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A Linear Representation of Dynamics
of Boolean Networks

Daizhan Cheng, Fellow, IEEE, and Hongsheng Qi

Abstract—A new matrix product, called semi-tensor product
of matrices, is reviewed. Using it, a matrix expression of logic
is proposed, where a logical variable is expressed as a vector, a
logical function is expressed as a multiple linear mapping. Under
this framework, a Boolean network equation is converted into an
equivalent algebraic form as a conventional discrete-time linear
system. Analyzing the transition matrix of the linear system,
formulas are obtained to show a) the number of fixed points;
b) the numbers of cycles of different lengths; c) transient period,
for all points to enter the set of attractors; and d) basin of each
attractor. The corresponding algorithms are developed and used
to some examples.

Index Terms—Boolean network, cycle, fixed point, semi-tensor
product, transient period.

I. INTRODUCTION

I NSPIRED by the Human Genome Project, a new view of
biology, called the systems biology, is emerging. Systems

biology does not investigate individual genes, proteins or cells,
one at a time. Rather, it studies the behavior and relationships of
all of the cells, proteins, DNAs and RNAs in a biological system,
called a cellular network. The most active networks may be the
genetic regulatory networks, which, reacting to the change of
environment, determine the growth, replication, and death of
cells [27].

The Boolean network, first introduced by Kauffman [25],
and then developed by [2]–[4], [15], [19], [22], [32], [33] and
many others, becomes a powerful tool in describing, analyzing,
and simulating the cellular networks. Hence, it has received
the most attention, not only from the biology community, but
also physics, systems science, etc. In this model, gene state is
quantized to only two levels: True and False. Then the state
of each gene is determined by the states of its neighborhood
genes, using logical rules. It was shown that the Boolean net-
work plays an important role in modeling cell regulation. Say,
there is a one to one relationship between model attractors and
observed phenotypes [23].

The structure of a Boolean network is described in terms
of its cycles and the transient states that lead to them. Several
useful algorithms have been developed to detect attractors. For
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instance, Bounded Model Checking using All Satisfactory [11],
[28], Iteration and Scalar Form [20], Linear Reduced Scalar
Equation [16], Constraint Programming [14], Reduced Ordered
Binary Decision Diagram [17], and some other new algorithms
[24], [35]. It was pointed out in [1], [36] that finding fixed points
and cycles of a Boolean network is an NP-complete problem.
Searching for parent states (basin of attractor) has been dis-
cussed by [5], and its complexity by [12]. Matrix representation
of a Boolean control network has been discussed, e.g., [13].

The analysis of the dynamics of Boolean networks focuses
also on the link between the dependence between variables and
the state space [31], [34]. We refer to [26] for some interesting
recent developments on this topic.

The purpose of this paper is to use semi-tensor product
to convert the logical dynamic equations of a Boolean network
into a linear discrete-time dynamic equation

(1)

where is the semi-tensor product of logical vari-
ables. Unlike usual transition matrix expression, (1) contains
complete information of the logical equations of the Boolean
network. Using this transition matrix , formulas for cycles,
transient time, and basins can be easily obtained. Furthermore,
based on the semi-tensor product based framework, the sub-
space structure and the relationship between subspace cycles
and the state space cycles can be revealed [8]. This form can
easily be extended to the Boolean control networks, and certain
control problems, such as controllability and observability [9],
realization [10] etc., can be investigated.

The rest of the paper is organized as follows. Section II gives a
brief review for the semi-tensor product of matrices. Some con-
cepts and basic properties related to this paper are presented.
The matrix expression of logic and its basic properties are dis-
cussed in Section III. Using the tools developed in Section III,
the logical equations of a Boolean network are converted into a
semi-tensor product based linear representation in Section IV.
Then in Section V the formulas are obtained for a) the number
of fixed points; b) the numbers of cycles of different lengths; c)
transient period; and d) basin of attractors. Corresponding algo-
rithms are also developed and used to some examples to com-
pare our results with existing ones. Section VI is the concluding
remarks.

