
1252 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 4, APRIL 2018

Partition-Based Solutions of Static Logical
Networks With Applications

Yupeng Qiao, Hongsheng Qi, Member, IEEE, and Daizhan Cheng, Fellow, IEEE

Abstract— Given a static logical network, partition-based
solutions are investigated. Easily verifiable necessary and
sufficient conditions are obtained, and the corresponding for-
mulas are presented to provide all types of the partition-based
solutions. Then, the results are extended to mix-valued logical
networks. Finally, two applications are presented: 1) an implicit
function (IF) theorem of logical equations, which provides
necessary and sufficient condition for the existence of IF and
2) converting the difference-algebraic network into a standard
difference network.

Index Terms— Difference-algebraic network, implicit function
(IF) theorem, partition-based solutions, semitensor product (STP)
of matrices, static logical network.

I. INTRODUCTION

THE pioneer work of neural networks was done by
McCulloch and Pitts in their famous paper “A log-

ical calculus of the ideas immanent in influential” [12].
It was pointed out in [13] that “Note only was the
McCulloch-Pitts model the first example of what would now
be called a neural network, it was the first attempt to under-
stand mental activity as a form of information processing—an
insight that provides the inspiration for artificial intelligence
and cognitive psychology alike.”

When introducing Kauffman’s work, which formulated
genetic networks as Boolean (or logical) networks, [13] men-
tioned that “the genetic networks and neural networks were
fundamentally the same thing.” From this, one sees easily
that Boolean network (or logical network) and neural network
are two closely related tools, used to formulate and simulate
genetic networks. But they may from different perspectives:
Boolean network from logical aspect and neural network from
numerical aspect.

This paper considers the static logical network �, and its
application to dynamic-algebraic logical networks. As a logical
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type of neural network, � is described as follows:

� :

⎧
⎪⎪⎨

⎪⎪⎩

ϕ1(ξ1, . . . , ξn) = c1
...

ϕs(ξ1, . . . , ξn) = cs

(1)

where ξ j ∈ D := {0, 1}, j = 1, . . . , n are logical variables,
ci ∈ D, i = 1, . . . , s are logical constants, ϕi : Dn → D,
i = 1, . . . , s are logical functions.

In this paper, we will first propose a Boolean matrix, called
the truth matrix of � and denoted by T� , instead of the truth
table used usually to characterize the network. Using it, the
following fundamental problems will be investigated.

A. Partition-Based Solutions

Consider a logical network �, as described in (1). A logical
relation A is called an antecedence solution of �, if A → �
is a tautology. In other words, A ⇒ � (for the notations
and terminologies of logic, we follow [8]). A logical relation
C is called a consequence solution of �, if � → C is a
tautology. In other words, � ⇒ C . A logical relation E is
called an antecedence-consequence solution of �, if E is both
antecedence and consequence solution of �. In other words,
� ⇔ E .

The problem of finding antecedence and consequence solu-
tions was first proposed by Ledley [11], which introduced a
solution-seeking method for static logical equations through
automorphism of Boolean algebra. Sufficient conditions of
the existence of solutions were proposed. The problem has
also been addressed in [10]. In fact, Ledley was looking for a
particular form of solutions. We first briefly describe Ledley’s
solutions [11]:

First, Ledley constructed a partition over the set of logical
variables as

{ξ1, . . . , ξn} = {x1, . . . , x p} ∪ {y1, . . . , yq} (2)

where p + q = n. Then, he sought for the solutions of the
form

y� = f�(x1, . . . , x p), � = 1, . . . , q. (3)

To emphasize that such solutions are partition depending, we
call them the partition-based solutions.

In this paper, using truth matrix and semitensor prod-
uct (STP) of matrices, we represent logical networks to
algebraic form. Necessary and sufficient conditions are
obtained for the existence of antecedence partition-based solu-
tion (APBS), of consequence partition-based solution (CPBS)
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and of antecedence-consequence partition-based solution
(ACPBS), respectively. Corresponding formulas are presented
to find out all types of partition-based solutions.

Then, the results are naturally extended to mix-valued
logical networks.

B. Applications

Two applications are considered.

1) Using the ACPBS of a logical network, we consider
the implicit function theorem (IFT) for the network.
Easily verifiable necessary and sufficient conditions are
obtained.

2) Using the partition-based solution of a logical network,
we consider the difference-algebraic logical networks.
We show that even when the conditions of IFT do not
meet, we still can use APBS substitution to convert the
network into a standard difference form.

In addition to the above applications for theoretical prob-
lems, partition-based solutions of logical networks have wide
range of potential applications in various fields, such as
diagnosis of disease, symbolic logic, and electrical circuit
design [10].

The rest of this paper is organized as follows. Section II
gives some useful notations, definitions, and propositions
of STP. How to express a logical dynamic network into an
algebraic state-space form is also introduced. Section III intro-
duces the truth matrix of a static logical network with respect
to a partition of the argument set. Necessary and sufficient
conditions for APBS, CPBS, and ACPBS are, respectively,
presented in Section IV. Formulas are presented to provide
all these types of the solutions. In Section V, the results are
extended to mix-valued logical equations. Then, two applica-
tions are discussed in Section VI, and certain related properties
are studied. Section VII is the conclusion.

II. SEMITENSOR PRODUCT OF MATRICES

This section gives a brief review for STP of matrices, which
is the fundamental tool in our analysis. The readers are referred
to [4] or [5] for details.

First, we give some notations.

1) 1n = [1, . . . , 1
︸ ︷︷ ︸

n

]T .

2) Mm×n : the set of m × n real matrices.
3) Col(M) (Row(M)) is the set of columns (rows) of M .

Coli (M) (Rowi (M)) is the i -th column (row) of M .
4) D := {0, 1}.
5) Bm×n : the set of m × n Boolean matrices.
6) δi

n: the i th column of the identity matrix In .
7) �n := {

δi
n |i = 1, . . . , n

}
, � := �2.

8) A matrix L ∈ Mm×n is called a logical matrix if the
columns of L are of the form δk

m , 1 ≤ k ≤ m. That is

Col(L) ⊂ �m .

