∈ C, there hold

0 �i 0 = 0, 0 �i 1 = 0, and 1 �i 0 = 1.

In other words, S is an absorbing state if and only if
C ⊆ {�2,�3}.
The proofs of the statements (v) and (vi) are similar to
that of (iv), which are, again omitted. �

C. Proof of Theorem 3

This subsection focuses on the proof of Theorem 3.
(Necessity.) Assume MG(C) is an absorbing Markov chain.

If both [0 . . . 0] ∈ C1 and [1 . . . 1] ∈ C2 are not absorbing,
any state in C4 or C5 cannot be absorbing as well according
to Lemma 1(i)-(ii)(iv)-(vi). This leaves the only possibility be
that at least one of the states in C3 is absorbing. Thus, C ⊆
{�2,�3,�A,�B} from Lemma 1(iii).

Next, we conclude that C can only be {�A} by
Lemma 1(i)-(ii) since C ∈ 2H \ B. When C = {�A},
according to Lemma 1, the only possible absorbing states are
states in C3. However, any state in C3 cannot be accessed by
any other states. This contradicts the assumption that MG(C)
is an absorbing chain. Therefore, we can only conclude that
either [0 . . . 0] ∈ C1 or [1 . . . 1] ∈ C2 is absorbing.
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If the state [0 . . . 0] is absorbing, we obtain

C ⊆ {�0,�1,�2,�3,�4,�5,�6,�7}
according to Lemma 1(i). While if [1 . . . 1] is absorbing,
we have

C ⊆ {�1,�3,�5,�7,�9,�B,�D,�F}
from Lemma 1(ii). This proves the necessity statement.
(Sufficiency.) We investigate a few cases.
• Let C ⊆ {�0,�1,�2,�3,�4,�5,�6,�7}. Then

[0 . . . 0] is absorbing by Lemma 1(i). We divide the case
into a few subcases:

1) If C
⋂ {�0,�1,�4,�5} �= ∅, there is a positive

probability that �i ∈ {�0,�1,�4,�5} is chosen.
Because 1 �i 0 = 0, any state other than [1 . . . 1]
can transit to state [0 . . . 0] in some finite steps with
a positive probability. If [1 . . . 1] is not absorbing,
then it will transit to some other state S with positive
probability. Finally state S will transit to the absorb-
ing state [0...0] with positive probability. Therefore,
no matter whether [1 . . . 1] is absorbing or not,
MG(C) is an absorbing Markov chain.

2) Let C
⋂{�6} �= ∅ and consider the update where �6

is always selected. Then for any state in C4 or C3,
two nodes with values 0 and 1 respectively will both
hold value 1 after the interaction, i.e., the network
state enters C5 or C2. Furthermore, for any state
in C5 or C2, two nodes both holding value 1 will
both hold 0 after the interaction. Thus, for all states
in C2, . . . ,C5, the number of nodes holding value
1 will be strictly decreasing if �6 is always present,
until the state transits to [0 . . . 0]. The chain MG(C)
is an absorbing Markov chain since we already
know [0 . . . 0] is an absorbing state.

3) Assume C = {�2} or C = {�2,�3} and let
�2 be chosen. Then any state in C2 or C5 will
transit to state in C4 \ C5 or C1 in some finite
steps. Thus, MG(C) is an absorbing Markov chain
because all states in C1, C3, C4 \C5 are absorbing
by Lemma 1.

4) If C = {�7} or C = {�3,�7}, we can use similar
discussion in 1) to conclude that any state other than
[0 . . . 0] can transit to state [1 . . . 1] in finite steps.
The chain MG(C) is an absorbing Markov chain.

5) Let C = {�2,�7} or C = {�2,�3,�7}. The
scenario is similar to 2), where any state can transit
to state [0 . . . 0] in finite steps.

6) If C = {�3}, all states are absorbing. Of course
MG(C) is an absorbing Markov chain.

