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a b s t r a c t

The observability of Boolean control networks is investigated. The pairs of states are classified into three
classes: (i) diagonal, (ii) h-distinguishable, and (iii) h-indistinguishable. For h-indistinguishable pairs, we
construct a matrix W called the transferable matrix, which indicates the control-transferability among
h-indistinguishable pairs. Modifying W yields a Boolean matrix U0, which is used as the initial matrix
for an iterative algorithm. After finite iterations a stable U∗ is reached, which is called the observability
matrix. It is proved that a Boolean control network is observable, if and only if, the last column of U∗,
Colr+1(U

∗) = 1r . Some numerical examples are presented.
© 2015 Elsevier B.V. All rights reserved.
1. Introduction

The Boolean networks (BNs)were first proposed by S. Kauffman
to describe genetic regulatory networks [1]. Since then the BN has
attracted a considerable attention from systems biology, physics
as well as systems science. In 2001, [2] pointed out that the
genetic regulatory networks have input(s) and output(s), and they
can be described as Boolean control networks (BCNs). Then the
investigation of BCNs increases [3–6]. But during this period, most
of the research were concentrated on control only. As pointed out
by [5] that ‘‘One of themajor goals of systems biology is to develop
a control theory for complex biological systems’’. But because the
genetic networks are logical and there were shortage of proper
tools to deal with logical dynamic systems, the results on Boolean
control networks (BCNs) were limited.

Using semi-tensor product (STP) of matrices, an algebraic state
space approach to BNs and BCNs was proposed [7,8]. It stimulates
the research on BNs and BCNs.We refer the reader to [9] for several
dynamic and/or control problems of BNs, and to [10] for STP.

The controllability and observability are two fundamental
problems in the control of BNs as well as in the control theory. The
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controllability of various types of BNs has been solved neatly. For
instance, [7,11] solved the controllability of standard formof BCNs;
the controllability of state restricted BCNs was solved in [12];
the controllability of probabilistic BCNs was solved in [13,14].
The controllability of time-varying BCNs [15], higher order BCNs
[16,17], switched BCNs [18,19], time-delay BCNs [20,21], and
periodic BCNs [22], etc., has also been investigated.

Similarly, the observability of BCNs has also been widely inves-
tigated. Though there is no dual relationship between controllabil-
ity and observability such as for linear systems, as a convention,
sometimes the observability of BCNs is still discussed simultane-
ously with controllability [7,21,23–26].

Unlike the controllability, the observability of BCNs has various
definitions, and for the most general (sharp) definition, the
necessary and sufficient condition was still not known until [27],
see also [28].

First of all, [27] discussed four different definitions of observ-
ability in the recent literature. We first cite these four definitions
in a uniform way, which might be different from the original ones
in statement, but have been proved in [27] that the following four
definitions are equivalent to their original ones.

Definition 1.1. A BCN is observable, if
(D1) [7] for any initial state x0 there exists an input sequence

{u0, u1, . . .} such that for any x̄0 ≠ x0 the corresponding
output sequences (y0, y1, . . .) ≠ (ȳ0, ȳ1, . . .);

(D2) [11] for any two distinct states x0, x̄0 there is an input se-
quence {u0, u1, . . . , up}, p ∈ Z+, such that the corresponding
output sequences (y0, y1, . . . , yp) ≠ (ȳ0, ȳ1, . . . , ȳp);
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Fig. 1. The relationships of D1–D4.

(D3) [23] there exists an input sequence {u0, u1, . . . , up}, p ∈

Z+, such that for any two distinct x0, x̄0, the corresponding
output sequences (y0, y1, . . . , yp) ≠ (ȳ0, ȳ1, . . . , ȳp);

(D4) [24] for any two distinct states x0, x̄0 and for any input
sequence {u0, u1, . . .}, the corresponding output sequences
(y0, y1, . . .) ≠ (ȳ0, ȳ1, . . .).

The relationship among these four definitions is described in
Fig. 1 [27].

In Fig. 1 ‘‘→’’ means implication and ‘‘−×→’’ means not
implication. Note that the ‘‘implication’’ means that if a BCN
satisfies the preceding definition it also satisfies the following one.
From Fig. 1 it is clear that D2 is the most sensitive (sharp) one.
So as proposed by [27], we may take D2 as the standard one and
concentrate on this definition. Hereafter, the observability of BCNs
we concerned will be the one specified by D2.

In [11] only a sufficient condition was provided, while other
papers deal with various other kinds of observability. Hence, the
necessary and sufficient condition for observability of Boolean
networks was still unknown until [27].