Denote by Lm×n the set of m × n logical matrices.
9) If L ∈ Ln×r , by definition it can be expressed as

L = [δi1
n , δi2

n , . . . , δir
n ]. For the sake of compactness, it

is briefly denoted as

L = δn[i1, i2, . . . , ir ].
Definition 1: Let M ∈ Mm×n and N ∈ Mp×q , and

t = lcm{n, p} be the least common multiple of n and p.
The STP of M and N , denoted by M � N , is defined as

M � N := (M ⊗ It/n)(N ⊗ It/p) ∈ Mmt/n×qt/p (4)

where ⊗ is the Kronecker product.
When n = p, the STP coincides with the conventional

matrix product. So the STP is a generalization of conventional
matrix product. Fortunately, it keeps almost all the properties
of the conventional matrix product available. So in this paper,
all the matrix products are STP unless otherwise specified.

In addition, STP has some new properties. The following
properties are frequently used in the sequel.

Proposition 2: Let X ∈ R
m be a column and M is any

matrix. Then

X � M = (Im ⊗ M) � X. (5)

Next, we consider the algebraic state-space representation
of logical dynamic networks.

Definition 3: 1) A function f : Dn → D is called a
Boolean function. It can be expressed as

y = f (x1, x2, . . . , xn), y, x1, . . . , xn ∈ D. (6)

2) A mapping F : Dn → Dm is called a Boolean mapping,
where F is composed of m Boolean functions, as

F :

⎧
⎪⎪⎨

⎪⎪⎩

y1 = f1(x1, . . . , xn)
...

ym = fm(x1, . . . , xn).

(7)

Identifying

1 ∼ δ1
2, 0 ∼ δ2

2

which is called the vector form of Boolean variable, then the
Boolean function f becomes f : �n → � and the Boolean
mapping F becomes F : �n → �m . In the vector form, we
have the following algebraic state-space representation.

Theorem 4 [5]: Let f : Dn → D be a Boolean function.
Then, there exists a unique logical matrix M f ∈ L2×2n , such
that in the vector form, (6) can be expressed as

f (x1, . . . , xn) = M f �
n
i=1 xi . (8)

M f is called the structure matrix of f .
Consider the Boolean mapping (7). According to

Theorem 4, there exist Mi , i = 1, . . . , m which are the
structure matrices of the corresponding component functions.
Then, we have the following result.

Theorem 5 [5]: Consider the Boolean mapping (7). In the
vector form, let x = �

n
i=1xi , y = �

m
i=1 yi . Then, there exists

a unique logical matrix MF ∈ L2m×2n , such that (7) can be
expressed as

y = MF x (9)
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where

MF = M1 ∗ M2 ∗ · · · ∗ Mm (10)

is called the structure matrix of F (the “*” in (10) is the
Khatri–Rao product [9]).

The following proposition is straightforwardly verifiable.
Proposition 6: Let X ∈ �m and Y ∈ �n . Then

(
Im ⊗ 1T

n

)
XY = X (11)

and
(
1T

m ⊗ In
)
XY = Y. (12)

III. TRUTH MATRIX

Consider network (1) (or �). Denote the argument set as

Ξ := {ξ1, ξ2, . . . , ξn}.
Let

Ξ = X ∪ Y (13)

be a partition of Ξ , that is, X ∩ Y = ∅.
Rename the elements in X and Y as: X =
{x1, . . . , x p} ⊂ Ξ and Y = {y1, . . . , yq} ⊂ Ξ ,
then p + q = n.

Definition 7: Consider network (1) (or �). A network S,
expressed as

S :

⎧
⎪⎪⎨

⎪⎪⎩

y1 = f1(x1, . . . , x p)
...

yq = fq (x1, . . . , x p)

(14)

is called an APBS to � with respect to the partition (X, Y ) if
S ⇒ �; S is called a CPBS to � with respect to the partition
(X, Y ) if � ⇒ S; S is called an ACPBS to � with respect to
the partition (X, Y ) if � ⇔ S.

Express {xi } and {y j } into vector form such that xi , y j ∈
�2, and set x = ∏p

i=1 xi ∈ �2p , y = ∏q
i=1 yi ∈ �2q .

Definition 8: Consider network (1) (or �). A matrix

T (X,Y )
� = (

ti, j
) ∈ B2q×2p is called the truth matrix of

network (1) (or of �) with respect to the partition (X, Y ), if

ti, j =
{

1, x = δ
j
2p , y = δi

2q assure (1) to be true

0, otherwise.
(15)

We provide the following algorithm to convert the truth table
into a truth matrix.

Algorithm 9: 1) Step 1: Convert (1) into the form as

ϕ(ξ1, . . . , ξn) = 1. (16)

To this end, we first convert all ci , i = 1, . . . , s to 1
by taking ¬ on both sides of ϕi if ci = 0. Then set
ϕ = ∧s

i=1ϕi .
2) Step 2: By possibly reordering the variables we can

assume X = (ξ1, . . . , ξp) and Y = (ξp+1, . . . , ξn).

TABLE I

TRUTH TABLE OF (18)

TABLE II

TRUTH MATRIX OF (18)

Assume the truth table for ϕ with respect to this variable
order is T ∈ D2n

. Then split T into equal blocks as

T =
⎡

⎢
⎣

T1
...

T2s

⎤

⎥
⎦

where Ti ∈ D2n−p
, i = 1, . . . , 2p .

3) Step 3:

T (X,Y )
(1) = [T1, T2, . . . , T2p ]. (17)

Example 10: Consider a network

� : ϕ(ξ1, ξ2, ξ3) = (ξ1 ∧ ξ2t) ∨ (¬ξ3) = 1. (18)

The truth table of ϕ is Table I.
Set a partition

Ξ = {ξ1, ξ2, ξ3} = X ∪ Y. (19)

1) Assume X1 := {ξ1, ξ2} and Y1 = {ξ3}. Using
Algorithm 9, it is easy to obtain Table II.
Then, we have the truth matrix of (18) under partition
(X1, Y1) as

T (X1,Y1)
(18) =

[
1 0 0 0
1 1 1 1

]

.

