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Evolutionarily Stable Strategy of Networked
Evolutionary Games

Daizhan Cheng, Fellow, IEEE, Tingting Xu, and Hongsheng Qi

Abstract— The evolutionarily stable strategy (ESS) of net-
worked evolutionary games (NEGs) is studied. Analyzing the
ESS of infinite popular evolutionary games and comparing it
with networked games, a new verifiable definition of ESS for
NEGs is proposed. Then, the fundamental evolutionary equation
(FEE) is investigated and used to construct the strategy profile
dynamics (SPDs) of homogeneous NEGs. Two ways for verifying
the ESS are proposed: 1) using the SPDs to verify it directly.
The SPDs provides complete information about the NEGs, and
then necessary and sufficient conditions are revealed. It can be
used for NEGs with small size and 2) some sufficient conditions
are proposed to verify the ESS of NEGs via their FEEs. This
method is particularly suitable for large scale networks. Some
illustrative examples are included to demonstrate the theoretical
results.

Index Terms— Evolutionarily stable strategy (ESS), fundamen-
tal evolutionary equation (FEE), networked evolutionary game
(NEG), semitensor product (STP) of matrices.

I. INTRODUCTION

THE LAST few decades have witnessed the increasing
applications of concepts from game theory to the study

of evolutions in biological systems [3], [28]. Particularly,
it was shown that evolution could lead to cooperation [1],
[2], [17]. Based on this observation and accompanying the
development of network theory, networked evolutionary game
(NEG) becomes a hot topic, because it is very likely that
there are some topological structures, precisely the spacial
relations, which decide the interactions among the players in
evolutionary games [15], [20], [24].

Recently, the investigation of NEGs has attracted much
attention from biologists, physicists, and system scientists,
and so on, some new approaches and interesting results have
been reported. For instance, some interesting develops are:
1) how the effective payoffs in the prisoner’s dilemma game
facilitate cooperation [25]; 2) the impact of link deletions on
cooperation for public goods game [13] and for prisoner’s
dilemma game [26]; 3) social dilemmas on evolving random
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networks [27] and cooperation on scale-free networks [16];
and 4) evolution of public goods game on two interdependent
networks [30], [31]. A comprehensive review on the evolu-
tionary dynamics of NEGs can be found in [18].

Stability is one of the most important issues in this paper of
the evolutionary games, because it shows where an evolution
will go [23]. To study this property, the evolutionarily stable
strategy (ESS) was first proposed in [21]. An ESS is a strategy
such that, if all the members of a population adopt it, then
no mutant strategy could invade the population under the
influence of natural selection. ESS has then been studied and
used widely. A detailed discussion is presented in [22]. Some
new developments can be found in [12].

In the classical literature, the ESS was investigated under the
assumption that all the members in the group play with each
other or randomly. But for an NEG, a particular connected
topology (or an adjacent graph) is given and each member can
only play with its neighborhood members. So for NEGs the
ESS should be different from the ESS of classical evolutionary
games. So the ESS of NEGs is still an open problem.

Recently, a new mathematical tool, namely, semitensor
product (STP) of matrices, has been used to investigate logical
networks, including Boolean networks. The basic topological
structures of Boolean networks have been studied [4], [6], [8].
Then, the control of Boolean networks have also been inves-
tigated [5], [14]. We also refer to [7] for a comprehensive
introduction to STP approach for Boolean networks.

In this paper, the STP will be used to investigate the ESS of
NEGs. We first review the fundamental evolutionary equation
(FEE) of NEGs, proposed in [10]. Then, we consider how
to use it to produce the strategy profile dynamics (SPDs)
of NEGs. In fact, SPD is the overall network dynamics.
After that a definition of ESS of NEGs is proposed, and
demonstrates that the definition coincides with the classical
definition. Finally, two ways for verifying the ESS of the
NEGs are proposed: 1) using the SPDs to verify it directly.
In principle, this method is universally applicable to any
networks. However, because of the computational complexity,
this method can be used for small-size NEGs and 2) some
sufficient conditions are proposed to verify the ESS of NEGs
via their FEEs. This method has much less computational load
and can be used for large scale NEGs.

The rest of this paper is organized as follows. Section II
provides some fundamental concepts and notations for describ-
ing NEGs. Particularly, the STP of matrices is briefly intro-
duced. Section III reviews the FEE of an NEG, and then
consider how to use FEE to produce the SPDs of an NEG.
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TABLE I

PAYOFF TABLE (HAWK–DOVE GAME)

The ESS of NEGs is defined and discussed in Section IV. In
Section V, the ESS of both homogeneous and heterogeneous
NEGs are investigated via their FEEs. Some illustrative exam-
ples are presented. Section VI consists of some concluding
remarks.

II. PROBLEM FORMULATION

A. General Definition of ESS

This subsection briefly reviews some basic concepts about
ESS.

Definition 2.1 ([22]): Consider an evolutionary game. An
ESS is a strategy such that, if all the members of a population
adopt it, then no mutant strategy could invade the population
under the influence of natural selection.

This definition has a very clear physical (or biological)
meaning. As mentioned in [22]: the idea can be applied equally
well to any kind of phenotypic variations. However, it does
not provide a rigorous mathematical concept, which is easily
verifiable. Let us observe an example, which was used in [22]
as a detailed description of the ESS.