• Assume C ⊆ {�1,�3,�5,�7,�9,�B,�D,�F }. The
proof is similar to the case above, whose details are
omitted.

The proof of Theorem 3 is now complete.

D. Proof of Theorem 4

In this subsection, we prove Theorem 4.
If G contains an odd cycle, C3 is empty. By Lemma 1,

no state in C1

⋃
C2

⋃
C4

⋃
C5 is absorbing.

As Sn = C1

⋃
C2

⋃
C3

⋃
C4

⋃
C5, no state is absorbing.

Thus, MG(C) is not absorbing. On the other hand, if G does
not contain an odd cycle, C3 is not empty consisting of two
elements. We proceed to prove by induction on the number n
of nodes that MG(C) is an absorbing Markov chain.

For n = 2, the conclusion holds straightforwardly. Assume
that MG(C) is absorbing for n = l. There must be a spanning
tree, denoted GT1 , of G. We further find a subtree GT2

of GT1 with GT2 containing l nodes of GT1 . Without loss
of generality, let GT2 contain nodes 1, . . . , l of G. By our
induction assumption, MGT2

(C) is absorbing.
Now any state in Sl+1 can be represented as [Su], where

S ∈ Sl and u ∈ {0, 1}. As MGT2
(C) is absorbing, there is

a positive probability that in finite steps S transits to a state
S∗ in C3(GT2). Because GT2 is a subgraph of GT1 , [Su] can
transit to [S∗u] in finite steps in MGT1

(C). There will be two
cases.

• If [S∗u] ∈ C3(GT1 ), for G contains no odd cycle,
[S∗u] ∈ C3(G). The proof is done.

• If [S∗u] /∈ C3(GT1 ), there must be some node j
associated with node l + 1 over graph GT1 . Because
C ∈ B, there is a positive probability that �A or �B

is chosen. Note that 0�A 0 = 1, 0�B 0 = 1, 1�A 1 = 0
and 1 �2 1 = 0. Thus, by (1), [S∗u] transits to [S∗u] with
positive probability in MGT1

(C). Moreover, [S∗u] ∈
C3(GT1). For G contains no odd cycle, [S∗u] ∈ C3(G)
leads to the desired result.

The proof of Theorem 4 is completed.

IV. CONCLUSIONS

We proposed and investigated a Boolean gossip model,
which may be useful in describing social opinion evolution as
well as serves as a simplified probabilistic Boolean network.
With positive node interactions, it was shown that the node
states asymptotically converge to a consensus represented by
a binary random variable, whose distribution was studied for
large-scale complete networks in light of mean-field approx-
imation methods. By combinatorial analysis the number of
communication classes of the positive Boolean network was
counted against the topology of the underlying interaction
graph. With general Boolean interaction rules, the emergence
of absorbing network Boolean dynamics was explicitly char-
acterized by the network structure. It turned out that local
structures in terms of existence of cycles can drastically change
fundamental properties of the Boolean network. In future,
it will be interesting to look into the possibility of extending
the graphical analysis established in the current work to multi-
state Boolean networks [14], [15] where each node may hold
a state from a finite set with more than two values.

APPENDIX A
PROOF OF THEOREM 1

For each n, we use Modn(i) to denote the unique integer
j satisfying 1 ≤ j ≤ n and i ≡ j mod (n). Recall that for
any a ∈ {0, 1}, we denote a = 1 − a.

We prove the statements of Theorem 1 in a few steps starting
with a few fundamental graphs.
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A. Line Graph

In this subsection we prove Theorem 1.(i) stating that
χ

Cpst
(G) = 2n when G is a line graph. Without loss of

generality we assume the edges of G are {i, i + 1} for
i = 1, . . . , n − 1. The proof is outlined as follows. We first
introduce the notion of L-reduced state for each state in Sn.
Then, we prove that any two states communicate with each
other if and only if their L-reduced states are identical. Finally,
we count the number of L-reduced states in the state space and
therefore obtain the number of communication classes.