2) Next, if X2 = {ξ2, ξ3}, Y2 = {ξ1}, by reordering the
variables as (ξ2, ξ3, ξ1), from the corresponding truth
table, we have

T (X2,Y2)
(18) =

[
1 1 0 1
0 1 0 1

]

.

Similarly, it is easy to see that
3) if X3 = {ξ1, ξ3}, Y3 = {ξ2}, we have

T (X3,Y3)
(18) =

[
1 1 0 1
0 1 0 1

]

.

4) If X4 = {ξ1}, Y4 = {ξ2, ξ3}, we have

T (X4,Y4)
(18) =

⎡

⎢
⎢
⎣

1 0
1 1
0 0
1 1

⎤

⎥
⎥
⎦ .
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TABLE III

TRUTH MATRIX OF (20) CORRESPONDING TO PARTITION (X, Y )

5) If X5 = {ξ2}, Y5 = {ξ1, ξ3}, we have

T (X5,Y5)
(18) =

⎡

⎢
⎢
⎣

1 0
1 1
0 0
1 1

⎤

⎥
⎥
⎦ .

6) If X6 = {ξ3}, Y6 = {ξ1, ξ2}, we have

T (X6,Y6)
(18) =

⎡

⎢
⎢
⎣

1 1
0 1
0 1
0 1

⎤

⎥
⎥
⎦.

Remark 11:

1) Within each part of the partition (precisely, within
X or Y ), the elements are arranged according to its
original order. This convention is to keep the correspond-
ing truth matrix unique. Otherwise, the matrix will have
some row and/or column permutations, which will not
affect the following argument.

2) According to Algorithm 9, we know that truth matrix
is a rearrangement of the truth table. And it contains
complete information of a network corresponding to the
preassigned partition. In this paper, it will be used to
solve several problems.

IV. FINDING PBS VIA TRUTH MATRIX

A. Solving APBS

We start by analyzing an example.
Example 12 [10]: Consider a logical equation

ϕ(ξ1, ξ2, ξ3) = (¬ξ1 ∧ ξ3) ∨ (ξ1 ∧ ξ2 ∧ ¬ξ3) = 0. (20)

Choose the partition as: X = {ξ1, ξ2}, Y = {ξ3}. Then, it
is easy to calculate the truth matrix corresponding to (X, Y )
of (20) as in Table III.

Equivalently, we have

T (X,Y )
(20) =

[
1 1 0 0
0 1 1 1

]

. (21)

Then, we choose a logical matrix M ∈ L2×4 such that

M ≤ T (X,Y )
(20) . (22)

Note that for any A = (ai, j ), B = (bi, j ) ∈ Mm×n , A ≤ B
means

ai, j ≤ bi, j , i = 1, . . . , m; j = 1, . . . , n.

Set

y = Mx . (23)

Then, (23) is an APBS of (20). To see this, for any x = ξ1ξ2
and the corresponding y = ξ3, because of (22), one sees easily
that (20) is always true. That is, (23)⇒(20). Conversely, it is

also clear that (22) is also necessary for (23) to imply (20).
Otherwise, there exists at least one x = (α, β) and y = Mαβ,
which correspond to a position where mi, j > ti, j (that is,
where the entry of M is 1 and the entry of T is 0). Then, (20)
does not hold with ξ1ξ2 = αβ and ξ3 = Mαβ.

Now, it is obvious that there are two M values, which
satisfy (22). They are

M1 = δ2[1 1 2 2]; M2 = δ2[1 2 2 2].
According to the above argument, one can easily figure out
that

ξ3 = δ2[1 1 2 2]ξ1ξ2 (24)

and

ξ3 = δ2[1 2 2 2]ξ1ξ2 (25)

are two APBSs of (20) with respect to this particular partition.
To investigate the general result, the Hamming weight of a

Boolean vector X = (x1, . . . , xn) ∈ Bn is introduced as [2]

wH (X) =
n∑

i=1

xi .

From the discussion of Example 12, the following conclu-
sion is obvious.

Theorem 13: Consider the logical network (1) (or �).

1) Let (X, Y ) be a partition of Ξ = {ξ1, . . . , ξn}. |X | =
p > 0, |Y | = q > 0. Corresponding to (X, Y ), the
truth matrix is T := T (X,Y )

� ∈ B2q×2p . Then, (1) (or �)
has APBS, if and only if, the Hamming weight of each
column of T is nonzero. That is

w j := wH (Col j (T )) > 0, j = 1, . . . , 2p. (26)

2) Assume there exists a logical matrix M ∈ L2q×2p

satisfies M ≤ T , then y = Mx is an APBS of (1)
(or �).

3) There are

r =
2p
∏

j=1

w j . (27)

APBSs corresponding to this particular partition.
4) Assume (Xi , Yi ), i = 1, . . . , � are all possible partitions

of Ξ , |Xi | = pi . Then, the total number of APBSs of
(1), denoted by sr , satisfies

sr ≤
�∑

i=1

2pi∏

j=1

wH (Col j (T (Xi ,Yi )
� ). (28)

Remark 14:

1) Unlike the conventional case, in a partition (X, Y ) of Ξ ,
the X and the Y are not commutative. This is because X
and Y play different roles. Precisely, in an APBS, X is
the set of arguments and Y is the set of functions.

2) The inequality appears in (28) because among solutions
with respect to all the partitions there might be some
duplicate ones (refer to Example 15).

Example 15: Recall Example 10. There are six different
partitions.
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1) For T (X1,Y1)
(18) , there are two APBSs according to the

partition (X1, Y1)

ξ3 = δ2[1, 2, 2, 2]ξ1ξ2 = ξ1 ∧ ξ2.

ξ3 = δ2[2, 2, 2, 2]ξ1ξ2 = δ2
2 .

2) For T (X2,Y2)
(18) , since wH

(
Col3(T (X2,Y2)

(18) )
)

= 0, there is
no APBS according to the partition (X2, Y2).

3) For T (X3,Y3)
(18) , since wH

(
Col3(T (X3,Y3)

(18) )
)

= 0, there is
no APBS according to the partition (X3, Y3).