Example 2.2 ([22]): Consider the Hawk–Dove game. The
game is symmetric and the payoff matrix is as in Table I,
where E(X, Y ) is the payoff of individual adopting X against
a Y opponent, X, Y ∈ {H, D}.

Let p be the frequency of H strategists in the population,
W (H ) and W (D) be the fitnesses of H and D strategists,
respectively. In addition, before the contest, all individuals
have fitness W0.

Then if each individual engages in one contest, we have{
W (H ) = W0 + pE(H, H ) + (1 − p)E(H, D)

W (D) = W0 + pE(D, H ) + (1 − p)E(D, D).
(1)

Suppose that individuals reproduce their kind asexually, in
numbers proportional to their fitnesses. The frequency p′ of
hawks in the next generation is

p′ = pW (H )/W (2)

where W = pW (H ) + (1 − p)W (D).
Now, assume H is an ESS and D is a mutant, then (1 − p)

should be very small. Since H is stable, W (H ) > W (D). It
follows that:

either E(H, H ) > E(D, H )

or E(H, H ) = E(D, H ) and E(H, D) >E(D, D). (3)

Equation (3) is referred to as the standard conditions for
an ESS, however, it should be clear that they apply only to
the particular model · · · with an infinite population, asexual
inheritance, and pairwise contests [21].

Equation (3) may be used as a definition of ESS,
which has mathematical rigorousness. However, its drawback

lies on: 1) infinite population and 2) two alternative strategies.
In addition, its necessity has not been proved.

When the NEGs are considered, a natural question is:
is (3) applicable to NEGs? (3) seems to be a sufficient
condition for ESS of evolutionary games. In addition, (2)
is only one strategy updating rule (SUR). Comparing with
most SURs of NEGs, (2) seems too artificial. In addition,
it is based on a complete network graph, while general
NEGs have different graph structures. We may conclude
that (3) seems not applicable to general NEGs. That is,
we need to seek a proper verifiable definition of ESS for
NEGs.

B. STP of Matrices

Before reviewing the SPT of matrices, some con-
cepts/notations are listed as follows.

1) Mm×n is the set of m × n real matrices.
2) Coli (M) is the i th column of matrix M; Col(M) is the

set of columns of M .
3) Dk := {1, 2, . . . , k}.
4) δi

n := Coli (In), i.e., it is the i th column of the identity
matrix.

5) �n := Col(In).
6) M ∈ Mm×n is called a logical matrix if Col(M) ⊂ �m ,

the set of m × n logical matrices is denoted by Lm×n .

7) Assume L ∈ Lm×n , then L = [
δ

i1
m δ

i2
m . . . δ

in
m

]
. Its

shorthand form is L = δm [i1 i2 . . . δm].

8) r = [r1, . . . , rm ]T ∈ R
m is called a probabilistic vector,

if ri ≥ 0, i = 1, . . . , m, and
∑m

i=1 ri = 1. The set of k
dimensional probabilistic vectors is denoted by Υm .

9) If M ∈ Mm×n and Col(M) ⊂ Υm , M is called a
probabilistic matrix. The set of m × n probabilistic
matrices is denoted by Υm×n .

10) 1n = (1, 1, . . . , 1︸ ︷︷ ︸
n

)T .

The STP of matrices is a basic tool in our approach. We
give a brief review here and refer to [7], [9] for details.

Definition 2.3: Let A ∈ Mm×n and B ∈ Mp×q . Denote by
t := l cm(n, p) the least common multiple of n and p. Then,
we define the STP of A and B as

A � B := (
A ⊗ It/n

) (
B ⊗ It/p

) ∈ M(mt/n)×(qt/p). (4)
Remark 2.4

1) When n = p, A � B = AB . Thus, the STP is a
generalization of the conventional matrix product.

2) STP keeps all the major properties of the conventional
matrix product unchanged.

3) Throughout this paper, the matrix product is assumed to
be STP, and mostly, the notation � is omitted.

The following is a special property for STP, which will be
used in the sequel.

Proposition 2.5: Let x ∈ R
t be a column vector. Then for

a matrix M

x � M = (It ⊗ M) � x . (5)
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Definition 2.6: Define a matrix

W[n,m] := δmn [ 1, m + 1, 2m + 1, . . . , (n − 1)m + 1,

2, m + 2, 2m + 2, . . . , (n − 1)m + 2, . . . ,

n, m + n, 2m + n, . . . , mn] ∈ Mmn×mn

(6)

which is called a swap matrix.
The following is a fundamental property of swap matrix.
Proposition 2.7: Let X ∈ R

m and Y ∈ R
n be two column

vectors. Then

W[m,n] � X � Y = Y � X. (7)
Finally, we consider how to express a k-valued logical

function into an algebraic form.
Theorem 2.8 [(9)]

1) Let f : Dn
k → Dk be a k-valued logical function,

expressed as

y = f (x1, . . . , xn). (8)

Identify i ∼ δi
k, i = 1, 2, . . . , k. Then, there exists a

unique logical matrix M f ∈ Lk×kn , called the structure
matrix of f , such that under vector form (8) can be
expressed as

y = M f �
n
i=1 xi (9)

where y, xi ∈ �k , i = 1, . . . , n. (9) is called the
algebraic form of (8).

2) If in item 1) Dk is replaced by Υk , then the result
remains true except that the structure matrix M f in (9)
is replaced by an M f ∈ Υk×kn .