Definition 1 (L-Reduced States): Let [s1 . . . sn] ∈ Sn.
There exists a unique partition of s1, . . . , sn into

s1 = . . . = si1 = r1, i1 ≥ 1;
si1+1 = . . . = si2 = r2, i2 > i1;

. . .

sid−2+1 = . . . = sid−1 = rd−1, id−1 > id−2;
sid−1+1 = . . . = sn = rd

such that ri �= ri+1 for all i = 1, . . . , d−1. Then [r1 . . . rd] :=
L([s1 . . . sn]) is termed the L-reduced states of [s1 . . . sn].

Note that the values of any two consecutive elements in an
L-reduced state are different. The following two lemmas hold.

Lemma 2: Suppose G is a line graph. Then L([s1 . . . sn])
is a subsequence of L([q1 . . . qn]) if [s1 . . . sn] is accessible
from [q1 . . . qn]. More precisely, denoting

L([s1 . . . sn]) = [r1 . . . rd], L([q1 . . . qn]) = [h1 . . . hd′ ]

there holds d ≤ d′, and moreover, there exist 1 ≤ τ1 < τ2 <
. . . < τd ≤ d′ such that ri = hτi for all i = 1, . . . , d.

Proof: By the definition of accessibility, there is a non-
negative integer t such that

P
(
Xt = [s1 . . . sn]

∣
∣ X0 = [q1 . . . qn]

)
> 0.

First we assume t = 1. According to the structure of (1),
either [s1 . . . sn] = [q1 . . . qn], or there is u ∈ {1, . . . , n} such
that su �= qu and si = qi for all i �= u. The desired conclusion
obviously holds if [s1 . . . sn] = [q1 . . . qn]. For the latter case,
there is qv with v = u + 1 or v = u − 1 such that qu �= qv.
Consequently, the two states [s1 . . . sn] and [q1 . . . qn] differ
with each other only at su and qu and satisfy

su �= qu, su = sv, qu �= qv.

Then it is easy to verify that L([s1 . . . sn]) is a subsequence
of L([q1 . . . qn]) from the definition of L-reduced states.

Now we proceed to let t = 2. There will be a state
[w1 . . . wn] such that [s1 . . . sn] is one step accessible from
[w1 . . . wn], and [w1 . . . wn] is one step accessible from
[q1 . . . qn]. Utilizing the above understanding for the case
with t = 1 we know L([s1 . . . sn]) is a subsequence
of L([w1 . . . wn]) and L([w1 . . . wn]) is a subsequence of
L([q1 . . . qn]), which in turn imply L([s1 . . . sn]) is a sub-
sequence of L([q1 . . . qn]). Therefore the desired conclusion
holds for t = 2. Apparently the argument can be recursively
carried out and the result holds for arbitrary integer t. We have
now completed the proof of the lemma. �

Lemma 3: Let G be a line graph and consider S =
[s1 . . . sn], Q = [q1 . . . qn] ∈ Sn. Then S and Q communicate
with each other if and only if they have identical L-reduced
states.

Proof: The necessity part of this lemma follows directly
from Lemma 2. In the following we focus only on the suffi-
ciency part. Let the identical L-reduced state of [s1 . . . sn] and
[q1 . . . qn] be [r1 . . . rl]. We carry out an induction argument
on l for any n ≥ l.

Let l = 1. Then [0 . . . 0]n and [1 . . . 1]n are the two possible
states for [s1 . . . sn] and [q1 . . . qn]. The desired conclusion
holds straightforwardly. Now assume:

Induction Hypothesis: The statement of the lemma holds
true for all l ≤ k and all n ≥ l.

