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Model Construction of Boolean Network
via Observed Data

Daizhan Cheng, Fellow, IEEE, Hongsheng Qi, Member, IEEE, and Zhiqiang Li

Abstract— In this paper, a set of data is assumed to be obtained
from an experiment that satisfies a Boolean dynamic process.
For instance, the dataset can be obtained from the diagnosis of
describing the diffusion process of cancer cells. With the observed
datasets, several methods to construct the dynamic models for
such Boolean networks are proposed. Instead of building the
logical dynamics of a Boolean network directly, its algebraic
form is constructed first and then is converted back to the logical
form. Firstly, a general construction technique is proposed. To
reduce the size of required data, the model with the known
network graph is considered. Motivated by this, the least in-
degree model is constructed that can reduce the size of required
data set tremendously. Next, the uniform network is investigated.
The number of required data points for identification of such
networks is independent of the size of the network. Finally, some
principles are proposed for dealing with data with errors.

Index Terms— Algebraic form, identification, infection process,
least in-degree model, uniform Boolean network.

I. INTRODUCTION

THE Boolean network was firstly proposed by
Kauffman [1], and since then it has attracted great

attentions from biologists, physicians, and systems scientists
and became a hot topic in systems biology, physics, and
systems science [2]–[7]. Some practical useful control
techniques have also been proposed [8], [9].

The dynamics of a Boolean network is a logical system.
A major difficulty in dealing with logical systems is that
few analysis tools can be used. Recently, a new technique,
called the semi-tensor product of matrices, was proposed.
It converts the logical systems into standard discrete-time
dynamic systems [10], [11]. It can also be used to deal with
the control problems of Boolean networks [12], [13].

Network identification, which is also called the reverse
engineering or network inference, investigates the algorithms
to construct the dynamics of Boolean networks, such as genetic
regulatory networks, etc. It is currently a topic of high interest
of the community of mathematical biologists and particularly
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in the area of systems biology. The data can be obtained from
variety of sources [14]. For instance, the Human Genome
Project produces a gigantic set of human deoxy ribo nucleic
acid data, and digesting it is essentially a modeling problem.

Various algorithms have been proposed for the network
inference. For instance, in [15] a general reverse engineering
algorithm has been proposed for inference of genetic net-
work architecture. Identification by using a small number of
gene expression patterns was proposed in [16]. Then another
identification algorithm based on matrix multiplication and
fingerprint function was proposed by them [17]. In [18] a
randomized network search algorithm is presented, which
requires less average time. In [19], a method is proposed
to construct the network dynamics using prescribed attractor
structure. Using computational algebra, the link adaptation
algorithm was proposed by [20] and then the estimates for the
expected amount of data were presented in [21]. The number
of experiments required to characterize a network was also
investigated in [22].

In this paper, a new method is proposed to build a model
of Boolean network by using experimental data. The approach
is based on the framework proposed by the authors recently
[10]–[13]. In this approach, the logical dynamics of a Boolean
network are converted into its algebraic forms, either com-
ponentwise or as a whole. The algebraic form is a standard
discrete-time system described as a difference equation. These
algebraic forms are equivalent to the original logical dynamic
system. Hence, instead of identifying the original system, it is
needed only to identify its algebraic forms.

Most of existing identification methods for Boolean net-
works are based on certain proposed algorithms. They provide
only sufficient conditions. One of the advantages of such
numerical methods is that they may be used for compara-
tively large networks. Compared to the existing methods, our
approach emphasizes on the theoretical analysis. It provides
a rigorous model when the data are sufficient. One of the
advantages of our approach is that in this approach only
parameters of algebraic equations need to be identified. This
is much simpler than identifying logical relations directly.
Another advantage is that the method can be easily extended
to the multivalued case. Its critical defect is the computational
complexity. However, when some special structure properties
are known, the number of required data points could be
reduced.

The basic tool in this approach is the semi-tensor product
of matrices, which is a generalization of the conventional
matrix product [23]. Let A and B be two arbitrary matrices of
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dimensions m × n and p × q , respectively, and s = lcm{n, p}
be the least common multiple of n and p. The semi-tensor
product of A and B is defined as

A � B := (
A ⊗ Is/n

) (
B ⊗ Is/p

)
. (1)

Using it, for each logical function there is a matrix, called
its structure matrix (SM), the function can be expressed as
the product of the SM with its arguments. This is the key
for converting a logical dynamic system into a discrete-time
system. Throughout this paper, the matrix product is assumed
to be the semi-tensor product. Moreover, in most cases the
symbol � is omitted.

The method proposed in this paper can be used to identify
any Boolean network as well as any multivalued logical
network. Particularly, certain special types of Boolean net-
work models, such as networks with known network graph
(equivalently, incidence matrix), least in-degree model, and
uniform networks, are proposed. To identify them, the number
of required experimental data can be reduced tremendously.

The rest of this paper is organized as follows. In
Section II, the necessary preliminaries, such as showing what
is the (component-wise) algebraic form of a Boolean network
and how to convert its dynamics into its (component-wise)
algebraic form and vise versa, are introduced. In Section III,
a general algorithm is provided to identify a Boolean network
through the observed data. It is shown that at least 2n + 1
data points are required. Section IV shows that, when the
network graph is known, the number of required data could be
tremendously reduced. The least in-degree model is discussed
in Section V. Theoretically, no matter how small the data
size is, a least in-degree model can always be built (may not
be unique). Section VI considers a model called the uniform
Boolean network. It is shown that this model commonly
exists. Its identification is independent of the network size.
In Section VII, some principles are proposed to deal with data
errors. Section VIII includes the concluding remarks.

II. PRELIMINARIES

First, the following notations are used.

1) Dk := {0, 1/(k − 1), . . . , (k − 2)/(k − 1), 1}, k ≥ 2;
D := D2 = {0, 1}.

2) Let δi
n be the i th column of the identity matrix In ,

and �n := {δ1
n, δ

2
n, . . . , δn

n }. When n = 2, simply use
� := �2.

3) Assume a matrix M = [δi1
n δi2

n . . . δ
is
n ] ∈ Mn×s , i.e., its

columns, Col(M) ⊂ �n . M is called a logical matrix,
and can be simply denoted as

M = δn[i1 i2 . . . is].
The set of n × s logical matrices is denoted by Ln×s .
Consider a Boolean network. Its dynamics is described as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x1(t + 1) = f1(x1(t), . . . , xn(t))

x2(t + 1) = f2(x1(t), . . . , xn(t))
...

xn(t + 1) = fn(x1(t), . . . , xn(t))

(2)

TABLE I

SMS OF LOGICAL OPERATORS (LOS)

LO ¬ ∧ ∨
SM Mn = δ2[2 1] Mc = δ2[1 2 2 2] Md = δ2[1 1 1 2]
LO → ↔ ∨̄
SM Mi = δ2[1 2 1 1] Me = δ2[1 2 2 1] Mp = δ2[2 1 1 2]

where xi (t) ∈ D are state variables, fi : Dn → D are logical
functions.