C. Networked Evolutionary Game

We first briefly review the framework for NEGs, proposed
in [10]. In this paper, only the symmetric case is considered.
The basic concepts are summarized in the following defini-
tions.

Definition 2.9

1) Given an undirected graph (N, E), where N is the set
of nodes and E ⊂ N × N is the set of edges. In the
graph x1-x2-. . .-xk is called a path, if (xi , xi+1) ∈ E ,
i = 1, . . . , k − 1.

2) Let x0 ∈ N . The d-neighborhood of x0, denoted by
Ud(x0), is defined as: y ∈ Ud(x0), if and only if there
is a path from x0 to y with length less than or equal to
d , where d ≥ 1. Briefly denote U(x0) := U1(x0).

Definition 2.10: A fundamental network game (FNG) is a
special normal game [11]. It consists of three factors:

1) 2 players N = {i, j};
2) both players have the same set of strategies: S =

{1, . . . , k};
3) each player, say i , has its payoff function ci, j : S2 →

R. Note that for a symmetric game the payoffs satisfy
ci, j (si , s j ) = c j,i (s j , si ), where si , s j ∈ S.

Definition 2.11: A SUR, �, is a rule, which decides the
strategy of a player i at time t +1 by the strategies {x j (t)| j ∈

U(i)} and payoffs {c j (t)| j ∈ U(i)} of its neighborhood
players at time t .

Now, we are ready to give the framework for NEGs.
Definition 2.12: A NEG, denoted by ((N, E), G,�), con-

sists of three ingredients:
1) an undirected graph (N, E);
2) an FNG, G, such that if (i, j) ∈ E , then i and j

play FNG with strategies xi (t) ∈ S and x j (t) ∈ S,
respectively;

3) a local information based SUR.

In addition, assume ci, j is the payoff of the FNG between i
and j for player i . Then, the overall payoff of player i is

ci (t) = 1

|U(i)| − 1

∑
j∈U (i)\i

ci j (t), i ∈ N. (10)

By definition, a SUR can be expressed as

xi(t + 1)= fi
({x j (t), c j (t)

∣∣ j ∈ U(i)}) , t ≥ 0, i ∈ N. (11)

In addition, since c j (t) depends on the strategies of its
neighborhood players, i.e., {xk(t) | k ∈ U( j)} only, it follows
immediately that [10]:

xi (t + 1) = fi
({x j (t)

∣∣ j ∈ U2(i)}
)
, t ≥ 0, i ∈ N. (12)

In fact, the fi in (11) and (12) are not the same. To avoid the
notational mess, we use the same symbol for both. We call
(12) the FEE of the NEG.

Remark 2.13

1) When the network graph is homogeneous, i.e., the
degree of each node is unique, the FEEs for all nodes
are the same.

2) Notice that (12) is a k-valued logical dynamic system.
Using Theorem 2.8, we can express (12) into its alge-
braic form as

xi (t + 1) = Mi � j∈U2(i) x j (t), t ≥ 0, i ∈ N. (13)

Set � = |U2(i)|, then in (13) the Mi ∈ Lk×k� when
pure strategies are used; and Mi ∈ Υk×k� when mixed
strategies are used.

We collect some SUR in the following example. Some of
them are used in the sequel.

Example 2.14: The following are some commonly used
SUR.

1) �-I : Unconditional imitation [15] with fixed priority.
The best strategy from strategies of neighborhood play-
ers { j | j ∈ U(i)} at time t is selected as the strategy of
player i at time t + 1, denoted by xi(t + 1). Precisely, if

j∗ = argmax j∈U (i) c j (x(t)) (14)

then

xi (t + 1) = x j∗(t). (15)

When the players with the best payoff are not unique,
say

argmax j∈U (i) c j (x(t)) := { j∗
1 , . . . , j∗

r } (16)
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then we may choose the one corresponding to a
priority as

j∗ = min{μ | μ ∈ argmax j∈U (i) c j (x(t))}. (17)

This method leads to a deterministic k-valued dynamics.
2) �-II : Unconditional imitation with equal probability for

best strategies. When the best payoff player is unique, it
is the same as �-I. When the players with best payoff
are not unique, say, as in (16), then we randomly choose
one with equal probability. That is

xi (t + 1) = x j∗
μ
(t), with probability pi

μ = 1

r
μ = 1, . . . , r. (18)

This method leads to a probabilistic k-valued dynamics.
3) �-III : Simplified Fermi rule [24], [29]. That is, ran-

domly choose a neighborhood j ∈ U(i). Comparing
c j (x(t)) with ci (x(t)) to determine xi (t + 1) as

xi (t + 1) =
{

x j (t), c j (x(t)) > ci (x(t))

xi (t), otherwise.
(19)

This method leads to probabilistic k-valued dynamics.
4) �-I V (�-V ): Myopic best response adjustment

rule [32]

xi(t + 1) = argmaxx∈S

(
ci (x), c j (x j (t)), j ∈ U(i)

)
.

(20)

If the right hand side of (20) is not unique, (17) or (18)
can be used, respectively, to get two different SURs,
denoted by �-I V and �-V , respectively.

Next, we give a topological structure to the set of profiles
by defining a distance on this set.