We proceed to prove the statement for l = k+1 and n ≥ l.
Denote i1 = max{h : r1 = si, 1 ≤ i ≤ h} and j1 = max{h :
r1 = qi, 1 ≤ i ≤ h}. By symmetry we may assume i1 ≤ j1
and we use the following two observations:

a) The state [q1 . . . qn] communicates with the state

[q1 . . . qi1qi1+1 . . . qj1qj1+1 . . . qn]

by the definition of j1.
b) The two states [qi1+1 . . . qj1qj1+1 . . . qn] and

[si1+1si1+2 . . . sn] have the same L-reduced state
[r2 . . . rl]. Therefore by our induction hypothesis,
[qi1+1 . . . qj1qj1+1 . . . qn] and [si1+1 . . . sn] communicate
with each other, which in turn yields that [s1 . . . sn]
communicates with

[q1 . . . qi1qi1+1 . . . qj1qj1+1 . . . qn].

Combining a) and b) we immediately know that [s1 . . . sn]
communicates with [q1 . . . qn]. By the principle of mathemat-
ical induction we have completed the proof of the lemma. �

We are now ready to count the number of communication
classes for the line graph, which equals to the number of
L-reduced states according to Lemma 3. For each m =
1, . . . , n, there are two different L-reduced states with length
m, i.e., [r1 . . . rm] with r1 = 0 or r1 = 1. Consequently, there
are a total of 2n different L-reduced states. This concludes the
proof for Theorem 1.(i).

B. Cycle Graph

In this subsection, we prove the case with G being a cycle
graph. Without loss of generality, let G be the cycle graph
with edges

{
i, Modn(i + 1)

}
, i = 1, . . . , n.

We introduce some useful notations that will be used
subsequently. For any k, we use σk to denote the permutation
on set {1, . . . , k} with σk(i) = Modk(i +1) for i = 1, . . . , k.
We further define Pσk

as a mapping over Sk by

Pσk
([s1 . . . sk]) = [sσk(1) . . . sσk(k)]

for all [s1 . . . sk] ∈ Sk. Intuitively, if we place these k nodes
uniformly on a cycle and denote the value of each node
on them, then the result of Pσk

on a state is obtained
by rotating all the values counterclockwise. We also define
a mapping f[k1,k2] over Sn by that for any [t1 . . . tn],



LI et al.: BOOLEAN GOSSIP NETWORKS 127

f[k1,k2]

(
[t1 . . . tn]

)
= [r1 . . . rn] with ri = ti for i �= k2 and

ri = tk1 for i = k2.
Definition 2 (K -Reduced States): Let [s1 . . . sn] ∈ Sn with

[r1 . . . rd] = L([s1 . . . sn]) being its L-reduced states. The
K -reduced states of [s1 . . . sn] ∈ Sn, denoted K ([s1 . . . sn]),
is defined as follows:

K ([s1 . . . sn]) =

⎧
⎪⎨

⎪⎩

[r1] if d = 1;
[r1 . . . rd] if d > 1 and rd �= r1;
[r1 . . . rd−1] if d > 1 and rd = r1.

Let |K (S)| be the number of digits in K (S) for S ∈ Sn.
According to the definition, the values of any two consecutive
elements of K -reduced states are different. Moreover, if there
are at least two entries of K -reduced states, the first entry
is different from the last one. The following lemma can be
established using a similar analysis as we used in Lemma 2.

Lemma 4: Suppose G is a cycle graph,
(i) |K (S)| is either 1 or an even integer;

(ii) If d is one or an even integer, then there is S ∈ Sn with
|K (S)| = d.

(iii) If S is accessible from T , then |K (S)| ≤ |K (T )|.
Lemma 5: Consider S, T ∈ Sn. If 1 < |K (S)| =

|K (T )| < n, then S and T communicate with each other.
Proof: Denote S = [s1 . . . sn] and T = [t1 . . . tn].

We prove this lemma in a few steps.
Step 1: We first prove that S communicates with P l

σn
(S) for

any integer l if |K (S)| < n. Note that if |K (S)| = 1, S must
be [0 . . . 0]n or [1 . . . 1]n. The claim holds straightforwardly.