4) For T (X4,Y4)
(18) , there are six APBSs according to the

partition (X4, Y4).

a) Case 1, ξ2ξ3 = δ4[1, 2]ξ1.
Using Proposition 6, we have

ξ2 = (I2 ⊗ 1T
2 )δ4[1, 2]ξ1 = δ2[1, 1]ξ1 = δ1

2

ξ3 = (1T
2 ⊗ I2)δ4[1, 2]ξ1 = δ2[1, 2]ξ1 = ξ1.

Hence, we have an APBS
{

ξ2 = δ1
2

ξ3 = ξ1.

Similarly, we have
b) Case 2, ξ2ξ3 = δ4[1, 4]ξ1. The APBS is

{
ξ2 = ξ1

ξ3 = ξ1.

c) Case 3, ξ2ξ3 = δ4[2, 2]ξ1. The APBS is
{

ξ2 = δ1
2

ξ3 = δ2
2 .

d) Case 4, ξ2ξ3 = δ4[2, 4]ξ1. The APBS is
{

ξ2 = ξ1

ξ3 = δ2
2 .

e) Case 5, ξ2ξ3 = δ4[4, 2]ξ1. The APBS is
{

ξ2 = ¬ξ1

ξ3 = δ2
2 .

f) Case 6, ξ2ξ3 = δ4[4, 4]ξ1. The APBS is
{

ξ2 = δ2
2

ξ3 = δ2
2 .

5) For T (X5,Y5)
(18) , there are six APBSs according to the

partition (X5, Y5).

a) Case 1, ξ1ξ3 = δ4[1, 2]ξ2. The APBS is
{

ξ1 = δ1
2

ξ3 = ξ2.

b) Case 2, ξ1ξ3 = δ4[1, 4]ξ2. The APBS is
{

ξ1 = ξ2

ξ3 = ξ2.

c) Case 3, ξ1ξ3 = δ4[2, 2]ξ2. The APBS is
{

ξ1 = δ1
2

ξ3 = δ2
2 .

d) Case 4, ξ1ξ3 = δ4[2, 4]ξ2. The APBS is
{

ξ1 = ξ2

ξ3 = δ2
2 .

e) Case 5, ξ1ξ3 = δ4[4, 2]ξ2. The APBS is
{

ξ1 = ¬ξ2

ξ3 = δ2
2 .

f) Case 6, ξ1ξ3 = δ4[4, 4]ξ2. The APBS is
{

ξ1 = δ2
2

ξ3 = δ2
2 .

6) For T (X6,Y6)
(18) , there are four APBSs according to the

partition (X6, Y6).
a) Case 1, ξ1ξ2 = δ4[1, 1]ξ3. The APBS is

{
ξ1 = δ1

2

ξ2 = δ1
2 .

b) Case 2, ξ1ξ2 = δ4[1, 2]ξ3. The APBS is
{

ξ1 = δ1
2

ξ2 = ξ3.

c) Case 3, ξ1ξ2 = δ4[1, 3]ξ3. The APBS is
{

ξ1 = ξ3

ξ2 = δ1
2 .

d) Case 4, ξ1ξ2 = δ4[1, 4]ξ3. The APBS is
{

ξ1 = ξ3

ξ2 = ξ3.

It is worth noting that the solutions of case 2 in 4) and
case 2 in 5) are the same, as we mentioned in Remark 14,
they are duplicate solutions.

B. Solving CPBS

Consider network (1) (or �), we search for CPBS. Observ-
ing the truth matrix carefully, it is not difficult to find the
following result.

Theorem 16: Consider the logical network (1) (or �).
1) Let (X, Y ) be a partition of Ξ = {ξ1, . . . , ξn}. |X | =

p > 0, |Y | = q > 0. Corresponding to (X, Y ), the truth
matrix is T := T (X,Y )

� ∈ B2q×2p . Then, (1) has CPBS,
if and only if, the Hamming weight of each column of
T satisfies

w j := wH (Col j (T )) ≤ 1, j = 1, . . . , 2p. (29)

2) Assume a logical matrix M ∈ L2q×2p ≥ T , then
y = Mx is a CPBS of (1) (or �).

3) There are

r = 2μp. (30)
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CPBSs corresponding to this particular partition, where
μ = | Col∗(T )| and Col∗(T ) = {Colk(T ) ∈
Col(T )| Colk(T ) = 0}.

4) Assume (Xi , Yi ), i = 1, . . . , � are all possible partitions
of Ξ , |Xi | = pi . Then, the total number of CPBSs of
(1) (or �) is

sr ≤
�∑

j=1

ri (31)

where ri is the number of CPBSs of (1) (or �) corre-
sponding to partition (Xi , Yi ).

We use the following examples to depict CPBSs.
Example 17: Recall Example 10 (also Example 15).

According to Theorem 16, it does not have CPBS.
Example 18: Consider the network

ϕ(ξ1, ξ2, ξ3) = [ξ1 ∧ (ξ2 ↔ ξ3)] ∨ [¬ξ1 ∧ (¬ξ2 ∧ ξ3)] = 1.

(32)

1) When X1 = {ξ1, ξ2}, Y1 = {ξ3}, the truth matrix of (32)
according to partition (X1, Y1) is

T (X1,Y1)
(32) =

[
1 0 0 1
0 1 0 0

]

. (33)

Using Theorem 16, there are two CPBSs

ξ3 =
[

1 0 1 1
0 1 0 0

]

ξ1ξ2

and

ξ3 =
[

1 0 0 1
0 1 1 0

]

ξ1ξ2.

Transfer them to logical form, we have

ξ3 = ξ1 → ξ2 (34)

and

ξ3 = ξ1 ↔ ξ2. (35)

2) When X2 = {ξ1, ξ3}, Y2 = {ξ2}, the truth matrix of (32)
according to partition (X2, Y2) is

T (X2,Y2)
(32) =

[
1 0 0 0
0 1 1 0

]

. (36)

Using Theorem 16, there are two CPBSs

ξ2 =
[

1 0 0 1
0 1 1 0

]

ξ1ξ3

and

ξ2 =
[

1 0 0 0
0 1 1 1

]

ξ1ξ3.