Define a sequence of matrices π [n,k]
j ∈ Lk×kn , j =

1, . . . , n as

π [n,k]
i = 1T

ki−1 ⊗ Ik ⊗ 1T
kn−i , i = 1, . . . , n. (21)

A straightforward computation shows that
Proposition 2.15: Let xi ∈ Υk , i = 1, . . . , n, such that x =

�
n
i=1xi . Then, xi , i = 1, . . . , n, are uniquely determined by

xi = π
[n,k]
i x, i = 1, . . . , n. (22)

Definition 2.16

1) Let p, q ∈ R
k . Then the distance of p and q is defined

as d(p, q) =
k∑

i=1
|pi − qi |.

2) Let x, y ∈ Υkn , xi = π [n,k]
i x , yi = π [n,k]

i y, i = 1, . . . , n.
Then

‖x − y‖ := 1

2

n∑
j=1

d(x j , y j ). (23)

Remark 2.17: Consider a networked game with n players
(nodes), and the common strategy set S = {1, 2, . . . , k}.
Identifying i ∼ δi

k , i = 1, . . . , k, then a profile of pure
strategies is x = �

n
i=1xi ∈ �kn . It is clear that for two profiles

x, y: ‖x − y‖ = r , if and only if, in these two profiles there
are r different strategies. That is, there are r players, who take
different actions.

TABLE II

PAYOFF BI-MATRIX OF PRISONER’S DILEMMA

III. FEE AND SPD

A. FEE of NEGs

The FEE of an NEG, proposed in [10], has two equivalent
forms. Equation (12) is its logical form, and (13) is its
algebraic form.

According to the payoff bi-matrix, they can be calculated.
We give a simple algorithm as follows.

Algorithm 3.1: Consider a node (player) i .
1) Step 1: For each j ∈ U(i) consider k ∈ U( j). According

to x j (t) and xk(t), c j,k(t) can be calculated.
2) Step 2: Using formula (10), c j (t), j ∈ U(i) can be

calculated.
3) Step 3: Using the c j (t), j ∈ U(i) and according to the

SUR, xi (t + 1) can be figured out.
We give an example to describe this algorithm.
Example 3.2: Assume there are countable players {i | i ∈

Z} on a line R, where axis R is considered as its graph. Then
for each player i , its neighborhood U(i) = {i − 1, i, i + 1},
and its second neighborhood is U2(i) = {i − 2, i − 1, i, i +
1, i+2}. Assume each i plays the prisoner’s dilemma [19] with
its neighborhood players. That is, S0 = {1, 2}, where 1 means
cooperate and 2 means defect. The payoff bi-matrix is as in
Table II, where the profile is composed of the strategies of
five players in the order of (xi−2, xi−1, xi , xi+1, xi+2).

Set P = −6, R = −5, S = −5, and T = −3, then we can
figure out the profile dynamics as in Table III. In the table,
the first row (profile) means the strategies of k ∈ U2(i). For
instance, 11 122 means player i − 2, i − 1, i take strategy 1
at t , and i + 1, i + 2 take strategy 2 at t ; ci−1(t), ci (t), and
ci+1(t) are the payoffs of players i − 1, i , i + 1 at time t ,
respectively; and xi (t + 1) is the strategy of player i at time
t + 1, which is determined by the SUR.

Collecting the values of xi(t + 1) in Table III, the FEE can
be obtained as

xi(t + 1) = M �
2
j=−2 xi+ j (t) (24)

where the structure matrix is

M = δ2[1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2]. (25)

B. Calculation of SPD via FEE

This subsection considers how to use FEE to produce the
SPD for an NEG. We need the following lemma, which can
be proved by a straightforward computation.

Lemma 3.3: Assume X ∈ Υp and Y ∈ Υq .
We define two dummy matrices: 1) D[p,q]

f , named by

front-maintaining operator (FMO) and 2) D[p,q]
r , named by

rear-maintaining operator (RMO), respectively, as follows:

D[p,q]
f = Ip ⊗ 1T

q

D[p,q]
r = 1T

p ⊗ Iq .
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TABLE III

FROM PAYOFFS TO NEXT STRATEGY

Then we have

D[p,q]
f XY = X. (26)

D[p,q]
r XY = Y. (27)

The function of (26) and (27) is to add some dummy factors
at the rear [front] of the original variables. Now, we give
another algorithm to describe how to calculate the SPDs using
FEE.

We need one more concept.
Definition 3.4 ([9]): Let M ∈ Mp×n , N ∈ Mq×n . Then,

the Khatri–Rao product of M and N , denoted by M ∗ N ∈
Mpq×n , is defined column by column as follows:

Coli (M ∗ N) = Coli (M) � Coli (N), i = 1, . . . , n. (28)
Algorithm 3.5

1) Step 1: From the FEE (12) to calculate its algebraic form
(13) as

xi (t + 1) = Mi � j∈U2(i) x j (t), i = 1, . . . , n (29)

where Mi ∈ Lk×k|U2 (i)| .
2) Step 2: Use Lemma 3.3 [equivalently, formulas (26) and

(27)] to add some dummy factors such that the product
in (29) can be a product of all factors, xi , i = 1, . . . , n
as

xi (t + 1) = Wi �
n
j=1 x j , i = 1, . . . , n. (30)

3) Step 3: Denote by x := �
n
j=1x j . The SPDs can be

constructed as [7]

x(t + 1) = Lx(t) (31)

where L ∈ Lkn×kn is determined by

L = W1 ∗ W2 ∗ . . . ∗ Wn . (32)

Equation (31) is called the algebraic form of the SPDs. It
is the dynamics of the NEG.