Now we assume |K (S)| > 1. Since |K (S)| < n, the set

I := {i : si = sModn(i+1), 1 ≤ i ≤ n}
is nonempty. Moreover, because |K (S)| > 1, we can find
j ∈ I such that sModn(j+1) �= sModn(j+2). By the structure
of (1), the state f[Modn(j+2),Modn(j+1)](S) is accessible from
S. By the definition of j, there holds

f[j,Modn(j+1)]f[Modn(j+2),Modn(j+1)](S) = S.

That is to say, the state S is accessible from

f[Modn(j+2),Modn(j+1)](S).

Therefore, S communicates with f[Modn(j+2),Modn(j+1)](S).
Applying this argument recursively, we obtain that S commu-
nicates with

f[Modn(j+n),Modn(j+n−1)] . . . f[Modn(j+2),Modn(j+1)](S),

a state equal to Pσn(S). It is then convenient to conclude that
S communicates with P l

σn
(S) for any integer l.

Step 2: In this step, we prove that if S = [s1 . . . sn] and
T = [t1 . . . tn] have identical K -reduced states, then S and T
communicate with each other. Let K (S) = K (T ) = [c1 . . . cd].
If d = 1 or n, it is easy to see S = T . Now assume 1 < d < n.

Because d > 1, the sets {i : si �= s0} and {i : ti �= t0} are
not empty. Denote j1 = max{i : si �= s0}, and j2 = max{i :
ti �= t0}. Without loss of generality we assume j1 > j2.
Apparently T communicates with f[j2,j2+1](T ). Further we
know that T communicates with

T ∗ = [t∗1 . . . t∗n] := f[j1−1,j1] . . . f[j2+1,j2+2]f[j2,j2+1](T ).

Moreover, we can conclude that j1 = max{i : t∗i �= t∗0},
and T ∗ and T have the same K -reduced state. So T ∗ and
S have the same K -reduced state. By the definition of K -
reduced state and the fact that j1 = max{i : si �= s0} =
max{i : t∗i �= t∗0}, we know that the L-reduced state of S is
equal to the L-reduced state of T ∗. Define a new line graph G̃,
whose nodes are the nodes of G with edges being {i, i+1} for
i = 1, . . . n−1. According to Lemma 3, S also communicates
with T ∗ in MG̃(Cpst). Therefore, S communicates with T ∗

in MG(Cpst), because G̃ is a subgraph of G. Thus, S and T
communicate with each other.

Step 3: This step will complete the proof.
Let d = |K (S)|. If K (S) = K (T ), we have known that S

and T communicate with each other. We only need to consider
the case K (S) �= K (T ). Because |K (S)| = |K (T )|, there must
hold that K (T ) = Pσd

(K (S)). For d > 1, the set {i : si �= s0}
is nonempty. Define j = min{i : si �= s0}. According
to Step 1, S communicates with P j−1

σn
(S). By the defini-

tion of K -reduced states, we know that the K -reduced state
of P j−1

σn
(S) is Pσd

(K (S)), i.e., K (T ). Therefore, P j−1
σn

(S)
communicates with T , implying that S communicates
with T . �

Now, we are ready to count the number of communication
classes. According to Lemma 4, the digit number d of the
K -reduced states of all the states in the same communication
class are identical. Moreover, d can be 1 or even numbers.
If n = 2m, there are three cases:

(i) For d = 1, there are two communication classes
{[0 . . .0]} and {[1 . . . 1]}.

(ii) For each d = 2, 4, . . . , 2m − 2, according to Lemma 4
and Lemma 5, there is a unique communication class
whose elements have K -reduced with d digits.

(iii) For d = 2m, the two states S0 := [s1 . . . s2m] and
T0 := [s̄1 . . . s̄2m] with s2i−1 = 1 and s2i = 0 for
i = 1, . . . , m, are the only states whose K -reduced states
are of length 2m. Moreover, either S0 or T0 cannot be
accessible from any other state. That is to say, they form
two communication classes.