To use the matrix expression of logic, identifying 1 ∼ δ1
2

and 0 ∼ δ2
2 is necessary. Then, xi (t) ∈ � and fi : �n → �.

Define x(t) := �
n
i=1xi (t). It was proved in [10] and [11] that

the system (2) can be expressed as
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x1(t + 1) = M1x(t)

x2(t + 1) = M2x(t)
...

xn(t + 1) = Mn x(t)

(3)

where Mi ∈ L2×2n , called the SM of fi . Equation (3) is called
the component-wise algebraic form of (2). Moreover, (3) can
further be converted as

x(t + 1) = Lx(t) (4)

where L ∈ L2n×2n is called the transition matrix of the system.
Equation (4) is called the algebraic form of (2).

For convenience, the SMs of some basic LOs are listed in
Table I.

For instance, let x = 1 and y = 0. Then in vector form,
x = δ1

2 and y = δ2
2. Now, using Table I, it follows that

¬x = Mn � x = δ2[2 1] � δ1
2 = δ2

2 ∼ 0;
x ∧ y = Mc � x � y = δ2[1 2 2 2] � δ1

2 � δ2
2 = δ2

2 ∼ 0;
x ∨ y = Md � x � y = δ2[1 1 1 2] � δ1

2 � δ2
2 = δ1

2 ∼ 1;
. . .

It was proved that (2)–(4) are equivalent to each other.
Then it is not difficult to see that using experimental data
to reconstruct model (3) or (4) is much easier than (2). This is
because building model (3) or (4) is equivalent to calculating
the SMs Mi (correspondingly, transition matrix L), while
building model (2) directly seems much more difficult.

Finally, it is worth noting that some mechanical algorithms
were proposed in [12] for the following conversions:

C1: (2) → (3) → (4) C2: (4) → (3) → (2).

Before showing how to realize C1, some related properties
of the semi-tensor product are briefly reviewed.

Proposition 2.1: The semi-tensor product has the following
properties (in the following, the symbol � is omitted).

1) Let X ∈ R
t be a column. Then

X A = (It ⊗ A)X. (5)

2) Let X ∈ R
m and Y ∈ R

n be two columns. Then

W[m,n] XY = Y X (6)

where W[m,n] is an mn × mn matrix, called the swap
matrix [11].
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3) Let x ∈ �. Then
x2 = Mr x (7)

where Mr = δ4[1 4] is called the power-reducing
matrix [11].

C1 is based on the above properties of the semi-tensor
product. A briefly explanation is given as follows.

Step 1: (2) → (3).

1) Using SMs of basic LOs to express fi (x1, . . . , xn) as
a product of SMs M j and arguments xi .
For instance, consider

f (x1, x2) = x2 ↔ (x1 ∧ x2)

= Mex2 Mcx1x2. (8)

2) Using (5) to move all M j to the front and all xi to
the rear.
For instance

Mex2Mcx1x2 = Me(I2 ⊗ Mc)x2x1x2. (9)

3) Using (6) to re-order xi .
For instance

x2x1x2 = W[2,2]x1x2
2 . (10)

4) Using (7) to reduce the order of xi . Previous steps
may be used again to get the final form.
For instance

x1x2
2 = x1Mr x2 = (I2 ⊗ Mr )x1x2. (11)

Summarizing (8)–(11) yields

f (x1, x2) = M f x1x2 (12)

where the SM M f is

M f = Me(I2 ⊗ Mc)W[2,2](I2 ⊗ Mr ).

Step 2: (3) → (4). Denote by Coli (M) the i th column of
matrix M . Then the coefficient matrix L in (4) can be obtained
by [24]

Coli (L) = �
n
j=1 Coli (M j ), i = 1, . . . , 2n. (13)

Next consider C2. C2 is essential for this paper. It is briefly
described as follows.

Step 1: (4) → (3). Define a set of matrices in L2×2n , called
the retrievers, as

Sn
1 = δ2[1, . . . , 1︸ ︷︷ ︸

2n−1

, 2, . . . , 2︸ ︷︷ ︸
2n−1

]

Sn
2 = δ2[1, . . . , 1︸ ︷︷ ︸

2n−2

, 2, . . . , 2︸ ︷︷ ︸
2n−2

, 1, . . . , 1︸ ︷︷ ︸
2n−2

, 2, . . . , 2︸ ︷︷ ︸
2n−2

]

...

Sn
n = δ2[1, 2, 1, 2, . . . , 1, 2]. (14)

Then
Mi = Sn

i L, i = 1, . . . , n. (15)

Hence

xi (t + 1) = Mi �
n
j=1 x j (t), i = 1, . . . , n. (16)

x
1

x
2

x
3

x
4

Fig. 1. Network graph of (21).

Step 2: Simplify (3). Use the following theorem to remove
the fabricated variables.

Theorem 2.2: Let the algebraic form of a logical
function be

f (x1, . . . , xn) = M �
n
j=1 x j . (17)

f is independent of x j (i.e., x j is a fabricated variable), iff

MW[2,2 j−1](I − Mn) = 0 (18)

where Mn is the SM of negation and W[p,q] is the swap
matrix [23]. Moreover, if (18) holds, then the function can
be expressed as

f (x1, . . . , xn) = M̃x1 . . . x j−1x j+1 . . . xn

where
M̃ = MW[2,2 j−1]δ1

2 .
Step 3: (3) → (2). Let

f (x1, . . . , xn) = M �
n
i=1 xi . (19)

Split M into two equal parts as M = [M1, M2]. Then

f (x1, . . . , xn) = (x1 ∧ f 1(x2, . . . , xn))

∨(¬x1 ∧ f 2(x2, . . . , xn)) (20)

where f i has its SM as Mi , i = 1, 2.
Using (20) repeatedly, the algebraic form (3) can finally be

converted into its logical form as (2).
Remark 2.3: For k-valued logical networks, identify

i

k − 1
∼ δk−i

k , i = 0, 1, . . . , k − 1.

Then with mild modifications, all the above forms and
conversions remain true. For instance, we have (3) with Mi ∈
Lk×kn , i = 1, . . . , n, and (4) with L ∈ Lkn×kn [25]. So the
following identification process remains applicable to k-valued
logical networks.

The following example shows how to realize conversion C1.
Example 2.4: Consider the Boolean network shown in

Fig. 1.
Its dynamics are described as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x1(t + 1) = x1(t) → x4(t)

x2(t + 1) = ¬x1(t)

x3(t + 1) = x2(t) ∧ x4(t)

x4(t + 1) = x2(t) ↔ x3(t).