An NEG is said to be homogeneous, if each node has the
same degree [10]. Otherwise, it is heterogeneous. A homo-
geneous NEG has a universal FEE, and its SPDs is uniquely

determined by its unique FEE. This is demonstrated in the
following example.

Example 3.6: Recall Example 3.2. Assume the network
graph Z ∈ R is replaced by S6. It is clearly homogeneous. In
addition, the FEE of each player is (24) and (25). We construct
its SPDs as follows.

It is easy to calculate that

x1(t + 1) = Mx5x6x1x2x3

= M
(
D[2,4]

r x4x5x6
)
x1x2x3

= M D[2,4]
r W[8,8]x1x2x3x4x5x6

= W1x(t)

where x(t) = �
6
i=1xi (t) and

W1 = M D[2,4]
r W[8,8]

= δ2[1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2,

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2].
Similarly, we have

xi (t + 1) = Wi x(t), i = 2, 3, 4, 5, 6

and

W2 = M D[2,2]
r W[4,16]

= δ2[ 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2

1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
W3 = M D[32,2]

f

= δ2[ 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2

1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
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Fig. 1. Network with a mutant at O .

W4 = M D[2,32]
r

= δ2[ 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2

1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2

1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2

1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
W5 = M D[32,2]

f W[4,16]
= δ2[ 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2

1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2

1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2

1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2]
W6 = M D[32,2]

f W[8,8]
= δ2[ 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2

1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2].
Finally, the SPDs is

x(t + 1) = Lx(t)

where

L = W1 ∗ W2 ∗ W3 ∗ W4 ∗ W5 ∗ W6

= δ64[1, 52, 24, 56, 15, 64, 32, 64, 13, 64, 32, 64, 15, 64

32, 64, 41, 60, 64, 64, 47, 64, 64, 64, 45, 64, 64, 64

47, 64, 64, 64, 50, 52, 56, 56, 64, 64, 64, 64, 62, 64

64, 64, 64, 64, 64, 64, 58, 60, 64, 64, 64, 64, 64, 64

62, 64, 64, 64, 64, 64, 64, 64].

IV. ESS OF NEG

A. Comparing ESSs of NEGs With Classical
Evolutionary Games

As mentioned in Section I, the ESS is a fundamental concept
for evolutionary games. It is natural to extend it to the NEGs.
Consider the ESS defined by (3). Assume on an NEG all nodes
reach the strategy H , and then a mutant appears at node O,
we refer to Fig. 1 for this.

First, we recall (3) to see whether it works for the NEGs.
Since the probability for mutants is small, we assume there
is no other mutant within U2(O). Ignoring W0, we assume

U(O) = {O, B1, . . . , Br } and |U(Bi)| − 1 = �i , i = 1, . . . , r

ci (Bi ) = 1

�i
[(�i − 1)E(H, H ) + E(H, D)] , i = 1, . . . , r

c0(O) = E(D, H ).

Assume we use �-I as the SUR, which is basically the
simple best neighborhood choice. One sees easily that even
if we assume E(H, H ) > E(D, H ), we are not able to
assure ci (Bi ) > c0(O), which means the mutant may not be
eliminated at the next iteration and so forth.

Next, we consider the SUR described by (2). It can not
be applicable to NEGs too, because for NEGs, a player can
only get the information of its neighborhood players. Hence,
we need a new precise definition of the ESS for NEGs. It is
not difficult to verify that the following definition verifies the
general Definition 2.1.

Definition 4.1

1) For a given NEG a strategy ξ ∈ S is called an ESS,
if there exists a μ ≥ 1, such that as long as the initial
strategy profile y0 satisfies

‖y0 − x0‖ ≤ μ (33)

we have

lim
t→∞ y(t, y0) = x0 (34)

where x0 = ξn . Moreover, ξ is called the ESS of level μ.
2) If for any i ∈ N , the strategies within Uk(i) allow up to

μ mutants, precisely∥∥∥(y0 − x0)
∣∣
Uk(i)

∥∥∥ ≤ μ, ∀ i ∈ N (35)

we have (34), then ξ is called the ESS of level μ/[k].
Remark 4.2

1) When the population n is finite, (34) can be replaced
by: there exists a T > 0 such that

y(t, y0) = x0, t ≥ T . (36)

2) Observing Remark 2.17, Definition 4.1 means at least
one mutant could not affect the population under
the evolutionary updating rule. We, therefore, usually
choose μ as a positive integer.

3) It is clear that the μ can be used to measure the
robustness of the stability. So the higher the level the
more robust the ESS.

B. Verifying ESS via SPDs

Since the SPDs is the dynamics of overall NEG, it can be
used to verify ESS directly. We give an example to describe
this.

Example 4.3: Assume the NEG is almost the same as the
one in Example 3.2, except that the network graph is S7.
Using FEE obtained in Example 3.2 and similar calculation in
Example 3.6, we can get the SPDs as

x(t + 1) = Lx(t) (37)
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where x(t) = �
7
i=1xi (t), and

L = δ128
[1 68 8 72 15 80 16 80 29 96 32 96
31 96 32 96 57 124 64 128 63 128 64 128
61 128 64 128 63 128 64 128 113 116 120 120
127 128 128 128 125 128 128 128 127 128 128 128
121 124 128 128 127 128 128 128 125 128 128 128
127 128 128 128 98 100 104 104 112 112 112 112
126 128 128 128 128 128 128 128 122 124 128 128
128 128 128 128 126 128 128 128 128 128 128 128
114 116 120 120 128 128 128 128 126 128 128 128
128 128 128 128 122 124 128 128 128 128 128 128
126 128 128 128 128 128 128 128].