II. SEMI-TENSOR PRODUCT

This section introduces the semi-tensor product (STP) of
matrices [7].
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Definition II.1:
1) Let be a row vector of dimension , and be a column

vector of dimension . Then we split into equal-size
blocks as , which are rows. Define the
STP, denoted by , as

(2)

2) Let and . If either is a factor of
, say and denote it as , or is a factor of
, say and denote it as , then we define the

STP of and , denoted by , as the following:
consists of blocks as and each block is

where is the -th row of and is the -th column
of .

Example II.2:

1) Let , . Then

2) Let , .
Then

Some related fundamental properties of the STP are collected
in the following:

Proposition II.3: The STP satisfies (as long as the related
products are well defined)

1) (Distributive rule)

(3)

2) (Associative rule)

(4)

Proposition II.4: Assume , then (where “ ” is the
Kronecker product, is the identity matrix)

(5)

Assume , then

(6)

Proposition II.5: Assume is given.
1) Let be a row vector. Then

(7)

2) Let be a column vector. Then

(8)

Let and assume that either is a factor of or
is a factor of . Then

is well defined. Particularly, for a column (or a row) , is
always well defined.

Define a delta set as , where
is the -th column of . For example

A matrix is called a logical matrix if the columns of
, denoted by , satisfy . The set of

logical matrices is denoted by .
Assume , which means , to

save space we denote it as

Next, we define a swap matrix, , which is an
matrix constructed in the following way: label its columns
by and its rows by

. Then its element in the
position is assigned as

,
otherwise.

(9)

When we briefly denote . We refer
to [21] for an alternative definition of swap matrix, where it is
called commutation matrix.

1) Example II.6: Let and , the swap matrix
is

Proposition II.7: Let and be two columns.
Then

(10)

Remark II.8: It is obvious that if and
, i.e., the conventional matrix product exists, then

. Hence the semi-tensor product is a generaliza-
tion of conventional matrix product. Through this paper all the
matrix products are assumed to be semi-tensor product and the
notation “ ” is mostly omitted.
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III. MATRIX EXPRESSION OF LOGIC

In this section we recall the matrix expression of logic. We
refer to [6], [7] for details.

First, we give some necessary notations and concerning re-
sults for logic. A logical domain, denoted by , is defined as

(11)

A logical function with arguments is a mapping .
To use matrix expression we identify each element in with a
vector as and , and denote

Using this vector expression, we can define the structure matrix
of a logical function.

Definition III.1: A matrix is called the structure
matrix of a logical function , if

(12)

where .
If such a matrix exists, it uniquely determines the logical

function. To show the existence of such a matrix for each logical
function, we define a power-reducing matrix as .
It is easy to prove that .

Using swap matrix and the power-reducing matrix, the fol-
lowing theorem can be proved easily [29].

Theorem III.2: Any logical function with
logical arguments can be expressed in a
multi-linear form as

(13)

where is unique, called the structure matrix of .
Next, we give some examples to illustrate the structure

matrix.
Example III.3:

1) Consider a fundamental unary logical function: Negation,
, and four fundamental binary logical functions [30]:

Disjunction, ; Conjunction, ; Implication,
; Equivalence, . Setting the logical vari-

ables to either or , it is ready to check that their struc-
ture matrices are as follows:

(14)

2) Assume that

Fig. 1. Boolean network of (16).

Using formulas in (14) and Proposition II.5, we have

It follows that:

IV. DYNAMICS OF BOOLEAN NETWORKS

Definition IV.1 [16]: A Boolean network with a set of nodes
can be described as

...
(15)

where , are logical functions.
We give a simple example to show the structure of a Boolean

network.
Example IV.2: Consider a Boolean network as shown in

Fig. 1. Its dynamics is described as

(16)

Our first purpose is to convert system (15) into an algebraic
form. Precisely, express it as a conventional discrete-time linear
system. Using semi-tensor product, we define

(17)

Remark IV.3: Note that in (17) we defined a mapping
. It is easy to prove that is a bijective mapping.

In fact, Proposition V.1 provides a precise formula to recover
, from .
Using Theorem III.2, we can find structure matrices,

, , such that

(18)
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Remark IV.4: Note that usually the indegree is much less than
, that is, the right hand side of the -th equation of (15) may not

have all . Say, in the previous example, for
node we have

In matrix form it is

(19)

To get the form of (18), we can construct a dummy matrix as
. It is easy to prove that for any two logical

variables ,

Then we can rewrite (19) as

Multiplying the equations in (18) together yields

(20)

To simplify (20) we need some preparations:
Lemma IV.5: Assume , then

(21)

where

Proof: We prove it by mathematical induction. When
, using power-reducing matrix, we have

In above formula

Note that , it follows that . Hence (21)
is true for . Assume that (21) is true for , then for

we have

Using induction assumption to the last factor of the above ex-
pression, we have

which completes the proof.