(21)

First, express the system (21) in its component-wise alge-
braic form as
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x1(t + 1) = Mi x1(t)x4(t) = δ2[1 2 1 1]x1(t)x4(t)

x2(t + 1) = Mn x1(t) = δ2[2 1]x1(t)

x3(t + 1) = Mcx2(t)x4(t) = δ2[1 2 2 2]x2(t)x4(t)

x4(t + 1) = Mex2(t)x3(t) = δ2[1 2 2 1]x2(t)x3(t).

(22)
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Setting x = �
4
i=1xi (t), the system (21) can be expressed in

its algebraic form as

x(t + 1)

= Mi x1(t)x4(t)Mn x1(t)Mcx2(t)x4(t)Mex2(t)x3(t)

= Mi (I4 ⊗ Mn)x1(t)x4(t)x1(t)Mcx2(t)x4(t)Mex2(t)x3(t)
...

= Lx(t) (23)

where

L = δ16[5 15 6 16 8 16 7 15 1 3 2 4 4 4 3 3]. (24)
The following example shows how to realize the conversion

C2.
Example 2.5: Assume that a Boolean network with four

nodes is considered, the algebraic form of the network dy-
namics is

x(t + 1) = Lx(t) (25)

where

L = δ16[5 7 9 11 8 8 4 4 1 3 13 15 4 4 8 8].
Now, reconstruct its logical expression. The retrievers are

calculated as

S4
1 = δ2[1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2]

S4
2 = δ2[1 1 1 1 1 2 2 2 2 1 1 1 2 2 2 2]

S4
3 = δ2[1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2]

S4
4 = δ2[1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2]. (26)

Then the following component-wise algebraic form can be
obtained as ⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

x1(t + 1) = M1x(t)

x2(t + 1) = M2x(t)

x3(t + 1) = M3x(t)

x4(t + 1) = M4x(t)

(27)

where

M1 = S4
1 L = δ2[1 1 2 2 1 1 1 1 1 1 2 2 1 1 1 1]

M2 = S4
2 L = δ2[2 2 1 1 2 2 1 1 1 1 2 2 1 1 2 2]

M3 = S4
3 L = δ2[1 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2]

M4 = S4
4 L = δ2[1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2]. (28)

First, consider the logical expression of x1(t)

x1(t +1) = M4x(t) = δ2[1 1 2 2 1 1 1 1 1 1 2 2 1 1 1 1]x(t).

It is easy to verify that

M1(Mn − I2) = 0

M1W[2,2](Mn − I2) �= 0

M1W[2,4](Mn − I2) �= 0

M1W[2,8](Mn − I2) = 0. (29)

So x1(t) and x4(t) are fabricated variables in the dynamical
equation of x1(t + 1). Set x1(t) = x4(t) = δ1

2. Then

x1(t + 1) = M1x1(t)x2(t)x3(t)x4(t)

= M1W[2,8]x4(t)x1(t)x2(t)x3(t)

= δ2[1 2 1 1]x2(t)x3(t).

x
1

x
2

x
3

x
4

Fig. 2. Network graph of (30).

Hence the logical expression is

x1(t + 1) = x2(t) → x3(t).

The same procedure can be used to reconstruct the log-
ical expression of x2(t), x3(t), and x4(t). Finally, from the
SM (25), the following logical expression is obtained:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x1(t + 1) = x2(t) → x3(t)

x2(t + 1) = x1(t)∨̄x3(t)

x3(t + 1) = x2(t) ∧ x4(t)

x4(t + 1) = x2(t)

(30)

with its network graph depicted in Fig. 2.

III. MODEL CONSTRUCTION FOR GENERAL NETWORKS

Assume a Boolean network consisting of n nodes. Let
X (t) = {x1(t), . . . , xn(t)}. Denote the observed data as
{X (0), X (1), . . . , X (N)}. A rigorous definition for the model
construction is given below.

Definition 3.1: Assume that a set of observed data
{X (0), X (1), . . . , X (N)} is given, where X (t) =
{x1(t), . . . , xn(t)}. The model construction problem is
as follows. Find a logical dynamic system (2), such that the
given data verify the dynamic equation.

A model that is verified by the given data is called a
realization of the data.

From this definition, there is an immediate result.
Proposition 3.2: The system is uniquely identifiable, iff the

set of data {X (0), X (1), . . . , X (N − 1)} contains all possible
states.

Proof: Convert the data into the vector form by using
x(t) := �

n
i=1xi (t). Then in algebraic form, it follows that

x(t) = δi
2n and x(t + 1) = δ

j
2n , iff the i th column of L is

Coli (L) = δ
j
2n . (31)

It follows that L is identifiable, iff in the vector form

{x(0), x(1), . . . , x(N − 1)} = �2n .

The conclusion follows.
If the experiment has been carried out more than once, the

following result is obvious.
Corollary 3.3: Assume the observed data consist of k

groups as {Xi (0), Xi (1), . . . , Xi (Ni )}, i = 1, . . . , k. Then the
system is uniquely identifiable, iff (in the vector form)

{
xi (0), . . . , xi (Ni − 1)

∣
∣∣ i = 1, 2, . . . , k

}
= �2n . (32)
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t � 0 t � 1 t � 2 t � 3 t � 4

t � 0 t � 1 t � 2 t � 3

t � 0 t � 1 t � 2 t � 3

t � 0 t � 1 t � 2 t � 3

t � 0 t � 1

t � 0 t � 1

t � 0 t � 1

t � 0 t � 1

t � 0 t � 1

t � 0 t � 1

t � 0 t � 1

t � 0 t � 1

t � 4

t � 5 t � 6 t � 7

t � 8 t � 9 t � 10 t � 11 t � 12 t � 13 t � 14

Fig. 3. Observed data from experiments in Example 3.5.

Remark 3.4:

1) From Proposition 3.2, one sees that, to identify a
Boolean network of n nodes, at least 2n + 1 data are
necessary.

2) If the data are not enough or do not satisfy the condition
of Proposition 3.2, (31) still can be used to identify
some columns. Then the model is not unique. Uncertain
column(s) of L can be chosen arbitrarily.

Example 3.5: Assume a set of five cells is considered. The
12 groups of experimental data are shown in Fig. 3, where a
white disc, numbered 1, represents a healthy cell, and a black
disc, numbered by 0, represents an infected cell. Our goal is
to build a dynamic model for the process of infection.