Back to logical form, we have

ξ2 = ξ1 ↔ ξ3 (37)

and

ξ2 = ξ1 ∧ ξ3. (38)

3) When X3 = {ξ2, ξ3}, Y3 = {ξ1}, the truth matrix of (32)
according to partition (X3, Y3) is

T (X3,Y3)
(32) =

[
1 0 0 1
0 0 1 0

]

. (39)

Using Theorem 16, there are two CPBSs

ξ1 =
[

1 1 0 1
0 0 1 0

]

ξ2ξ3

and

ξ1 =
[

1 0 0 1
0 1 1 0

]

ξ2ξ3.

Transfer them into the logical form, we have

ξ1 = ξ2 ∧ ¬ξ3 (40)

and

ξ1 = ξ2 ↔ ξ3. (41)

Note that

T (X,Y )
ϕ = (T (Y,X)

ϕ )T (42)

then for (X, Y ), where |X | = 1, |Y | = 2, logical matrix M
satisfying M ≤ T does not exist. That is, for (32), there is no
CPBS with respect to the partition (X, Y ) with |X | = 1 and
|Y | = 2.

Remark 19: Taking into consideration of Algorithm 9, (42)
follows immediately. So when we consider how many par-
titions do we have, (X, Y ) and (Y, X) may be classified as
one.

C. Solving ACPBS

About ACPBS of network (1) (or �), we have the following
result.

Theorem 20: Consider network (1) (or �). With respect to
a particular partition (X, Y ), we have

1) The truth matrix T := T (X,Y )
� ∈ B2q×2p is a logical

matrix, if and only if, (1) (or �) has an ACPBS

y = T x (43)

2) There is at most one ACPBS for (1) (or �) with respect
to a particular partition (X, Y ).

3) The ACPBS (43) is equivalent to network (1) (or �).

Example 21: Assume that logical network (1) has already
been expressed into the algebraic form as

ϕ1(ξ1, ξ2, ξ3, ξ4)

= δ2[2, 1, 2, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 1]ξ1ξ2ξ3ξ4 = δ1
2

ϕ2(ξ1, ξ2, ξ3, ξ4)

= δ2[2, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1]ξ1ξ2ξ3ξ4 = δ2
2 .

(44)

Because of the space of partitions crunch, here we consider
only a few typical partitions in this example.

1) For partition X1 = {ξ1, ξ2} and Y1 = {ξ3, ξ4}. Set
x = ξ1ξ2, y = ξ3ξ4. It is easy to construct its truth
matrix as in Table IV.
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TABLE IV

TRUTH MATRIX OF (44) CORRESPONDING TO (X1, Y1)

Then for (44), the truth matrix with respect to the
above (X1, Y1) is a logical matrix. According to
Theorem 20, (44) has an ACPBS with respect to
(X1, Y1). Moreover, this solution is determined by

y = T (X1,Y1)
(44) x = δ4[2, 1, 3, 2]x . (45)

Using Proposition 6, one can easily calculate that
{

ξ3 = (I2 ⊗ 1T
2 )T (X1,Y1)

(44) x = δ2[1, 1, 2, 1]x
ξ4 = (1T

2 ⊗ I2)T (X1,Y1)
(44) x = δ2[2, 1, 1, 2]x .

(46)

Back to logical form, we have
{

ξ3 = ξ1 ∨ ¬ξ2

ξ4 = ξ1∨̄ξ2.
(47)

2) For partition X2 = {ξ1, ξ3} and Y2 = {ξ2, ξ4}. Set x =
ξ1ξ3, y = ξ2ξ4. It is easy to obtain the truth matrix as

T2 := T (X2,Y2)
(44) =

⎡

⎢
⎢
⎣

0 0 0 1
1 0 0 0
1 0 0 0
0 0 1 0

⎤

⎥
⎥
⎦. (48)

From Theorems 13 and 16, (44) has neither APBS nor
CPBS with respect to partition (X2, Y2).

3) For partition X3 = {ξ1} and Y3 = {ξ2, ξ3, ξ4}. Set x =
ξ1, y = ξ2ξ3ξ4. The truth matrix is

T3 := T (X3,Y3)
(44) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0
1 0
0 1
0 0
1 0
0 1
0 0
0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (49)

From Theorems 13 and 16, (44) has four APBSs and no
CPBS with respect to partition (X3, Y3).

4) For X4 = {ξ1, ξ2, ξ3} and Y4 = {ξ4}. Set x = ξ1ξ2ξ3,
y = ξ4. The truth matrix is

T4 := T (X4,Y4)
(44) =

[
0 0 1 0 0 1 0 0
1 0 0 0 0 0 1 0

]

. (50)

From Theorems 13 and 16, (44) has no APBS and 16
CPBSs with respect to partition (X4, Y4).

V. MIX-VALUED LOGICAL NETWORK

In Sections II–IV, we considered only Boolean functions. In
fact, the technique developed and results obtained can easily

TABLE V

TRUTH MATRIX OF (54)

be extended to mix-valued networks. Consider a mix-valued
network as

⎧
⎪⎪⎨

⎪⎪⎩

ϕ1(ξ1, . . . , ξn) = c1
...

ϕs(ξ1, . . . , ξn) = cs

(51)

where ξi ∈ Dki , i = 1, . . . , n, ϕ j : ∏n
i=1 Dki → Dμ j , c j ∈

Dμ j , j = 1, . . . , s. Let (X, Y ) be a partition of Ξ

α :=
∏

{i|ξi ∈X}
ki ; β :=

∏

{i|ξi ∈Y }
ki . (52)

Then, we define the truth matrix T (X,Y )
� ∈ Bα×β in the same

way as for Boolean case. Then, all the previous results remain
available. Note that in mix-valued case, it is not convenient
to use an explicit logical expression for (51). So we always
express (51) in an algebraic form as

⎧
⎪⎪⎨

⎪⎪⎩

M1 �
n
i=1 ξi = c1
...

Ms �
n
i=1 ξi = cs

(53)

where ξi ∈ �ki , i = 1, . . . , n, M j is the structure matrix of
ϕ j , j = 1, . . . , s.