As a result, there are a total of m+3 communication classes.
We have completed the proof for the case n = 2m. The case
with n = 2m + 1 can be similarly analyzed, whose detailed
proof is omitted. This concludes the proof of Theorem 1(ii).

C. Star Graph

In this subsection, we prove that χ
Cpst

(G) = 5 if G is a
star graph with n(≥ 4) nodes. Note that a connected graph is
called a star graph if there is a node such that all the edges
of the graph contain this node. This particular node is called
the center node of the graph.

The following proposition characterizes the communication
classes for MG(Cpst) over a star graph G.

Proposition 2: Let G be a star graph with n(≥ 4) nodes.
Then χ

Cpst
(G) = 5. Moreover, letting node 1 be the center

node, the five classes are

F1
n = {[s1 . . . sn] : si = 0, 1 ≤ i ≤ n},

F2
n = {[s1 . . . sn] : si = 1, 1 ≤ i ≤ n},
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F3
n = {[s1 . . . sn] : s1 = 0, si = 1, 2 ≤ i ≤ n},

F4
n = {[s1 . . . sn] : s1 = 1, si = 0, 2 ≤ i ≤ n},

F5
n = {[s1 . . . sn] : ∃i, j, 2 ≤ i, j ≤ n, si = 0, sj = 1}.
Proof: Denote S

〈1〉
n , . . . , S

〈4〉
n as the singleton state in

F1
n, . . . ,F4

n, respectively. Moreover, any other state cannot be
accessible from S

〈1〉
n or S

〈2〉
n , while S

〈3〉
n or S

〈4〉
n cannot be

accessible from any other state. Thus, they do form commu-
nication classes, respectively. We only need to prove all the
elements in F5

n communicate with each other. We prove this
by induction.

First, let n = 4. There are 12 elements of F5
4, listed as

[0100], [0010], [0001], [0011], [0101], [0110], [1100], [1010],
[1001], [1011], [1101], [1110]. It is easy to verify that they are
in the same communication class.

Assume that for n = k ≥ 4, all the elements in F5
n

communicate with each other. Now we prove the case for
n = k + 1. Let G be a star graph with k + 1 nodes with
node 1 being its center node. Let G∗ be the subgraph of
G with nodes 1, . . . , k and all edges containing them in G.
In fact, G∗ is a star graph with k nodes. By our induction
assumption, all elements in F5

k communicate with each other
in MG(Cpst). Because G∗ is a subgraph of G, all elements
in A := {[S0] ∈ Sk+1 : S ∈ F5

k} communicate with each
other, and all elements in B := {[S1] ∈ Sk+1 : S ∈ F5

k}
communicate with each other.

Note that

F5
k+1 = A

⋃
B

⋃ {[S〈1〉
k 1], [S〈2〉

k 0], [S〈3〉
k 0], [S〈4〉

k 1]}.
Introduce U

〈a〉
k = [010 . . .0], U

〈b〉
k = [101 . . .1], U

〈c〉
k =

[001 . . .1] and U
〈d〉
k = [110 . . .0]. They are elements of F5

k.
It is easy to verify that [U 〈a〉

k 0] ∈ A is accessible from
[U 〈a〉

k 1] ∈ B. Moreover, [U 〈b〉
k 1] ∈ B is accessible from

[U 〈b〉
k 0] ∈ A. Therefore, all elements in A

⋃
B communicate

with each other.
It is straightforward to verify that [S〈2〉

k 0] communicates
with [S〈3〉

k 0]. Also, [U 〈c〉
k 0] ∈ A is accessible from [S〈3〉

k 0]

and [S〈2〉
k 0] is accessible from [U 〈b〉

k 0] ∈ A. Thus, all ele-
ments in A

⋃{[S〈2〉
k 0], [S〈3〉

k 0]} communicate with each other.