From the first experimental data, we have (where the nodes
are ordered from left to right and then from top to bottom)

X1(0) = (0, 0, 1, 0, 0); X1(1) = (0, 1, 1, 1, 0);
X1(2) = (1, 1, 0, 1, 1); X1(3) = (0, 1, 1, 0, 0);
X1(4) = (1, 1, 1, 1, 1); X1(5) = (1, 1, 1, 0, 0);
X1(6) = (1, 1, 1, 1, 0); X1(7) = (1, 1, 0, 1, 0);
X1(8) = (0, 1, 0, 1, 0); X1(9) = (0, 1, 0, 1, 1);
X1(10) = (0, 1, 1, 0, 1); X1(11) = (1, 1, 0, 0, 1);
X1(12) = (0, 0, 0, 0, 0); X1(13) = (0, 0, 1, 1, 0);
X1(14) = (0, 1, 0, 1, 0).

Now in the vector form, we have X1(0) = δ2[2, 2, 1, 2, 2]
and

x1(0) = δ2
2 � δ2

2 � δ1
2 � δ2

2 � δ2
2 = δ28

32.

Similarly, we can calculate

x1(0) = δ28
32; x1(1) = δ18

32; x1(2) = δ5
32; x1(3) = δ20

32;
x1(4) = δ1

32; x1(5) = δ4
32; x1(6) = δ2

32; x1(7) = δ6
32;

x1(8) = δ22
32; x1(9) = δ21

32; x1(10) = δ19
32; x1(11) = δ7

32;
x1(12) = δ32

32; x1(13) = δ26
32; x1(14) = δ22

32 .

Using Proposition 3.2 [precisely, (31)], it is known that

Col28(L) = δ18
32; Col18(L) = δ5

32; Col5(L) = δ20
32; . . .

The 14 columns of L have been determined.
Using the same procedure to the other groups of data,

certain values of columns of L can be figured out. Finally,
we can easily obtain

L = δ32[4 6 8 2 20 22 32 26 19 21 23 17 19 21 31 25

3 5 7 1 19 21 31 25 20 22 24 18 20 22 32 26]. (33)

Hence, the algebraic form of the dynamics of the infection
process from the experimental data is

x(t + 1) = Lx(t) (34)

where L ∈ L32×32 is shown in (33).
Next, construct its logical dynamic equation to see the inter-

action between cells. Using (14), the corresponding retrievers
are

S5
1 = δ2[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2]
S5

2 = δ2[1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2]
S5

3 = δ2[1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2

1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2]
S5

4 = δ2[1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2]
S5

5 = δ2[1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2]. (35)
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Then the following component-wise algebraic form can be
obtained as ⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x1(t + 1) = M1x(t)

x2(t + 1) = M2x(t)

x3(t + 1) = M3x(t)

x4(t + 1) = M4x(t)

x5(t + 1) = M5x(t)

(36)

where

M1 = S5
1 L = δ2[1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2

1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2]
M2 = S5

2 L = δ2[1 1 1 1 1 1 2 2 1 1 1 1 1 1 2 2

1 1 1 1 1 1 2 2 1 1 1 1 1 1 2 2]
M3 = S5

3 L = δ2[1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1

1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1]
M4 = S5

4 L = δ2[2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1

2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1]
M5 = S5

5 L = δ2[2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2]. (37)

First consider the logical expression of x1(t)

x1(t + 1) = M1x(t) = δ2[1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2

1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2] x(t).

The fabricated variables can be removed by using
Theorem 2.2. It is easy to verify that

M1(Mn − I2) = 0

M1W[2,2](Mn − I2) �= 0

M1W[2,4](Mn − I2) �= 0

M1W[2,8](Mn − I2) = 0

M1W[2,16](Mn − I2) = 0. (38)

So x1(t), x4(t), and x5(t) are fabricated variables in the
dynamic equation of x1(t+1). Setting x1(t) = x4(t) = x5(t) =
δ1

2 yields

x1(t + 1) = M1x1(t)x2(t)x3(t)x4(t)x5(t)

= M1W[4,8]x4(t)x5(t)x1(t)x2(t)x3(t)

= M1W[4,8](δ1
2)3x2(t)x3(t)

= δ2[1 2 2 2]x2(t)x3(t).

Hence its logical expression is

x1(t + 1) = x2(t) ∧ x3(t).

The same procedure can be used to reconstruct the logical
expression of x2(t), x3(t), x4(t), and x5(t). Finally, the logical
expression of the dynamics of the group of cells is obtained as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x1(t + 1) = x2(t) ∧ x3(t)

x2(t + 1) = x3(t) ∨ x4(t)

x3(t + 1) = x4(t) ↔ x5(t)

x4(t + 1) = ¬x5(t)

x5(t + 1) = x1(t)∨̄x2(t).

(39)

with its network graph depicted in Fig. 4.
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Fig. 4. Network graph of (39).

IV. CONSTRUCTION WITH KNOWN NETWORK GRAPH

In previous section, a general method is given to construct
the dynamic model of a Boolean network from its experimen-
tal data. As pointed out before, in general at least 2n + 1 data
points are necessary for uniquely determining the model. As
n is not very small, this is a large number and in practical
experiments such amount of data can hardly be obtained. In
this section, the situation where the network graph is known is
considered. In this case, the required data can be considerably
reduced.

Note that when the number of network nodes is large, draw-
ing its network graph is a heavy job. An alternative expression
of the dynamic connection of nodes is the incidence ma-
trix [26]. Consider an n-node network. An n × n matrix, J =
(ri, j ) ∈ Mn×n , is called its incidence matrix, where ri, j = 1,
if xi (t + 1) depends on x j (t) directly, otherwise, ri, j = 0. For
instance, recall Example 2.4. Its incidence matrix is

J |(21) =

⎡

⎢⎢
⎣

1 0 0 1
1 0 0 0
0 1 0 1
0 1 1 0

⎤

⎥⎥
⎦ . (40)

Consider the following example.
Example 4.1: Consider a network with 8 nodes. Its network

graph is depicted in Fig. 5.
Assume that for this network there are experimental data as

in Fig. 6.
To build its dynamic model, the component-wise algebraic

form is used. That is
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(t + 1) = M1x8(t)

x2(t + 1) = M2x1(t)

x3(t + 1) = M3x2(t)

x4(t + 1) = M4x3(t)x7(t)

x5(t + 1) = M5x4(t)

x6(t + 1) = M6x5(t)

x7(t + 1) = M7x6(t)

x8(t + 1) = M8x3(t)x7(t).

(41)

From the data, it is easy to see that

x8(0) = 0 ⇒ x1(1) = 1;
x8(1) = 1 ⇒ x1(2) = 0; · · ·

Then in the vector form

Col2(M1) = δ1
2; Col1(M1) = δ2

2; · · ·
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Fig. 5. Network graph of (41).

t � 0 t � 1 t � 2 t � 3 t � 4 t � 5

Fig. 6. Data of Network (41).