By resorting to formal language and finite automata, [27] (refer
also to [28]) presents a necessary and sufficient condition for
the observability of BCNs. Their result is like this: For each pair
of distinct states (x0, x̄0), an algorithm is provided to construct
a deterministic finite automata (DFA), denoted by A(x0,x̄0). Then
a system is not observable, if and only if, there is a pair of
distinct states (x0, x̄0), such that the correspondingDFA,A(x0,x̄0) can
recognize its corresponding alphabet.

The result provided by [27] is the first theoretically verifiable
necessary and sufficient condition for the observability of BCNs.
But its computational complexity is a severe problem. As de-
scribed in the paper, it is necessary to draw a DFA for each pair of
h-indistinguishable pair of states, and then verify its recognizable
languages. It can be practically done only for very small toy sys-
tems. Moreover, the knowledge about formal language and finite
automata is required to understand their technique.

The purpose of this paper is to give an alternative set of
necessary and sufficient conditions for the observability of BCNs.
The necessary and sufficient conditions are easily verifiable and
do not involve any additional auxiliary machines such as finite
automata or so. Using the transition matrix of h-indistinguishable
matrix W we construct a Boolean matrix, U0. That is a matrix
with entries in {0, 1}. Then an algorithm is proposed to perform
an iteration on


Ui

|i = 0, 1, . . .

. After finite iterations a fixed

matrix U∗, called the observability matrix, will be reached. It is
proved that the BCN is observable, if and only if, the last column
of U∗, which is the set of distinguishable indices of each rows
respectively, is Colr+1(U

∗) = 1r .
Though the approach seems completely different from [27], the

initial idea was motivated by [27].
The paper is organized as follows: Section 2 presents some

preliminaries. It consists of two subsections: one is a brief in-
troduction to the semi-tensor product of matrices, and the other
is for the algebraic state space representation of logical dy-
namic systems. Section 3 studies the observability of BCN. The
h-indistinguishable matrix W is constructed. Using it, the algo-
rithm is introduced. Then themain result is obtained as a necessary
and sufficient condition. In Section 4 some illustrative examples
are presented to demonstrate the algorithm and the main result.
Some related topics are discussed in Section 5 as the concluding
remarks.

2. Preliminaries

2.1. Semi-tensor product of matrices

This subsection gives a brief review for STP. The readers can
refer to [10] for details.

First, we give some notations:

• Z+: the set of non-negative numbers.
• 1n = [1, . . . , 1  

n

]
T .

• Mm×n: the set of m × n real matrices.
• Col(M) (Row(M)) is the set of columns (rows) of M . Coli(M)

(Rowi(M)) is the ith column (row) of M .
• D := {0, 1}.
• δi

n: the ith column of the identity matrix In.
• ∆n :=


δi
n|i = 1, . . . , n


, ∆ := ∆2.

• Amatrix L ∈ Mm×n is called a logical matrix if the columns of L,
denoted by Col(L), are of the form δk

m, 1 ≤ k ≤ m. That is,

Col(L) ⊂ ∆m.

Denote by Lm×n the set ofm × n logical matrices.
• If L ∈ Ln×r , by definition it can be expressed as L = [δ

i1
n ,

δ
i2
n , . . . , δir

n ]. For the sake of brevity, it is briefly denoted as
L = δn[i1, i2, . . . , ir ].

Definition 2.1. Let M ∈ Mm×n and N ∈ Mp×q, and t = lcm{n, p}
be the least common multiple of n and p. The semi-tensor product
(STP) ofM and N , denoted byM n N , is defined as

M n N :=

M ⊗ It/n

 
N ⊗ It/p


∈ Mmt/n×qt/p, (1)

where ⊗ is the Kronecker product.

When n = p, the STP coincides with the conventional matrix
product. So the STP is a generalization of conventional matrix
product. Fortunately, it keeps all the properties of the conventional
matrix product unchanged. We, therefore, omit the symbol ‘‘n’’
mostly. In addition, it has some new properties. The following
property is frequently used in the sequel.

Proposition 2.2. Let X ∈ Rm be a column andM be anymatrix. Then

X n M = (Im ⊗ M) X . (2)

Definition 2.3 ([29]). M ∈ Mm×p, N ∈ Mn×p. The Khatri–Rao
product ofM and N is defined as

M ∗ N := [Col1(M) n Col1(N), . . . ,

Colp(M) n Colp(N)


∈ Mmn×p. (3)

2.2. Algebraic state space representation of Boolean networks

Definition 2.4. 1. A function f : Dn
→ D is called a Boolean

function. It can be expressed as

y = f (x1, x2, . . . , xn), y, x1, . . . , xn ∈ D. (4)
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2. A mapping F : Dn
→ Dm is called a Boolean mapping. A

Boolean mapping F is composed ofm Boolean functions, as

F :


y1 = f1(x1, . . . , xn),
...
ym = fm(x1, . . . , xn).