We use an example to depict this.
Example 22: Consider the following network:

{
ϕ(ξ1, ξ2, ξ3, ξ4) = M1ξ1ξ2ξ3ξ4 = δ2

3

ϕ(ξ1, ξ2, ξ3, ξ4) = M2ξ1ξ2ξ3ξ4 = δ1
2

(54)

where ξ1, ξ4 ∈ �2, ξ2, ξ3 ∈ �3

M1 = δ3[1, 1, 2, 1, 3, 3, 1, 2, 1, 2, 1, 3

3, 2, 1, 2, 2, 2, 3, 3, 2, 2, 3, 2

3, 2, 1, 3, 2, 2, 2, 3, 1, 2, 3, 1]
M2 = δ2[1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1

2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 2

2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 1].
Consider the partition (X, Y ) as

X = {ξ1, ξ2}, Y = {ξ3, ξ4}
and let x := ξ1ξ2, y := ξ3ξ4.

It is easy to calculate that the truth matrix, which is shown
in Table V.

According to Theorem 13, it is easy to figure out that there
are four APBSs, which are

y = Ti x, i = 1, 2, 3, 4
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where

T1 = δ6[3, 4, 4, 3, 2, 1]
T2 = δ6[3, 4, 6, 3, 2, 1]
T3 = δ6[3, 4, 4, 3, 5, 1]
T4 = δ6[3, 4, 6, 3, 5, 1].

Consider the case of i = 1. Using Proposition 6, we have
{

ξ3 = M1
1 ξ1ξ2 = (I3 ⊗ 1T

2 )T1ξ1ξ2

ξ4 = M2
1 ξ1ξ2 = (1T

3 ⊗ I2)T1ξ1ξ2.

It is easy to calculate that

M1
1 = δ3[2, 2, 2, 2, 1, 1]; M2

1 = δ2[1, 2, 2, 1, 2, 1].
Similarly, we can calculate that when i = 2

M1
2 = δ3[2, 2, 3, 2, 1, 1]; M2

2 = δ2[1, 2, 2, 1, 2, 1]
when i = 3

M1
3 = δ3[2, 2, 2, 2, 3, 1]; M2

3 = δ2[1, 2, 2, 1, 1, 1]
when i = 4

M1
4 = δ3[2, 2, 3, 2, 3, 1]; M2

4 = δ2[1, 2, 2, 1, 1, 1].
According to Theorem 16, there is no CPBS of (54) with
respect to partition (X, Y ).

All other partitions can be verified in a similar way. But we
omit this.

VI. IMPLICIT FUNCTION THEOREM

A. Existence of Implicit Function Theory

To the best of our knowledge, the IFT of Boolean equations
has been discussed first in [1], which provides a sufficient
condition for local IFT. Necessary and sufficient condition for
global IFT of k-valued logical networks was given in [6] by
using k-types. In the following, an even more simple way
is provided to verify and design IF for mix-valued logical
networks.

First, we state the problem clearly.
Definition 23: Consider the mix-valued network (51). Let

(X, Y ) be a preassigned partition of Ξ = {ξ1, . . . , ξn}. |X | =
p > 0, |Y | = q > 0, p + q = n. The problem of the existence
of IF is: can we find a network

⎧
⎪⎪⎨

⎪⎪⎩

y1 = f1(x1, . . . , x p)
...

yq = fq (x1, . . . , x p)

(55)

where {x1, . . . , x p} = X ⊂ Ξ , {y1, . . . , yq} = Y ⊂ Ξ , such
that (55) is logically equivalent to (51).

According to the argument in Section IV, it is clear that
an ACPBS provides the required IF. Since the necessary and
sufficient condition for the existence of ACPBS is known, we
have the following result.

Theorem 24 (Implicit Function Theorem): Consider the
network of mix-valued logical equations (51) with a
preassigned partition (X, Y ). The following are equivalent.

1) The network of IFs exists.

2) The truth matrix T (X,Y )
(51) is a logical matrix.

3) Equation (51) has an ACPBS with respect to partition
(X, Y ).

Moreover, the ACPBS can be expressed as

y = T (X,Y )
(51) x (56)

where x = �
p
i=1xi , y = �

q
j=1y j .

It is worth noting that the existence of the network of IFs
such as (55) depends on the partition. Different partitions may
provide different networks of IFs.

We give an example to show this.
Example 25: Consider the following logical network:

{
ϕ(ξ1, ξ2, ξ3, ξ4) = M1ξ1ξ2ξ3ξ4 = δ1

2

ϕ(ξ1, ξ2, ξ3, ξ4) = M2ξ1ξ2ξ3ξ4 = δ2
2

(57)

where ξi ∈ �2, i = 1, 2, 3, 4

M1 = δ2[1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1]
M2 = δ2[2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 2, 1, 1, 1].

1) Given a partition (X1, Y1), where X1 = {ξ1, ξ2}, and
Y1 = {ξ3, ξ4}. Set x = ξ1ξ2 and y = ξ3ξ4, it is easy to
calculate the truth matrix

T (X1,Y1)
(57) =

⎡

⎢
⎢
⎣

1 0 0 1
0 0 0 0
0 0 0 0
0 1 1 0

⎤

⎥
⎥
⎦. (58)

From Theorem 24, there exists an IF as

y = T (X1,Y1)
(57) x . (59)

Using Proposition 6, we have

ξ3 = δ2[1, 2, 2, 1]ξ1ξ2

ξ4 = δ2[1, 2, 2, 1]ξ1ξ2.

Back to the logical form, we have

ξ3 = ξ1 ↔ ξ2

ξ4 = ξ1 ↔ ξ2.

2) Given a partition (X2, Y2), where X2 = {ξ1, ξ3}, and
Y2 = {ξ2, ξ4}. A similar argument shows that the IF is

ξ2 = ξ1 ↔ ξ3

ξ4 = ξ3.

3) Given a partition (X3, Y3), where X3 = {ξ1, ξ4}, and
Y3 = {ξ2, ξ3}. The corresponding IF is

ξ2 = ξ1 ↔ ξ4

ξ3 = ξ4.

4) Given a partition (X4, Y4), where X4 = {ξ3, ξ4}, and
Y4 = {ξ1, ξ2}. It is easy to verify that there does not
exist an IF.