Theorem IV.6: Equation (20) can be expressed as

(22)

where

Proof: Note that from Lemma IV.5 we have

Now

From Remark IV.3 it is easy to see that (22) is enough to
describe the dynamics.

Example IV.7: Recall the Boolean network in Example IV.2.
In algebraic form, we have

(23)

Setting , we can calculate as

(24)

Then system (16) is expressed in a matrix form as

where the network transition matrix is

Linear representation of logical mappings is very useful in
control of Boolean networks. For instance, let be a
set of logical functions of . Setting ,

, we can find a unique , such that
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. The properties of subspace generated by is com-
pletely determined by . For instance, if , is a
logical coordinate transformation, iff is nonsingular [9]. is
a regular subspace (i.e., is part of coordinate variables), iff
satisfies certain algebraic conditions [10].

V. FIXED POINTS AND CYCLES

To begin with, we consider how to get the logical variables
from . It is easy to

prove the following formula.
Proposition V.1: Assume . Define ,

then can be calculated inductively (in scalar form) as

(25)

where in the first equation is the largest integer less than or
equal to .

Example V.2: Assume and .
Then . It follows that ,

, ,
, , ,

, , .
We conclude that , ,

, , and .

Definition V.3: Consider system (15) with its algebraic form
(22).

1) A state is called a fixed point of system (15), if
.

2) is called a cycle of system (15)
with length , if , and the elements in set

are distinct.
To present the following theorem for numbers of fixed points

and cycles of different lengths, we need some preparations: (i)
A fixed point is a cycle of length 1; (ii) Let . A positive
integer is called a proper factor of if and

. The set of proper factors of is denoted by .
For instance, , , etc.

Theorem V.4: Consider Boolean network (15). The number
of length cycles, , is inductively determined by

(26)

Proof: Assume that is its fixed point. Then, ,
the -th column of . Hence . That is, each diag-
onal nonzero (precisely 1) column is a fixed point, which proves

.
As for the second equation, note that a point on a cycle of

length is a fixed point of . Subtracting number of cycles
of factor length and taking into consideration of multiplicity
caused by elements in the cycle, the conclusion follows.

Next, we consider how to find the cycles. If

(27)

then we call “ ” a non-trivial power.

Assume that is a non-trivial power. Denote by the
-th entrance of matrix . Then we define

where is the compliment of .
From the above argument the following is obvious.
Proposition V.5: Let . Then

is a cycle with length , iff .
Theorem V.4 and Proposition V.5 provide a simple algo-

rithm for calculating cycles. We give some examples to show
the algorithm.

Example V.6: Recall Example IV.2. It is easy to check that

Using Theorem V.4, we conclude that there is only one cycle of
length 4. Moreover, note that

then each diagonal nonzero column can generate the cycle. Say,
choosing , then we have

Using Proposition V.1 to convert the vector forms back to the
scalar form of , , and , we have the cycle as

.
Both fixed point and cycle are called attractor. The attracting

set, denoted by , is the union of all attractors. In the following
we consider the transient period, i.e., the minimum transient
states that leads any point to the attracting set . First, it is easy
to see that there are only different logical
matrices. Hence, if we construct a sequence of matrices as

then there must be two equal matrices. Let be the
smallest such that appears again in the sequence. That is,
there exists a such that . Precisely

(28)

Then such exists. The following proposition is obvious.
Proposition V.7: Let be defined as in (28). Then starting

from any state, the trajectory will enter into a cycle after
iterations.

For a given state , the transient period of , denoted by
, is the smallest , satisfying and .

The transient period of a Boolean network, denoted by , is
defined as

In fact, we can show that is the transient period of the
system.
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Theorem V.8: The defined in (28) is the transient period
of the system. That is

(29)

Proof: First, assume that

(30)

and is the smallest positive number, which verifies (30).
By definition, . We first claim that if there is a
cycle of length , then is a factor of . We prove the claim
by contradiction: Assume and . Let
be a state on the cycle. Then is also a state on the same
cycle. Hence

which is a contradiction.
From (30) and the definition of it is obvious that .