It is concluded that M1 = δ2[2, 1], and hence

x1(t + 1) = ¬x8(t).

Similarly, the other Mi , i = 2, 3, . . . , 8 can be calculated.
Finally, the dynamics is obtained as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(t + 1) = ¬x8(t)

x2(t + 1) = x1(t)

x3(t + 1) = ¬x2(t)

x4(t + 1) = x3(t) ∨ x7(t)

x5(t + 1) = x4(t)

x6(t + 1) = ¬x5(t)

x7(t + 1) = x6(t)

x8(t + 1) = x3(t) ∧ x7(t).

(42)

Comparing this example with Example 3.5, it is obvious
that, when the network graph (equivalently, the incidence
matrix) is known, then the data needed to build the model
will be much less.

V. LEAST IN-DEGREE MODEL

Consider a network with n nodes. The in-degree of node k,
denoted by di(k), is the number of edges which point to node
k. Consider the incidence matrix of the network. Then

di (k) =
n∑

j=1

rkj , k = 1, . . . , n. (43)

For instance, consider Example 2.4. Its in-degrees are
di (1) = 2, di (2) = 1, di (3) = 2, and di (4) = 2. Consider
Example 3.5. Its in-degrees are di (1) = di (2) = di (3) =
di (5) = 2, and di (4) = 1.

It is well known that [27] in an ordered network the in-
degrees are much less than the number of nodes. In an
experiment of random light-bulb networks, it was assumed
that the number of nodes is n = 1 00 000 and the in-degree
di = 2. In this section, the least in-degree model is considered.

Definition 5.1: Consider an n-node Boolean network with
given experimental data. A realization with the in-degree
d∗

i (k), k = 1, . . . , n, is called the least in-degree model, if
for any other realization with in-degree di(k), k = 1, . . . , n,
it is obtained that

d∗
i (k) ≤ di(k), k = 1, . . . , n.

It is obvious that a least in-degree model requires much less
data to identify a least in-degree model. Moreover, it is reason-
able to assume a real practical network to be of least in-degree.
In the following, we consider how to get a least in-degree
realization. Start from the component-wise algebraic form (3).
Denote a set of experimental data by {X (0), X (1), . . . , X (N)}.
Consider the dynamics of the i th node

xi (t + 1) = Mi x(t), where Mi ∈ L2×2n . (44)

Using this set of data, some columns of the SM Mi can be
determined. For instance

Mi = [∗ . . . ∗ ci1 ∗ . . . ∗ ci2 ∗ . . . ∗ . . . ∗ cis ∗ . . . ∗] (45)

where ci j , j = 1, . . . , s are the identified columns and ∗ stands
for the uncertain columns. Equation (45) is called the uncertain
SM. Next, a set of matrices is constructed as

Mi, j := Mi W[2,2 j−1], j = 1, 2, . . . , n.

Then split it into two equal parts as

Mi, j =
[

M1
i, j M2

i, j

]
. (46)

Then the following result is obtained.
Proposition 5.2: fi has a realization which is independent

of x j , iff
M1

i, j = M2
i, j (47)

has a solution for the uncertain columns.
Proof: When j = 1, Mi, j = Mi holds. Now split

Mi = [
M1

i M2
i

]
. (48)

If
M1

i = M2
i (49)

has a solution for uncertain elements, then the solution makes
M1

i = M2
i . Using (18), it is easy to see that this realization is

independent of x1. Consider x j , (44) can be rewritten as

xi (t + 1) = Mi, j x j �
j−1
k=1 xk �

n
k= j+1 xk .

The same argument as for x1 leads to the general
conclusion.

Next, an algorithm is given for producing a least in-degree
realization.

Algorithm 5.3:
Step 1: For each component-wise algebraic equation,
use the observed data to identify part of its columns as
(45). Define the incidence set as Si = {1, 2, . . . , n},
i = 1, . . . , n.
Step 2: Construct (48) to check whether (49) has a
solution. If “Yes,” fix some uncertain columns and
update the system to

xi (t + 1) = M1
i �

n
j=2 x j (t).

Go to the next step.
Step j: (where j ≤ n) Check whether (47) has a
solution. If “Yes,” fix some uncertain columns and
update the system to

xi(t + 1) = M1
i, j �1≤k≤ j−1, k∈Si xk �

n
k= j+1 xk . (50)

Replace Si by Si\{ j}.
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t � 0 t � 1 t � 2 t � 3 t � 4 t � 5

Fig. 7. Experimental data of Example 5.5.

The following conclusion comes from the design of the
algorithm.

Proposition 5.4: Algorithm 5.3 yields least in-degree real-
ization(s).

The following example is given to illustrate this.
Example 5.5: Consider the experiment data in Fig. 7.
The vector forms of the data are

x(0) = δ12
16; x(1) = δ16

16; x(2) = δ8
16;

x(3) = δ2
16; x(4) = δ10

16; x(5) = δ12
16 .

Using the technique developed in Section III, some columns
of M1 via the known data can be identified as

M1 = δ2[∗ 2 ∗ ∗ ∗ ∗ ∗ 1 ∗ 2 ∗ 2 ∗ ∗ ∗ 1].
Setting M1

1 = M2
1 yields the solution as

M1
1 = M2

1 = δ2[∗ 2 ∗ 2 ∗ ∗ ∗ 1].
So the system can be simplified as

x1(t + 1) = δ2[∗ 2 ∗ 2 ∗ ∗ ∗ 1]x2(t)x3(t)x4(t).

Splitting M1
1 into two parts and considering the following

equation:
δ2[∗ 2 ∗ 2] = δ2[∗ ∗ ∗ 1]

there is no solution. So the equation depends on x2.
Consider

M1,2 = M1
1 W[2,2] = δ2[∗ 2 ∗ ∗ ∗ 2 ∗ 1].

Then
δ2[∗ 2 ∗ ∗] = δ2[ ∗ 2 ∗ 1]

has a solution as
δ2[∗ 2 ∗ 1].

Then the original equation can be updated as

x1(t + 1) = δ2[∗ 2 ∗ 1]x2(t)x4(t).

Finally, check x4(t). Since

δ2[∗ 2 ∗ 1]W[2,2] = δ2[∗ ∗ 2 1]
and

δ2[∗ ∗] = δ2[2 1]
has a solution

δ2[2 1]
we obtain

x1(t + 1) = δ2[2 1]x2(t).

That is
x1(t + 1) = ¬x2(t).
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Fig. 8. Network graph of (51).
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Fig. 10. Neighborhood of x0.