5) Given a partition (X5, Y5), where X5 = {ξ2, ξ4}, and
Y5 = {ξ1, ξ3}. The IF is

ξ1 = ξ2 ↔ ξ4

ξ3 = ξ4.
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6) Given a partition (X6, Y6), where X6 = {ξ2, ξ3}, and
Y6 = {ξ1, ξ4}. The IF is

ξ1 = ξ2 ↔ ξ3

ξ4 = ξ3.

7) For partition (X, Y ) with |X | = 1, |Y | = 3 or |X | = 3,
|Y | = 1, it is easy to see that the corresponding truth
matrix is not logical, that is, the conditions of IFT do
not meet, and hence, the IF does not exist.

For network (57), we have that: 1) the existence of IF is
related to the preassigned partition and 2) the IF with respect
to different partitions is different.

B. Difference-Algebraic Networks

Consider an evolutionary game (EG), where players have
different numbers of strategies (actions), then the EG becomes
an mix-valued logical network [7]. Now if the profile has
certain restriction, that is, the actions chosen by players have
some restriction, and then the EG becomes a difference-
algebraic network. In general, a mix-valued logical difference-
algebraic network is defined as

⎧
⎪⎪⎨

⎪⎪⎩

ξ1(t + 1) = g1(ξ1, . . . , ξn)
...

ξp(t + 1) = gp(ξ1, . . . , ξn)
⎧
⎪⎪⎨

⎪⎪⎩

ϕ1(ξ1, . . . , ξn) = c1
...

ϕq(ξ1, . . . , ξn) = cq

(60)

where ξi ∈ Dki , i = 1, . . . , n, c j ∈ Dμ j , j = 1, . . . , q .
To investigate the difference-algebraic network, a natural

and convenient way is to convert it to normal difference
network.

Case 1: ACPBS Substitution.
Proposition 26: Consider the algebraic part of (60).

Assume it has an ACPBS with respect to the partition (X, Y ),
where X = {ξ1, . . . , ξp}, Y = {ξp+1, . . . , ξn}. Then, (60) can
be converted into a classical logical dynamic network.

Proof: Substituting the ACPBS into the difference part of
the network yields what we expected.

Case 1 is very natural. In fact, it is standard for solv-
ing conventional differential (or difference)—algebraic equa-
tions for the state ξ ∈ R

n : solving the second group of
variables as the functions of the first group of variables,
and then substituting them into the differential (or differ-
ence) equations. But as shown in Sections IV and V that
networks which have ACPBS are fewer. When a network
does not have ACPBS, which means that the second group
of variables is not solvable from the algebraic equations
as the functions of first group of variables, we consider
APBS substitution in the following. Note that in this case,
the corresponding conventional differential (or difference)—
algebraic equations in R

n are difficult to be solved. So
APBS substitution is totally new and only suitable for logical
networks.

Case 2: APBS Substitution.
Proposition 27: Consider the algebraic part of (60).

Assume it has APBS with respect to the partition (X, Y ),
where X = {ξ1, . . . , ξp}, Y = {ξp+1, . . . , ξn}. Then, (60) can
be converted into several classical logical dynamic networks
corresponding to different APBSs.

Example 28: Consider the following network:
{

ξ1(t + 1) = G1ξ

ξ2(t + 1) = G2ξ
{

ϕ1(ξ1, ξ2, ξ3) = M1ξ = δ3
3

ϕ2(ξ1, ξ2, ξ3) = M2ξ = δ1
2

(61)

where ξ1 ∈ �2, ξ2, ξ3 ∈ �3, ξ = �
3
i=1ξi , and

G1 = δ2[1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1]
G2 = δ3[3, 2, 1, 3, 3, 2, 2, 1, 1, 1, 3, 3, 2, 2, 2, 1, 2, 3]
M1 = δ3[1, 3, 3, 3, 1, 2, 2, 3, 1, 3, 1, 3, 3, 2, 1, 1, 2, 3]
M2 = δ2[1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 2, 1].

Our goal is to convert (61) into a standard dynamic logical
network.

Set the partition as (X, Y ), where

X = {ξ1, ξ2}, Y = {ξ3}. (62)

Using M1 and M2, it is easy to calculate the truth matrix of
ϕ1-ϕ2 as

T := T (X,Y )
ϕ

=
⎡

⎣
0 1 0 0 1 0
1 0 1 0 0 0
0 0 0 1 0 1

⎤

⎦.

Since T is a logical matrix, according to Theorem 16, the
ACBPS is

ξ3 = T ξ1ξ2. (63)

Plugging (63) into the difference part of (61) yields

ξ1(t + 1) = G1ξ1(t)ξ2(t)T ξ1(t)ξ2(t)

= G1[I6 ⊗ T ]ξ1(t)ξ2(t)ξ1(t)ξ2(t)

= G1[I6 ⊗ T ]Mr6ξ1(t)ξ2(t)

= δ2[2, 1, 2, 1, 2, 1]ξ1(t)ξ2(t)

and

ξ2(t + 1) = G2ξ1(t)ξ2(t)T ξ1(t)ξ2(t)

= G2[I6 ⊗ T ]ξ1(t)ξ2(t)ξ1(t)ξ2(t)

= G2[I6 ⊗ T ]Mr6ξ1(t)ξ2(t)

= δ3[2, 3, 3, 3, 3, 3]ξ1(t)ξ2(t)

where Mr6 := diag(δ1
6, δ2

6, . . . , δ6
6) is the power-reducing

matrix.
That is, we convert (61) into a standard difference equation

{
ξ1(t + 1) = δ2[2, 1, 2, 1, 2, 1]ξ1(t)ξ2(t)

ξ2(t + 1) = δ3[2, 3, 3, 3, 3, 3]ξ1(t)ξ2(t).
(64)
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Example 29: Consider Example 28 again. Assume now the
ϕ2 is removed. That is

{
ξ1(t + 1) = G1ξ

ξ2(t + 1) = G2ξ

ϕ(ξ1, ξ2, ξ3) = Mξ = δ3
3 . (65)

Then, the corresponding truth matrix of ϕ with respect to
partition (62) becomes

T := T (X,Y )
ϕ

=
⎡

⎣
0 1 0 1 1 0
1 0 1 0 0 0
1 0 0 1 0 1

⎤

⎦.