To prove , we assume that . By definition, for
any , is on a cycle, which has length as a factor of .
Hence

(31)

It is easy to check that if for any (31) holds, then
, which is a contradiction to the definition of .

Remark V.9:
1) According to Theorem V.8 it is clear that , because

the transient period can not be larger than .
2) Let be defined as in above, and is the

smallest positive number, which verifies (30). Then it is
easy to see that is the least common multiplier of the
lengths of all cycles.

Finally, we consider the basin of each attractor. Denote

where is the set of attractors. We give the
following definition:

Definition V.10:
1) Denote by the trajectory with initial value

. is called the basin of attractor , if is the set of
points, which will converge to . Precisely, , iff,
the trajectory satisfies for ;

2) is called the parent state of , if .
Remark V.11:
• Let . Denote by

Then the set of parent states of is .
• . Moreover, since are

disjointed, it is a partition of the state space .
What remains now is how to find . Starting from each point

. If we can find its parent states , then for each
point , we can also find . Continuing this
process and after times we get a tree of states, which converge
to . Summarizing above arguments, we have

Proposition V.12:

(32)

Fig. 2. State Space Graph of (16).

Finally let us see how to find . Denote the -th column
of by . Then it is easy to verify that

Proposition V.13:

(33)

Example V.14: Recall Example IV.2. It is easy to check that
and

We then have the transient period . Using Propositions
V.12 and V.13, we may choose any point , where is its
only cycle, to find , , and .

Say, choosing . Then we can see and
equal to . So and form . But

is on the cycle, so we are interested in .
Now since only , we have . Let

. Only , so we have
. So we have a chain . Choosing

. Then . Since is on the
cycle, we choose . It is easy to check that

, and we have no more parent states. Finally, we
get the state space graph of the network in Example IV.2 as in
Fig. 2. (Note that here we use only. The iterative calculation
provides whole tree. If we need only the basins , are
convenient.)

In literatures of Boolean networks and are often
used. Using standard logical notations , and

, where is called the “exclusive or”, that is,
is true whenever either or , but not both are true [30].

Example V.15 ([16]): Consider the following Boolean
network

(34)

It is easy to calculate that
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Fig. 3. State space graph of (34).

follows immediately as:

Choosing any diagonal nonzero column of , say,
, we can generate a length 5 cycle as

, where
, , ,
, .

It is easy to check that and . That is, .
Since , there are no cycles of length longer than 5.

Choosing , then

Choosing , then

The state space graph (Fig. 3) coincides with the one in [16].
The last example is from [18] and re-investigated in [20].
1) Example V.16: Consider the following system:

(35)

We skip the detailed computation and present the result di-
rectly:

The non-trivial powers are , and
. It follows from Theorem V.4 that there are only two cycles

of length 2 and ten cycles of length 6.
Searching diagonal nonzero columns of yields

Searching diagonal nonzero columns of yields

Finally, we can calculate that the first repeating is
. So, .
It was shown that there are no fixed points, and there are two

cycles of length 2. Our results about fixed points and cycles with
length 2 coincide with [20]. Reference [20] pointed out only six
cycles of length 6. According to our result, there are exactly ten
cycles of length 6.

VI. CONCLUSION

In this paper, the topological structure of Boolean networks
has been investigated. Using semi-tensor product of matrices,
the dynamics of Boolean networks has been converted into an
algebraic form . Since in our expression be-
tween and , all the products are semi-tensor
product, it gives a clear insight for the mapping with respect to
each arguments. In this paper such structure provides formulas
for 1) fixed points; 2) cycles of different lengths; 3) transient
period; 4) basin of each attractor. Unlike many existing pow-
erful algorithms, our main interest is on the theoretical part. For
instance, using this semi-tensor product based structure, the in-
variant subspace and the cycles on such subspaces have been
discussed [8]. If we consider a Boolean control network, its al-
gebraic form can be obtained as . Then,
using the associativity of semi-tensor product, we have the con-
trol-depending transition matrix as . Several control prop-
erties can be investigated via this form [9].
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