Using the same procedure to three other equations, the least
in-degree realization can finally be obtained as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x1(t + 1) = ¬x2(t)

x2(t + 1) = x4(t) ∨ x1(t)

x3(t + 1) = x1(t)

x4(t + 1) = x3(t)∨̄x4(t)

(51)

with its network graph depicted in Fig. 8.
It is easy to prove that, if

di (k) ≤ μ, k = 1, . . . , n

then the least number of data to identify the system is 2μ + 1,
which is, in general, much less than 2n + 1.

VI. CONSTRUCTION OF UNIFORM BOOLEAN NETWORK

In this section, the case where the network has a uniform
dynamic structure is considered. The physical meaning is like
this, assume there is a set of cells. Each cell might be infected
only by its neighborhood. Moreover, the rule for a cell being
infected is the same for all other cells. Then each cell has the
same interactive pattern (i.e., same logical dynamics) with its
neighborhoods.

Example 6.1: Let a set of experimental data be given as
in Fig. 9. Assume that the infection process is uniform and
each cell x0 is affected only by its neighboring cells. Refer to
Fig. 10, where the neighboring cells of x0 are x1, x2, x3, x4,
x5, and x6. Moreover, it is also reasonable to assume that the
infection is isotropic. That is, the six neighborhood cells of a
cell can be labeled in a clockwise fashion and start from any
one cell. Then the dynamic equation becomes

x0(t + 1) = M �
6
i=0 xi (t), where M ∈ L2×27 . (52)

Our purpose is to identify M .
Some special points are checked here to demonstrate how

to figure out M .

1) Consider x0 = A. Note that x0(0) = 1 and in its
neighborhood we have x1(0) = 1, x2(0) = 1, x3(0) =
1, x4(0) = 1, x5(0) = 1, and x6(0) = 1: that is,
X (0) = (1, 1, 1, 1, 1, 1, 1) ∼ δ1

128. Since x0(1) = 1,
it is concluded that Col1(M) = δ1

2.
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Fig. 9. Data of Example 6.1.

2) Consider x0 = B . We have x0(0) = 1 and in its
neighborhood we have x1(0) = 1, x2(0) = 1, x3(0) =
1, x4(0) = 1, x5(0) = 1, and x6(0) = 0: that is,
X (0) = (1, 1, 1, 1, 1, 1, 0) ∼ δ2

128. Since x0(1) = 1, it
is concluded that Col2(M) = δ1

2. Moreover, by isotropy
it can also be assumed that X (0) are on all rotating
positions to produce the same x0(1). That is

X (0) = (1, 1, 1, 1, 1, 0, 1) ∼ δ3
128 ⇒ Col3(M) = δ1

2

X (0) = (1, 1, 1, 1, 0, 1, 1) ∼ δ5
128 ⇒ Col5(M) = δ1

2

X (0) = (1, 1, 1, 0, 1, 1, 1) ∼ δ9
128 ⇒ Col9(M) = δ1

2

X (0) = (1, 1, 0, 1, 1, 1, 1) ∼ δ17
128 ⇒ Col17(M) = δ1

2

X (0) = (1, 0, 1, 1, 1, 1, 1) ∼ δ33
128 ⇒ Col33(M) = δ1

2 .

3) Consider x0 = C . Since x0(0) = 0 and x0(1) = 0, we
have X (0) = (0, 1, 1, 1, 1, 1, 1) ∼ δ65

128, which implies
Col65(M) = δ2

2.
4) Consider x0 = D. Since x0(0) = 1 and x0(1) = 0, using

isotropy, we have

X (0) = (1, 0, 1, 0, 1, 1, 1) ∼ δ41
128 ⇒ Col41(M) = δ2

2

X (0) = (1, 1, 0, 1, 1, 1, 0) ∼ δ18
128 ⇒ Col18(M) = δ2

2

X (0) = (1, 0, 1, 1, 1, 0, 1) ∼ δ35
128 ⇒ Col35(M) = δ2

2

X (0) = (1, 1, 1, 1, 0, 1, 0) ∼ δ6
128 ⇒ Col6(M) = δ2

2

X (0) = (1, 1, 1, 0, 1, 0, 1) ∼ δ11
128 ⇒ Col11(M) = δ2

2

X (0) = (1, 1, 0, 1, 0, 1, 1) ∼ δ21
128 ⇒ Col21(M) = δ2

2 .

5) Consider x0 = E . Since x0(0) = 1, x0(1) = 1, and
x0(2) = 0, we have

X (0) = (1, 0, 1, 1, 0, 1, 1) ∼ δ37
128 ⇒ Col37(M) = δ1

2

X (0) = (1, 1, 1, 0, 1, 1, 0) ∼ δ10
128 ⇒ Col10(M) = δ1

2

X (0) = (1, 1, 0, 1, 1, 0, 1) ∼ δ19
128 ⇒ Col19(M) = δ1

2

and

X (0) = (1, 0, 1, 0, 0, 1, 1) ∼ δ45
128 ⇒ Col45(M) = δ2

2

X (0) = (1, 1, 0, 0, 1, 1, 0) ∼ δ26
128 ⇒ Col26(M) = δ2

2

X (0) = (1, 0, 0, 1, 0, 0, 1) ∼ δ51
128 ⇒ Col51(M) = δ2

2

X (0) = (1, 0, 1, 1, 0, 1, 0) ∼ δ38
128 ⇒ Col38(M) = δ2

2

X (0) = (1, 1, 1, 0, 1, 0, 0) ∼ δ12
128 ⇒ Col12(M) = δ2

2

X (0) = (1, 1, 0, 1, 0, 0, 1) ∼ δ23
128 ⇒ Col23(M) = δ2

2 .

6) …
Finally, all the columns of M can be identified as

M = δ2[1 1 1 2 1 2 2 2 1 1 2 2 2 2 2 2

1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2

1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2].
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t � 0 t � 1 t � 2 t � 3 t � 4 t � 5 t � 6 t � 7 t � 8 t � 9

t � 10 t � 11 t � 12 t � 13 t � 14 t � 15 t � 16 t � 17 t � 18 t � 19

t � 20 t � 21 t � 22 t � 23 t � 24 t � 25 t � 26 t � 27 t � 28 t � 29

t � 30 t � 31 t � 32 t � 33 t � 34 t � 35 t � 36 t � 37 t � 38 t � 39

t � 40 t � 41 t � 42 t � 43 t � 44 t � 45 t � 46 t � 47 t � 48 t � 49

Fig. 11. Experimental data of Example 7.1.