Moreover, [S〈1〉
k 1] communicates with [S〈4〉

k 1], [U 〈d〉
k 1] ∈ B

is accessible from [S〈4〉
k 1], and [S〈1〉

k 1] is accessible from
[U 〈a〉

k 1] ∈ B. Therefore, all elements in B
⋃{[S〈1〉

k 1], [S〈4〉
k 1]}

communicate with each other. Summarizing all these relations
we know all elements in

F5
k+1 = A

⋃
B

⋃ {[S〈1〉
k 1], [S〈2〉

k 0], [S〈3〉
k 0], [S〈4〉

k 1]}
communicate with each other. This completes the proof of this
proposition. �

D. Tree

The following result presents a characterization of the
number of communication classes for tree graph that is not
a line.

Proposition 3: Let G be a tree, having at least one node
with degree greater than 2, i.e., G is not a line graph.

Then χCpst
(G) = 5. The five communication classes can be

described as follows:
J1

n =
{
[s1 . . . sn] : si = 0, 1 ≤ i ≤ n

}
,

J2
n =

{
[s1 . . . sn] : si = 1, 1 ≤ i ≤ n

}
,

J3
n =

{
[s1 . . . sn] : s1 = 0, si �= sj for any edge {i, j}

of G
}

,
J4

n =
{
[s1 . . . sn] : s1 = 1, si �= sj for any edge {i, j}

of G
}

, and
J5

n =
{
[s1 . . . sn] : ∃i, j, k, s.t. {i, j} is an edge of G and

si = sj �= sk

}
.

Proof: It is straightforward to verify that any of J1
n, J2

n,
J3

n, J4
n contains a unique element, and forms a communication

class. We now prove J5
n is a communication class using an

induction argument.
For n = 4, G is a star graph which is proved

in Proposition 2. Now assume that this proposition holds for
n = l ≥ 4.

For any tree G with l+1 nodes that is not a line graph, there
is a subgraph G∗ with l nodes which is still a tree. Without
loss of generality, we denote the node not in G∗ as node v∗ =
l+1 ∈ V. We use v0 to denote the node with the highest degree
in G (If there are more than one such nodes, we just choose
one of them arbitrarily). There is a path (v0, v1, . . . , vh, v∗)
connecting node v0 and node v∗ in G, where h ≥ 0 is an
integer.

By the induction assumption, the communication classes of
MG∗(C) are J1

l , . . . ,J
5
l with each Jk

l defined by replacing
n with l in Jk

n. Denote A = {[S0] ∈ Sl+1 : S ∈ J5
l } and

B = {[S1] ∈ Sl+1 : S ∈ J5
l }. Note that

J5
l+1 = A

⋃
B

⋃ {[S〈1〉
l 1], [S〈2〉

l 0], [S〈3〉
l 0], [S〈4〉

l 1]}.
Because G∗ is a subgraph of G, all elements in A communi-
cate with each other, and all elements in B communicate with
each other. Note that if G∗ is a star graph with the vh being
the center node, G will be a star graph. This falls to the case
discussed in Proposition 2. We assume G∗ is not a star graph
for the remainder of the proof.

Introduce

U
〈a〉
l = [0 . . . 0 1

↑
vh

0 . . . 0], U
〈b〉
l = [1 . . . 1 0

↑
vh

1 . . . 1].

We have U
〈a〉
l , U

〈b〉
l ∈ J5

l . It is easy to verify that [U 〈a〉
l 1] ∈ B

is accessible from [U 〈a〉
l 0] ∈ A. Moreover, [U 〈b〉

l 0] ∈ A is
accessible from [U 〈b〉

l 1] ∈ B. Therefore, all elements in A
⋃

B
communicate with each other.