(5)

Identifying

1 ∼ δ1
2, 0 ∼ δ2

2,

then a Boolean variable (also called a logical variable) x can be
expressed as

 x
1−x


∈ ∆, called the vector formof a Boolean variable

x. Using vector forms, a Boolean function f becomes f : ∆n
→ ∆

and a Boolean mapping F becomes F : ∆n
→ ∆m. Furthermore,

we then have the following algebraic expression.

Theorem 2.5 ([10]). Let f : Dn
→ D be a Boolean function. Then

there exists a unique logical matrix Mf ∈ L2×2n , such that in vector
form (4) can be expressed as

f (x1, . . . , xn) = Mf nn
i=1 xi. (6)

Mf is called the structure matrix of f .

Consider the Boolean mapping (5). According to Theorem 2.5,
there existMi, i = 1, . . . ,mwhich are the structurematrices of the
corresponding component functions. Then we have the following
result.

Theorem 2.6 ([10]). Consider the Boolean mapping (5). In vector
form, let x = nn

i=1 xi, y = nm
i=1 yi. Then there exists a unique logical

matrix MF ∈ L2m×2n , such that (5) can be expressed as

y = MFx, (7)

where

MF = M1 ∗ M2 ∗ · · · ∗ Mm (8)

is called the structure matrix of F .

3. Observability of Boolean control networks

A Boolean control network can be described as follows:
x1(t + 1) = f1(u1(t), . . . , um(t), x1(t), . . . , xn(t)),
...
xn(t + 1) = fn(u1(t), . . . , um(t), x1(t), . . . , xn(t)),

yj(t) = hj(x1(t), . . . , xn(t)), j = 1, . . . , s,

(9)

where xi(t) ∈ D , i = 1, . . . , n are state variables; ui(t) ∈ D ,
i = 1, . . . ,m are controls; and yi(t) ∈ D , i = 1, . . . , s are outputs.

Using Theorems 2.5 and 2.6, we have the following result:

Corollary 3.1. In vector form the BCN (9) can be expressed as

x(t + 1) = Lu(t)x(t),
y(t) = Hx(t), (10)

where x(t) = nn
i=1 xi, u(t) = nm

i=1 ui, and y(t) = ns
i=1 yi; L ∈

L2n×2m+n , H ∈ L2s×2n .

(10) is called the algebraic state space representation of (9).
Since (9) and (10) are equivalent, hereafter we consider (10) only.
Denote the state space as X := ∆n

= ∆2n , we consider the pair of
states {x, x̄} ∈ X × X and construct a partition of X × X as

X × X = D ∪ Ξ ∪ Θ,
where

D :=

{x, x}|x ∈ X


⊂ X × X;

Ξ :=

{x, x̄}|x ≠ x̄ and Hx = Hx̄


⊂ X × X;

Θ :=

{x, x̄}|x ≠ x̄ and Hx ≠ Hx̄


⊂ X × X.

The pairs in D are called the diagonal pairs; the pairs in Ξ are
called the h-indistinguishable pairs; and the pairs in Θ are called
the h-distinguishable pairs. Note that we consider {x, y} = {y, x},
that is, the order of the pair is ignored.

Definition 3.2. A pair {x, x̄} is said transferable to {z, z̄}, denoted
by {x, x̄} → {z, z̄}, if there exists a control u such that z = Lux and
z̄ = Lux̄ or z = Lux̄ and z̄ = Lux. That is, the first pair can be driven
by some control to the second pair. Denote by

w{x,x̄}→{z,z̄}

the number of distinct controls, which can drive {x, x̄} to {z, z̄}, is
called the transferable index.

Next, we explain how to calculate the transferable index.
Assume x = δ

p
2n , x̄ = δ

q
2n , z = δα

2n , z̄ = δ
β

2n . We split L into 2m

equal size square matrices as

L = [L1, L2, . . . , L2m ] .

Then it is easy to see the following result.

Proposition 3.3. Using the above notation, {x, x̄} can be driven to
{z, z̄} by control δj

2m , if and only if,
Colp(Lj), Colq(Lj)


=


δα
2n , δ

β

2n


. (11)

Using Proposition 3.3, calculating the transferable indexw{x,x̄}→{z,z̄}
becomes a simple issue.