It is easy to calculate that

Lk = δ128
[1 128 128 128 128 128 128 128 128 128 128 128
128 128 128 128 128 128 128 128 128 128 128 128
128 128 128 128 128 128 128 128 128 128 128 128
128 128 128 128 128 128 128 128 128 128 128 128
128 128 128 128 128 128 128 128 128 128 128 128
128 128 128 128 128 128 128 128 128 128 128 128
128 128 128 128 128 128 128 128 128 128 128 128
128 128 128 128 128 128 128 128 128 128 128 128
128 128 128 128 128 128 128 128 128 128 128 128
128 128 128 128 128 128 128 128 128 128 128 128
128 128 128 128 128 128 128 128]

where k ≥ 3.
It is clear that unless x(0) = δ1

128, which leads to x(∞) =
x(3) = δ1

128 ∼ (1, 1, 1, 1, 1, 1, 1), any other initial states
converge to δ128

128 ∼ (2, 2, 2, 2, 2, 2, 2).
We conclude that ξ = δ2

2 ∼ 2 (i.e., strategy 2) is an ESS.
In addition, it is so strong that we can choose μ = 6, and as
long as |y0 − x0| ≤ μ, (where x0 = ξ7), and setting T = 3,
(36) holds. Hence, the ESS is of level 6.

Meanwhile, if we consider another strategy η = δ1
2 ∼ 1.

Then, it is clear that η is not an ESS, because for any mutant
|y0 − η7| ≥ 1, we have y(t, y0) → ξ . That is, the mutant
strategy will invade and eventually dominate the population.

Remark 4.4: Observing Example 4.3, we set H = δ2
2 ∼ 2

and D = δ1
2 ∼ 1. Then one sees that

E(H, H ) = −6 < E(D, H ) = −5.

That is, (3) is not true. So in NEG case, (3) is also not
necessary for the ESS.

We have calculated Si , for 5 ≤ i ≤ 13, and shown that for
all for them δ1

2 is not an ESS and δ2
2 is stable. One may guess

this is also true for all i ≥ 5. But as i is large, this method is
not applicable because of the computational complexity.

Remark 4.5:

1) Even if a network is heterogeneous, its SPDs is still
computable provided that the network size is small.
Hence, the ESS of a heterogeneous NEG can also be
verified via its SPDs.

2) If the network size is not small, the SPDs for either
homogeneous or heterogeneous NEGs can hardly be
calculated, because of the computational complexity.
Thus, some other techniques need to be developed.

V. VERIFICATION OF ESS VIA FEE

In Section IV, we considered how to verify the ESS of
a strategy using the SPDs of the NEG. For an NEG with
large population, constructing the SPDs becomes difficult. For
instance, in Example 4.3, when n > 15 or so, it is almost
impossible to construct the structure matrix of the SPDs in
personal computers. If 2-D case, say, Sm × Sn , or even higher
dimensional cases are investigated, verifying ESS via SPDs
seems hopeless because of the computational complexity.

In this section, we consider how to verify the ESS of a
strategy via the FEE of the NEG. To begin with, we consider
the iteration of FEE.

A. Iteration of FEE in Homogeneous Case

For homogeneous case we have unique FEE. Consider the
strategy of a fixed point i , to get an updated strategy xi (t0 +1)
via FEE, we need to know {x j (t0) | j ∈ U2(i)}, where t0 is a
given initial moment. We express it as

xi (t0 + 1) = f (x j (t0)
∣∣ j ∈ U2(i)). (38)

Equation (38) is exactly the ESS for i . If we want to get two
step updated strategy xi (t0+2) via FEE, we surely need all the
information about the strategies over U4(z0). This procedure
can be described as

xi (t0 + 2) = f (x j (t0 + 1)
∣∣ j ∈ U2(i))

= f 2(xk(t0)
∣∣ k ∈ U4(i)). (39)

Keep going like this, we can find r step updated strategy
xi (t0+r) over a set of nested neighborhoods (refer to Fig. 2) as

xi (t0 + r) = f r (xk(t0)
∣∣ k ∈ U2r (i)), r = 1, 2, . . . (40)

It is worth noting that the iterative expression (40) is
formally different from conventional mapping. However, it is
only a specification of a general mapping

xi (t0 + 1) = f (x j (t0) | j ∈ N), i ∈ N (41)

and

xi(t0 + r) = f r (xk(t0) | k ∈ N), i ∈ N. (42)

However, only part of {xk(t0) | k ∈ N} are used. Thus, (38)
and (40) are the same as (41) and (42), respectively. The only
difference is the arguments which have been specified.