We further denote S
〈4〉
l = [γ1 . . . γl] and S

〈3〉
l = [β1 . . . βl],

and then U
〈c〉
l := [γ1 . . . γvh−1γvh

γvh+1 . . . γl],
U

〈d〉
l := [β1 . . . βvh−1βvh

βvh+1 . . . βl]. It is straightforward to
verify that [S〈1〉

l 1] communicates with [U 〈a〉
l 1] ∈ B, [S〈2〉

l 0]
communicates with [U 〈b〉

l 0] ∈ A, [S〈3〉
l 0] communicates with

[U 〈d〉
l 0] ∈ A, and [S〈4〉

l 1] communicates with [U 〈c〉
l 1] ∈ B.

Thus, any two elements in J5
l+1 communicate with each

other. �

E. Completion of the Proof

The statements (i) and (ii) in Theorem 1 have been proved
for the cases of line and cycle graphs. We are now in



LI et al.: BOOLEAN GOSSIP NETWORKS 129

a place to prove (iii) and (iv) based on our results for tree
graphs. According to Proposition 3, for tree graphs without
being a line graph, there are five communication classes J1

n,
J2

n, J3
n, J4

n and J5
n. Since any connected graph contains a

spanning tree, the communication classes of MG(Cpst) for
any connected graph G that is not a line or cycle, can only be
unions of the Jj

n, j = 1, . . . , 5.
Proof of Theorem 1(iii): Suppose G is neither a line graph

nor a cycle graph and it contains no odd cycle. There is
a spanning tree of G, denoted GT. For MGT(Cpst), J1

n,
J2

n, J3
n, J4

n and J5
n are communication classes. J1

n and J2
n

are absorbing states in G. Because there is no odd cycle,
J3

n and J4
n are the states that any pair of nodes associated with

a common edge G share different values. That is to say, J3
n and

J4
n cannot be accessible from any other states in MG(Cpst).

Thus, J1
n, J2

n, J3
n, J4

n and J5
n are still communication classes

in MG(Cpst), i.e. χ
Cpst

(G) = 5.
Proof of Theorem 1(iv): Now suppose G contains an odd

cycle. Again, there is a spanning tree GT of G. J1
n, J2

n, J3
n,

J4
n and J5

n are communication classes in MGT(C). Also, J1
n

and J2
n are absorbing states in MG(Cpst). For states in J3

n

and J4
n, there is an edge e∗ belonging to the odd cycle such

that the pair nodes of this edge take different values. Now,
by choosing another spanning tree G∗

T containing the edge e∗,
we can prove that elements in J3

n, J4
n and J5

n communicate
with each other in MG(Cpst). In turn, χ

Cpst
(G) = 3.

APPENDIX B
TABLE OF NOTATIONS

V The node set {1, . . . , n}
E The edge set with each entry being an

unordered pair of two distinct nodes in V
G The graph (V, E)
Ni The neighbourhood of node i, {j : {i, j} ∈ E}
xi(t) The binary value node i holds at time t
�k A binary Boolean function
H The set of all binary Boolean functions
C Potential node interaction rules along the

edges, subset of H
Xt The vector (x1(t), . . . , xn(t))
[s1 . . . sn] Any state for si ∈ {0, 1}
Sn State space

{
[s1 . . . sn] : si ∈ {0, 1}, i ∈ V

}

| · | The cardinality of a set or the number of
digits of a state

P Transition matrix between states whose
elements are represented by P[s1...sn][q1...qn]

MG(C) The Markov chain (Sn, P ) defined by random
process Xt, t ≥ 0

∧ Boolean “AND” operation
∨ Boolean “OR” operation
Cpst The set {∨,∧}
P(·) Probability of an event
E{·} Expectation of a random variable
V{·} Variation of a random variable
χ

Cpst
(G) The number of communication classes of

MG(Cpst)

δ(t) Proportion of nodes that take value 1 at time t
δ(t) The expected value of δ(t)
B1 The set {C �= {�A} :{�A}⊂C⊆{�2,�3,�A,�B}}
B2 The set {C ∈ 2H :{�2,�B}⊆C ⊆{�2,�3,�A,�B}}
B The set B1

⋃
B2
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