Given a BCN, we consider its observability. To begin with,
assume

Ξ = {ξ1, ξ2, . . . , ξr} ,

we construct a matrix W ∈ Mr×(r+1), called the transferable
matrix, as

W =


w1,1 w1,2 · · · w1,r w1,r+1
w2,1 w2,2 · · · w2,r w2,r+1

...
wr,1 wr,2 · · · wr,r wr,r+1

 , (12)

where

wi,j = wξi→ξj , j ≠ r + 1,

is the transferable index from ξi to ξj, and

wi,r+1 = wξi→D

is the transferable index from ξi to any diagonal pair.
Second step, we define the row indistinguishable index di as

di =

r+1
j=1

wi,j, i = 1, . . . , r. (13)

Note that the row indistinguishable index di is the transferable
index of ξi → Ξ ∪ D. That is,

di = wξi→Ξ∪D. (14)

Using the row indistinguishable indices, we construct another
matrix U0

=

ui,j


∈ Mr×(r+1) as (For coding, just modify W .)

u0
i,j =


1, wi,j > 0,
0, wi,j = 0, i = 1, . . . , r; j = 1, . . . , r;
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and

u0
i,r+1 =


1, di < 2m,
0, di = 2m, i = 1, . . . , r.

It is clear that U0 is a Boolean matrix.
Using U0, we can inductively construct Uk as follows:

Algorithm 3.4. AssumeUk
=


uk
i,j


is known, we constructUk+1:

• For i = 1, . . . , r , if uk
i,r+1 = 1,

Colr+1

Uk+1

= Colr+1

Uk

∨ Coli

Uk . (15)

• If

Uk∗+1
= Uk∗ , (16)

set

U∗
:= Uk∗ , (17)

and stop.

Note that since at each efficient iteration, which means (16)
does not hold, the norm ∥ Colr+1(U

k)∥1 (which is the sum of all
elements) will increase at least one. So atmost after r−1 iterations
(16) becomes true. And then we have Uk

= Uk∗ , ∀ k > k∗. We,
therefore, can always get U∗.

Theorem 3.5. Consider the BCN (9) (equivalently, (10)).

(1) It is observable, if and only if,

Colr+1

U∗


= 1r . (18)

(2) ξi = (x0, x̄0) is an indistinguishable pair, if and only if, the
(i, r + 1)th element of U∗ satisfies

ui,r+1 = 0. (19)

Proof. We prove (1) first.
(Sufficiency) If {x0, x̄0} ∈ Θ , then this pair of points are obvi-

ously distinguishable. So we only need to worry about {x0, x̄0} ∈

Ξ . For ξi = {x0, x̄0} ∈ Ξ , if its row indistinguishable index
di < 2m, since

wξi→Ξ∪D + wξi→Θ = 2m,

observing (14), it is clear that there is at least one control, which
will drive ξi to Θ . Hence ξi is h-distinguishable. Now consider ma-
trix U0. If ξi, ξj ∈ Ξ , u0

i,r+1 = 0, u0
j,r+1 = 1, and u0

i,j = 1, then by
construction, ξj is h-distinguishable and ξi is not. But since u0

i,j = 1,
which means there exists at least one control, which drives ξi to
ξj. Since ξj is h-distinguishable, ξi is second step h-distinguishable.
So in U1 we change u0

i,r+1 = 0 to u1
i,r+1 = 1. Continuing this pro-

cess until Uk∗
= Uk∗+1. If Colr+1(U

k∗) = 1r , it is obvious that the
system is observable.

(Necessity) Let

Γ =

ξi ∈ Ξ

u∗

i,r+1 = 0, i = 1, . . . , r

.

Then it is clear that Γ is a control-invariant set. That is, if γ ∈ Γ ,
then

Luγ ∈ Γ , ∀u ∈ ∆2m .

Hence Γ is the set of indistinguishable pairs. It follows that Γ =

∅ is a necessary condition for observability. This fact implies
Colr+1(U

∗) = 1r .
From the proof of (1), it is easy to see that (2) is an immediate

consequence. �
Remark 3.6. 1. From Theorem 3.5 it is clear that the ith compo-
nent of Colr+1 (U∗) indicates whether ξi is a distinguishable
pair. So we call it the distinguishable index of ξi. Hence, we can
call Colr+1


Uk


the vector of distinguishable indices, denote it

by V k
d .

2. In Algorithm 3.4 each time we updated only the vector of
distinguishable indices. So (16) can be replaced by

∥V k∗+1
d ∥1 = ∥V k∗

d ∥1. (20)

4. Illustrative examples

The first example shows the detailed calculating process.