Skipping the tedious and standard process, the algebraic
form can finally be converted back to the logical form as

x0(t + 1)

= x0(t) ∧ (x1(t) ∨ x2(t)) ∧ (x2(t) ∨ x3(t)) ∧ (x3(t) ∨ x4(t))

∧(x4(t) ∨ x5(t)) ∧ (x5(t) ∨ x6(t)) ∧ (x6(t) ∨ x1(t))

∧(x1(t) ∨ x3(t)) ∧ (x3(t) ∨ x5(t)) ∧ (x5(t) ∨ x1(t))

∧(x2(t) ∨ x4(t)) ∧ (x4(t) ∨ x6(t)) ∧ (x6(t) ∨ x2(t)). (53)

VII. MODELING VIA DATA WITH ERRORS

Up to this stage, the data considered are precisely correct. In
dealing with practical data, certain numerical methods should
be used. In this section, some basic ideas for dealing with
imperfect data are proposed.

If the data have some errors caused by measurement or
others, in identification there may be conflicting data. For
example, it is obtained from the data that

Coli (L) =
{

δ
p
2n , k times

δ
q
2n , s times.

(54)

1) If k � s, then ignore δ
q
2n and let Coli (L) = δ

p
2n .

2) If k � s, then ignore δ
p
2n and let Coli (L) = δ

q
2n .

3) If k ≈ s, then more data may be needed or (when data
are already enough) it is concluded that the model is not
acceptable.

Similar judgment can be made for each Mi in component-
wise model.

For instance, the least in-degree model is considered. Set
a threshold value k and denote by ts

k the times for column i
to be identified as s. Then the following principle is proposed
for the identification. Let {I, J } be a partition of index set
{1, 2, . . . , n}. Assume

{
Col j (M) = δ

s j
2 , t

s j
j ≥ k, j ∈ J

Coli (M) = δ
si
2 , tsi

i � k, i ∈ I.
(55)

Then Coli (M), i ∈ I is considered as error columns and
set Coli (M) = ∗, i.e., consider them as uncertain columns.

Roughly speaking, only the confident data should be taken
for model construction. Many statistic testing methods can be
used to tell whether a particular data is reliable or not. A
simple example is given to depict it.

Example 7.1: Suppose there is a Boolean network with
three nodes. The experimental data are depicted in Fig. 11.

The 50 experimental data can be converted into the vector
form as

x(0) = δ3
8; x(1) = δ2

8; x(2) = δ7
8; x(3) = δ6

8;
x(4) = δ5

8; x(5) = δ1
8; x(6) = δ3

8; x(7) = δ7
8;

x(8) = δ6
8; x(9) = δ5

8; x(10) = δ1
8; x(11) = δ8

8;
x(12) = δ6

8; x(13) = δ5
8; x(14) = δ1

8; x(15) = δ3
8;

x(16) = δ7
8; x(17) = δ6

8; x(18) = δ5
8; x(19) = δ1

8;
x(20) = δ4

8; x(21) = δ7
8; x(22) = δ6

8; x(23) = δ5
8;

x(24) = δ1
8; x(25) = δ3

8; x(26) = δ7
8; x(27) = δ6

8;
x(38) = δ5

8; x(29) = δ1
8; x(30) = δ8

8; x(31) = δ6
8;

x(32) = δ5
8; x(33) = δ1

8; x(34) = δ2
8; x(35) = δ7

8;
x(36) = δ6

8; x(37) = δ5
8; x(38) = δ1

8; x(39) = δ3
8;

x(40) = δ7
8; x(41) = δ6

8; x(42) = δ6
8; x(43) = δ1

8;
x(44) = δ3

8; x(45) = δ4
8; x(46) = δ7

8; x(47) = δ6
8;

x(48) = δ5
8; x(49) = δ1

8 .

Suppose the component-wise algebraic form of x1(t) is

x1(t + 1) = M1x(t) M1 ∈ L2×8.

From the data, using the technique developed in Section III,
it follows that:

Col1(M1) =
{

δ1
2, 8 times

δ2
2, 2 times.

(56)

Hence, set Col1(M1) = δ2
2.

For the second to the eighth columns, it follows that

Col2(M1) = δ2
2, 2 times;

Col3(M1) =
{

δ1
2, 2 times

δ2
2, 4 times;

Col4(M1) = δ2
2, 2 times;

Col5(M1) = δ1
2, 9 times;

Col6(M1) =
{

δ1
2, 1 time

δ2
2, 10 times;

Col7(M1) = δ2
2, 6 times;

Col8(M1) = δ2
2, 2 times.

(57)

Hence, the matrix M1 can be obtained as

M1 = δ2[1 2 2 2 1 2 2 2].
Splitting M1 as M1 = [M11 M12], M11 = M12 holds. The

algebraic form of x1(t) is

x1(t + 1) = δ2[1 2 2 2]x2(t)x3(t).

Converting it into its logical form, we get

x1(t + 1) = x2(t) ∧ x3(t).

Using the same technique for x2(t) and x3(t), the logical
expression from data is obtained as

⎧
⎪⎨

⎪⎩

x1(t + 1) = x2(t) ∧ x3(t)

x2(t + 1) = ¬x1(t)

x3(t + 1) = x1(t) ∨ x2(t).

(58)

Go back to the data, it is easy to check that there are eight
wrong data points. The method seems relatively robust.
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Finally, we would like to mention that, if a model is
constructed and later on there are additional data, the model
could be updated in the following way. If the kth equation
verifies new data, it remains available. Otherwise, new iden-
tified columns could be added to the existing set and be used
to build new SM Mk . Then new kth equation can be updated.

VIII. CONCLUSION

Assuming that for a Boolean network there are some ob-
served data, the problem of constructing the dynamic model of
the network via these data was considered. Instead of building
the logical dynamic equations, we first identified its algebraic
form and then converted the algebraic form back to the logical
form. First, the general construction problem, which identifies
the SM L of the network directly, was considered. Since it
requires a large number of data, it is unrealistic for non-tiny
networks. Then the case when the network graph is known was
considered. It reduces the required data points tremendously.
In fact, the data points required depend only on the in-
degrees. Based on this observation, the least in-degree model
that removes possible fabricated logical variables from each
state equations was proposed. Theoretically, the least in-degree
model can be obtained via any small number of data points.
Finally, the case when the network has a uniform structure was
considered. It is practically realistic because assuming all cells
satisfying the same infection rule is reasonable. In this case,
model construction is independent of the number of nodes.

The data considered in Sections II–VI are assumed to
be precisely correct, except in last section (Section VII) in
which some principles were given for data with error. In fact,
many numerical methods can be used to deal with data error
situations. But this is beyond the scope of this paper.

Finally, we would like to point out that the method proposed
in this paper can be used for multivalued logical networks
without any essential change.

REFERENCES

[1] S. A. Kauffman, “Metabolic stability and epigenesis in randomly con-
structed genetic nets,” J. Theor. Biol., vol. 22, no. 3, pp. 437–467, Mar.
1969.