Then, we have four logical matrices, denoted by Hi , i =
1, 2, 3, 4, satisfying Hi ≤ T . Hence, for ϕ, there are four
APBSs with respect to the partition (62) as

1)

ξ3 = H1ξ1ξ2

=
⎡

⎣
0 1 0 0 1 0
0 0 1 0 0 0
1 0 0 1 0 1

⎤

⎦ ξ1ξ2.

Plugging it into the difference part of (65) yields

ξ1(t + 1) = G1ξ1(t)ξ2(t)H1ξ1(t)ξ2(t)

= G1[I6 ⊗ H1]ξ1(t)ξ2(t)ξ1(t)ξ2(t)

= G1[I6 ⊗ H1]Mr6ξ1(t)ξ2(t)

= δ2[2, 1, 2, 1, 2, 1]ξ1(t)ξ2(t)

and

ξ2(t + 1) = G2ξ1(t)ξ2(t)H1ξ1(t)ξ2(t)

= G2[I6 ⊗ H1]ξ1(t)ξ2(t)ξ1(t)ξ2(t)

= G2[I6 ⊗ H1]Mr6ξ1(t)ξ2(t)

= δ3[1, 3, 1, 3, 2, 3]ξ1(t)ξ2(t).

Hence, in this case, we reduce the difference-algebraic
network (65) into a difference one

{
ξ1(t + 1) = δ2[2, 1, 2, 1, 2, 1]ξ1(t)ξ2(t)

ξ2(t + 1) = δ3[1, 3, 1, 3, 2, 3]ξ1(t)ξ2(t).
(66)

2)

ξ3 = H2ξ1ξ2

=
⎡

⎣
0 1 0 1 1 0
0 0 1 0 0 0
1 0 0 0 0 1

⎤

⎦ ξ1ξ2.

Plugging it into the difference part of (61) yields
{

ξ1(t + 1) = δ2[2, 1, 2, 1, 2, 1]ξ1(t)ξ2(t)

ξ2(t + 1) = δ3[1, 3, 1, 1, 2, 3]ξ1(t)ξ2(t).
(67)

3)

ξ3 = H3ξ1ξ2

=
⎡

⎣
0 1 0 0 1 0
1 0 1 0 0 0
0 0 0 1 0 1

⎤

⎦ ξ1ξ2.

Plugging it into the difference part of (61) yields
{

ξ1(t + 1) = δ2[2, 1, 2, 1, 2, 1]ξ1(t)ξ2(t)

ξ2(t + 1) = δ3[2, 3, 1, 3, 2, 3]ξ1(t)ξ2(t).
(68)

4)

ξ3 = H4ξ1ξ2

=
⎡

⎣
0 1 0 1 1 0
1 0 1 0 0 0
0 0 0 0 0 1

⎤

⎦ ξ1ξ2.

Plugging it into the difference part of (61) yields
{

ξ1(t + 1) = δ2[2, 1, 2, 1, 2, 1]ξ1(t)ξ2(t)

ξ2(t + 1) = δ3[2, 3, 1, 1, 2, 3]ξ1(t)ξ2(t).
(69)

Remark 30: Note that when using ACPBS, the reduced
difference equation is equivalent to the original difference-
algebraic network. So they have the same solutions. For
example, the solution of (61) and the solution of (64) are
exactly the same. This is because of the logical equivalence
between the two logical expressions (i.e., the two static sets of
equations) are equivalent. As for APBS substitution, we only
know the solution(s) of the reduced difference equation is(are)
also solution(s) of the original difference-algebraic network,
but not vice versa. As for Example 29, we only know that all
the solutions of (66)–(69) are also the solutions of (65), but
the reverse is not true. The following example shows this.

Example 31: Consider Example 29 again. It is easy to
verify that the following trajectory is a solution of (65):

ξ0(t) = (δ1
2, δ3

3, δ2
3) → (δ2

2, δ1
3, δ1

3)

→ (δ1
2, δ3

3, δ2
3) → (δ2

2, δ1
3, δ3

3) → · · ·
where the rest part “· · · ” is assumed to follow (66) [or any
fixed one from (66)–(69)]. To see that ξ0 is not the solution of
any one of (66)–(69), it is clear that no one of them consists
with both (δ2

2, δ1
3, δ1

3) and (δ2
2, δ1

3, δ3
3).

VII. CONCLUSION

In this paper, the truth matrix of a static logical network is
introduced. Using it the partition-based solutions of a static
logical network, including APBS, CPBS, and ACPBS, have
been solved completely by providing necessary and sufficient
conditions and the corresponding formulas for each case.

Compared with the existing results in the literature, our
method presents very easily verifiable necessary and sufficient
conditions for the existence of all partition-based solutions.
More concise algorithms are given to provide explicit expres-
sions of the solutions. Furthermore, using truth matrix and
STP, the obtained results can be extended to mix-valued logical
equations immediately.

Finally, the results obtained have been used to address two
problems.

1) Find necessary and sufficient condition for the existence
of IF. To the best of our knowledge, this is the first IF
theorem for mix-valued logical networks.

2) Convert a difference-algebraic logical network into the
classical difference form. As the ACPBS substitution
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exists, the resulting difference network is equivalent
to the original difference-algebraic network. But when
the APBS substitution is used, we can only assure the
solution(s) of the reduced difference network is(are) the
solution(s) of the original difference-algebraic network.
A problem remains for further study is: can we find all
the solutions by using all possible APBSs? If there are
some missing solutions, are we able to find them?

An obvious disadvantage of this approach is the compu-
tational complexity. Since the number of different partitions
(ignoring symmetric ones) is 2n−1 − 1, when n is not small
finding all partitions is a heavy job.

The approach proposed in this paper is very useful for
investigating general difference-algebraic logical control net-
works. Some further results will be delivered in coming papers.
As mentioned Section I, logical network and neural network
are two different approaches to the genetic network. The
combination of logical and numerical approaches may be the
further growing direction of neural networks.
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