Next, we consider the heterogeneous case. For xi (t0 + 1)
we have

xi (t0 + 1) = fi (x j (t0)
∣∣ j ∈ U2(i)). (43)

It is almost the same as (38). As for 2 step case, we have

xi(t0 + 2) = fi (x j (t0 + 1) | j ∈ U2(i))

x j (t0 + 1) = f j (xk(t0) | k ∈ U2( j)), j ∈ U2(i). (44)

We briefly rewrite (44) as

xi (t0 + 2) = f 2
i (xk(t0) | k ∈ U4(i)). (45)

It means two iterations by using the information {xk(t0) | k ∈
U4(i)} is enough. However, note that { f j | j ∈ U2(i)} are also
used. Similarly, we can denote

xi (t0 + r) = f r
i (xk(t0) | k ∈ U2r (i)). (46)
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Fig. 2. Iteration over nested neighborhoods.

B. ESS of Homogeneous NEGs

Note that for a homogeneous NEG the FEE is unique.
In addition, |Us(i)|, s = 1, 2, . . . are independent of i , we,
therefore, can denote ds := |Us(i)|.

Using the iterative expression, we have the following result.
Theorem 5.1: Given a homogeneous NEG. Assume its

unique FEE is

xi (t + 1) = f
({x j (t)

∣∣ j ∈ U2(i)}
)
, t ≥ 0, i ∈ N. (47)

1) A strategy ξ is ESS of level μ/[2r ] (μ ≥ 1), if there
exists an integer r ≥ 1, such that for any i ∈ N , and the
strategies xk , k ∈ U2r (i), satisfying

∑
k∈U2r (i) |xk −ξ | ≤

μ, we have

f r (xk
∣∣ k ∈ U2r (i)) = ξ, ∀ i ∈ N. (48)

2) A strategy ξ is not ESS, if for any x j , j ∈ U2(i),
satisfying

∑
j∈U2(i) |x j − ξ | ≥ 1, we have

f (x j | j ∈ U2(i)) �= ξ. (49)
Proof

1) First, notice that (48) is independent of i , because the
NEG is homogeneous, as long as (48) holds for any
one i , it is also true for all i . Next, according to (40),
(48) means that even if in the U2r (i) there are up to μ
mutants, after r generations (i.e., iterations), and all the
mutants will disappear.

2) According to (49) one sees that if there is one or more
mutant(s), then after one step we still have at least one
mutant. Thus, the mutant(s) will never disappear.

It is obvious that as long as the mutants are distributed
sparsely, then the requirement

∑
k∈U2r (i) |xk − ξ | ≤ μ is

satisfied.
Particularly, we can easily check the case when μ = 1.
Proposition 5.2: Assume the mutants are so sparse that for

any two mutants i, j

U2r (i) ∪ U2r ( j) = ∅ (50)

Then for any i ,
∑

k∈U2r (i) |xk − ξ | ≤ 1 is satisfied.
In fact, μ = 1 is the most useful case.
Example 5.3: Recall Example 4.3. Its FEE was obtained in

Example 3.2. Using a similar argument as in Example 4.3, it
is ready to see that ξ = δ2

2 verifies (48) with r = 1, μ = 4.
Hence, for any Sn , n > 5, or even n = ∞, ξ = δ2

2 is an ESS
of level 4. Similarly, η = δ1

2 verifies (49), hence η = δ1
2 is not

ESS for any Sn .

C. ESS of General NEGs

This subsection considers the general case, where the net-
work is, in general, heterogeneous. Houwever, the results
obtained are also applicable to homogeneous case. We need
the following assumption.

A1: There exist two numbers p and q satisfying 1 ≤ p ≤
q < ∞, such that

p ≤ degree(i) ≤ q, ∀ i ∈ N. (51)

As mentioned in Remark 4.5 for general case, when the
network size is small, the ESS can be verified via its SPDs.
So the NEGs concerned in this subsection are of large size.
To deal with such networks, we propose a method called
the decomposition approach. We describe it via the following
example.

Example 5.4: Observing the network in Fig. 3(a), there is
a node O ∈ N with

U(O) = {O, A, C, F}
U2(O) = {O, A, B, C, D, E, F, G, H, I }
Ur (O) = . . . , r = 3, 4, . . . .

According to U(O), we split the network into three branches,
namely O1, O2, and O3, which are depicted in Fig. 3(b)–(d),
respectively. Notice that the number of branches equals to
|U(O)| − 1.

Assume ξ ∈ S is a strategy. We hope that if ξ is an ESS in
each branch, then it is also an ESS for overall network.

Under the assumption A1, one sees easily that for each node
there are at most q − p + 1 different kinds of branches.
Consider a node O, then O has |U(O)|− 1 branches and one
of its branches, denoted by i , is depicted in Fig. 4. Setting
s = |U(A)| − 2, we denote

xi
O = xO � x A � xB1 � · · · � xBs .

The corresponding FEE for the i th branch of node O is
denoted as

f i
O (xO , x A, xB1, . . . , xBs )

= Mi
O � xO � x A � xB1 � · · · � xBs ,

i = 1, . . . , |U(O)| − 1 (52)

where Mi
O ∈ Lk×ks+2 , i ∈ U(O)\{O}.