[2] T. Akutsu, M. Hayashida, W.-K. Ching, and M. K. Ng, “Control of
Boolean networks: Hardness results and algorithms for tree structured
networks,” J. Theor. Biol., vol. 244, no. 4, pp. 670–679, Feb. 2007.

[3] R. Albert and H. G. Othmer, “The topology and signature of the
regulatory interactions predict the expression pattern of the segment
polarity genes in Drosophila melanogaster,” J. Theor. Biol., vol. 223,
no. 1, pp. 1–18, 2003.

[4] M. Aldana, “Boolean dynamics of networks with scale-free topology,”
Phys. D, vol. 185, no. 1, pp. 45–66, Oct. 2003.

[5] A. Data, A. Choudhary, M. L. Bittner, and E. R. Dougherty, “Ex-
ternal control in Markovian genetic regulatory networks: The imper-
fect information case,” Bioinformatics, vol. 20, no. 6, pp. 924–930,
Jan. 2004.

[6] B. Drossel, T. Mihaljev, and F. Greil, “Number and length of attractors
in a critical Kauffman model with connectivity one,” Phys. Rev. Lett.,
vol. 94, no. 8, pp. 088701-1–088701-4, Mar. 2005.

[7] R. Pal, A. Datta, and E. R. Dougherty, “Optimal infinite-horizon control
for probabilistic Boolean networks,” IEEE Trans. Signal Process., vol.
54, no. 6, pp. 2375–2387, Jun. 2006.

[8] M. Bansal, V. Belcastro, A. Ambesi-Impiombato, and D. Bernardo,
“How to infer gene networks from expression profiles,” Mol. Syst. Biol.,
vol. 3, no. 78, pp. 1–10, Feb. 2007.

[9] I. Cantone, L. Marucci, F. Iorio, M. A. Ricci, V. Belcastro, M. Bansal, S.
Santini, M. Bernardo, D. Bernardo, and M. P. Cosma, “A yeast synthetic
network for in vivo assessment of reverse-engineering and modeling
approaches,” Cell, vol. 137, no. 1, pp. 172–181, Mar. 2009.

[10] D. Cheng, “Input-state approach to Boolean networks,” IEEE Trans.
Neural Netw., vol. 20, no. 3, pp. 512–521, Mar. 2009.

[11] D. Cheng and H. Qi, “A linear representation of dynamics of Boolean
networks,” IEEE Trans. Autom. Control, vol. 55, no. 10, pp. 2251–2258,
Oct. 2010.

[12] D. Cheng and H. Qi, “Controllability and observability of Boolean
control networks,” Automatica, vol. 45, no. 7, pp. 1659–1667,
Jul. 2009.

[13] D. Cheng, Z. Li, and H. Qi, “Realization of Boolean control networks,”
Automatica, vol. 46, no. 1, pp. 62–69, Jan. 2010.

[14] B. Palsson, Systems Biology: Properties of Reconstructed Networks.
Cambridge, U.K.: Cambridge Univ. Press, 2006.

[15] S. Liang, S. Fuhrman, and R. Somogyi, “REVEAL: A general reverse
engineering algorithm for inference of genetic network architectures,”
in Proc. Pacific Symp. Biocomput., vol. 3. 1998, pp. 18–29.

[16] T. Akutsu, S. Miyano, and S. Kuhara, “Identification of genetic net-
works from a small number of gene expression patterns under the
Boolean network model,” in Proc. Pacific Symp. Biocomput., 1999,
pp. 17–28.

[17] T. Akutsu, S. Miyano, and S. Kuhara, “Algorithms for identifying
Boolean networks and related biological networks based on matrix
multiplication and fingerprint function,” J. Comput. Biol., vol. 7, nos.
3–4, pp. 331–343, 2000.

[18] D. Nam, S. Seo, and S. Kim, “An efficient top-down search algorithm
for learning Boolean networks of gene expression,” Mach. Learn., vol.
65, no. 1, pp. 229–245, Oct. 2006.

[19] R. Pal, I. Ivanov, A. Datta, M. L. Bittner, and E. R. Dougherty,
“Generating Boolean networks with a prescribed attractor structure,”
Bioinformatics, vol. 21, no. 21, pp. 4021–4025, Sep. 2005.

[20] R. Laubenbacher and B. Stigler, “A computational algebra approach to
the reverse engineering of gene regulatory networks,” J. Theor. Biol.,
vol. 229, no. 4, pp. 523–537, Aug. 2004.

[21] W. Just, “Reverse engineering discrete dynamical systems from data
sets with random input vectors,” J. Comput. Biol., vol. 13, no. 8, pp.
1435–1456, 2006.

[22] B. Krupa, “On the number of experiments required to find the causal
structure of complex systems,” J. Theor. Biol., vol. 219, no. 2, pp. 257–
267, Nov. 2002.

[23] D. Cheng, “Semi-tensor product of matrices and its applications–
A survey,” in Proc. Int. Conf. Comput. Mach., vol. 3. 2007,
pp. 641–668.

[24] D. Cheng, H. Qi, and Z. Li, Analysis and Control of Boolean Net-
works: A Semi-Tensor Product Approach. New York: Springer-Verlag,
2010.

[25] Z. Li and D. Cheng, “Algebraic approach to dynamics of multival-
ued networks,” Int. J. Bifurc. Chaos, vol. 20, no. 3, pp. 561–582,
2010.

[26] F. Robert, Discrete Iterations (Transl. by J. Rokne, Ed.). Berlin, Ger-
many: Springer-Verlag, 1986.

[27] S. A. Kauffman, At Home in the Universe. London, U.K.: Oxford Univ.
Press, 1995.

Daizhan Cheng (F’06) received the Ph.D. degree
from Washington University, St. Louis, MO, in
1985.

He is currently a Professor with the Institute
of Systems Science, Academy of Mathematics and
Systems Science, Chinese Academy of Sciences,
Beijing, China. His current research interests include
nonlinear systems, numerical methods, and complex
systems.

Prof. Cheng is a Fellow of the International Fed-
eration of Automatic Control.



536 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 22, NO. 4, APRIL 2011

Hongsheng Qi (M’10) received the Ph.D. degree in
systems theory from the Academy of Mathematics
and Systems Science, Chinese Academy of Sciences,
Beijing, China, in 2008.

He is currently an Assistant Professor with the
Institute of Systems Science, Academy of Math-
ematics and Systems Science, Chinese Academy
of Sciences. His current research interests include
nonlinear control and complex systems.

Zhiqiang Li received the Ph.D. degree from the
Academy of Mathematics and Systems Science, Chi-
nese Academy of Sciences, Beijing, China, in 2010.

He is currently a Lecturer with the Department of
Mathematics and Information Science, Henan Uni-
versity of Economics and Law, Zhengzhou, China.
His current research interests include nonlinear sys-
tems and complex systems.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