Let O ∈ N and i ∈ U(O)\{O}. Over each branch of O,
say i , we set Ui

r (O) the r th neighborhood of O with respect
to branch Oi . di

r := ∣∣Ui
r (O)

∣∣. Then, we compute the iterative
expression of FEE as

xi
O(t0 + 1) = f i

O (x j (t0)
∣∣ j ∈ Ui

2(O))

xi
O(t0 + 2) = ( f i

O )2(xk(t0)
∣∣k ∈ Ui

4(O))

...

xi
O(t0 + r) = ( f i

O )r (xk(t0)
∣∣k ∈ Ui

2r (O))

i ∈ U(O)\{O}. (53)

Then, we have the following result.
Theorem 5.5: Consider a general NEG and assume A1. Let

O ∈ N be any node. If there exist two integers μ ≥ 1 and
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Fig. 3. (a) U2(O). (b) O1. (c) O2. (d) O3.

r ≥ 1, such that any x j (t0), j ∈ U2r (O), which is the initial
strategy profile of { j | j ∈ U2r (O)} with

∑
j∈U2r (O) |x j (t0) −

ξ | ≤ μ, satisfying

xi
O (t0 + �) = x j

O(t0 + �)

∀ i, j ∈ U(O)\{O}� = 1, . . . , r − 1 (54)

xi
O(t0 + r) = x j

O(t0 + r) = ξ

∀ i, j ∈ U(O)\{O} (55)

then ξ is an ESS of level μ/[2r ].
Proof: According to (54) and (55) we can denote

xO(t0 + �) = xi
O(t0 + �), � = 1, . . . , r. (56)

For each branch Oi , according to the SUR, xi
O(t0 + �) =

xO(t0 + �) is the best selected strategy. Using the weighted
average (10), it is clear that xO(t0 + �) is also the best
selected strategy for O at time t0 + � with respect to overall
neighborhood U2�(O).

Fig. 4. Branch Oi .

TABLE IV

PROFILE DYNAMICS OF BRANCH (B)

TABLE V

PROFILE DYNAMICS OF BRANCH (C)

TABLE VI

PROFILE DYNAMICS OF BRANCH (D)

Finally, (54) and (55) assure that the strategy profile of each
branch Oi evolutes as if it is independent of the other branches.
Hence, the strategy of O at overall network converges to ξ
after r generations, which is exactly the same as it converges
to ξ at each branch.

Remark 5.6: The conditions (54) and (55) seem too restric-
tive. Our conjecture is: if in every branch O converges to ξ
then in the overall NEG O converges to ξ too.

Example 5.7: Consider an NEG, which is constructed as
follows:

1) the FNG is the prisoner’s dilemma as in Example 3.2
with parameters: P = −6, R = −5, S = −6, and
T = −3;

2) the network is heterogeneous and could be huge, we
do not care about its shape, but for any node i ∈ N ,
2 ≤ degree(i) ≤ 4. Then, there are only three kinds of
branches (refer to Fig. 3);

3) the SUR is assumed to be unconditional imitation �-I
(or �-II ).

We try to use Theorem 5.5 to find ESS. For the sake of
simplicity, we only use the information of U2(O). Hence, we
assume μ = 1. That is, we allow only one mutant at each kind
of branches Ui

2(O), i = 1, 2, 3. For each kind of branches we
check f i

O , and we need only to check the profile with one
mutant case. This is done in Tables IV–VI, respectively.

It is clear that the conditions (54) and (55) of Theorem 5.5
with r = 1 are satisfied. Therefore, Theorem 5.5 assures that
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ξ = δ2
2 is an ESS of level μ/[2r ] = 1/[2]. (The level could

be higher if we check Ui
4(O) for all i or so.)

When the higher dimension homogeneous cases are con-
sidered, Theorem 5.5 can provide a very simple and useful
result.

Corollary 5.8: Assume both A and B are same type of
homogeneous NEGs, i.e., their FEEs and SURs are the same,
and ξ is an ESS for both NEGs of level μ (or μ/[k]). Then,
μ is also an ESS of same level for the product NEGs.

Example 5.9: Consider Sm × Sn , where m and n are large,
could be ∞. Assume the prisoner’s dilemma with parameters:
P = −6, R = −5, S = −5, and T = −3 is played. According
to Example 5.3, ξ = δ2

2 is an ESS of level μ = 4 over both
Sn and Sm . According to Corollary 5.8, ξ = δ2

2 is also an ESS
of level μ = 4 for the product NEG.

VI. CONCLUSION

When an evolutionary game is considered, the ESS is
of fundamental importance, because it indicates the target
situation of the evolution. When the NEGs are considered,
ESS is also a key issue to be investigated. Using STP of
matrices, [10] proposed a rigorous mathematical model for
NEGs. This paper is a follow up of [10], and it contains mainly
of the following works.

1) Algorithms are proposed to get the SPDs of NEGs from
their FEEs.

2) The concept of ESS has been proposed for NEGs.
A comparison with the ESS of classical evolutionary
games has been done, certain differences have been
revealed.

3) Two ways for verifying ESSs were presented as:

a) using the SPDs to verify the ESS. It provides a nec-
essary and sufficient condition for a strategy to be
ESS. But because of the computational complexity,
it can be used for only small size NEGs;

b) using the FEEs to verify the ESS. Only a sufficient
condition has been obtained. It can be used for both
homogeneous and heterogeneous cases. But it is
efficient for large scale NEGs.

Though the method proposed in this paper covers both pure
strategy and mixed strategy cases, this paper is mainly working
with pure strategy case. More investigation for mixed strategy
case needs to be considered. There is also room for improving
the sufficient condition using FEEs.

Finally, the most challenging problem is to apply the results
to real biological systems. We leave this for further study.
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