Example 4.1. Consider the following Boolean network

x1(t + 1) = [u(t) ∧ ¬(x1(t) ∧ x2(t) ∧ x3(t))] ∨ {¬u(t)
∧ [(x1(t) ∧ (x2(t) ∨ ¬x3(t)))
∨ (¬x1(t) ∧ x2(t) ∧ ¬x3(t))]},

x2(t + 1) = {u(t) ∧ [(x1(t) ∧ x2(t) ∧ ¬x3(t))
∨ (¬x1(t) ∧ x2(t) ∧ x3(t))
∨ ¬(x1(t) ∨ x2(t) ∨ x3(t))]}
∨ {¬u(t) ∧ [(x1(t) ∧ x2(t))
∨ (¬x1(t) ∧ x2(t) ∧ x3(t))]},

x3(t + 1) = [u(t) ∧ ¬(x2(t) ∧ x3(t))]
∨ [¬u(t) ∧ (¬x1(t) ∧ ¬x2(t) ∧ x3(t))],

y1(t) = x1(t) ∨ ¬x2(t) ∨ x3(t),
y2(t) = ¬x1(t) ∨ x2(t) ∧ ¬x3(t).

(21)

Its algebraic form is

x(t + 1) = Lu(t)x(t),
y(t) = Hx(t), (22)

where

L = δ8[8 1 3 3 2 3 3 1 1 4 5 3 5 3 7 7],
H = δ4[2 1 2 2 2 3 2 1].

A straightforward computation shows that the h-indistingui-
shable pairs are

Ξ =

ξ1 = {δ1

8, δ
3
8}, ξ2 = {δ1

8, δ
4
8}, ξ3 = {δ1

8, δ
5
8}, ξ4 = {δ1

8, δ
7
8},

ξ5 = {δ2
8, δ

8
8}, ξ6 = {δ3

8, δ
4
8}, ξ7 = {δ3

8, δ
5
8}, ξ8 = {δ3

8, δ
7
8},

ξ9 = {δ4
8, δ

5
8}, ξ10 = {δ4

8, δ
7
8}, ξ11 = {δ5

8, δ
7
8}


.

Using Proposition 3.3, the transferable matrix W is expressed
in Table 1, where the last column is for the row indistinguishable
index di.

Using W , we can construct U0, which are shown in Table 2. The
last column of Table 2 shows whether the corresponding row pair
is observable, ‘‘1′′ means ‘‘Yes’’ and ‘‘0′′ means ‘‘No’’.

Next, since u0
i,r+1 = 1, for i ∈ J0 := {1, 2, 4, 7, 9, 11}, we have

V 1
d = Colr+1


U0 

∪i∈J0 Coli

U0

= [1 1 0 1 0 1 1 1 1 0 1]T .

We have u1
i,r+1 = 1, for i ∈ J1 := {1, 2, 4, 6, 7, 8, 9, 11}, and it

follows that

V 2
d = Colr+1


U1 

∪i∈J1 Coli

U1

= [1 1 0 1 0 1 1 1 1 1 1]T .

It turns out that u2
i,r+1 = 1, for i ∈ J2 := {1, 2, 4, 6, 7, 8, 9, 10, 11},

and then

V 3
d = Colr+1


U2 

∪i∈J2 Coli

U2

= [1 1 0 1 1 1 1 1 1 1 1]T .
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Table 1
Transferable matrix W .

P ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7 ξ8 ξ9 ξ10 ξ11 D di

ξ1 0 0 1 0 0 0 0 0 0 0 0 0 1
ξ2 1 0 0 0 0 0 0 0 0 0 0 0 1
ξ3 0 0 1 0 1 0 0 0 0 0 0 0 2
ξ4 0 0 0 1 0 0 0 0 0 0 0 0 1
ξ5 0 0 0 0 0 0 0 0 0 1 0 1 2
ξ6 0 0 0 0 0 0 1 0 0 0 0 1 2
ξ7 0 0 0 0 0 0 0 0 0 0 0 1 1
ξ8 0 0 0 0 0 0 0 0 0 0 1 1 2
ξ9 0 0 0 0 0 0 1 0 0 0 0 0 1
ξ10 0 0 0 0 0 0 0 1 0 0 0 1 2
ξ11 0 0 0 0 0 0 0 0 0 0 1 0 1
Table 2
Observability matrix U0 .

P ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7 ξ8 ξ9 ξ10 ξ11 V 0
d

ξ1 0 0 1 0 0 0 0 0 0 0 0 1
ξ2 1 0 0 0 0 0 0 0 0 0 0 1
ξ3 0 0 1 0 1 0 0 0 0 0 0 0
ξ4 0 0 0 1 0 0 0 0 0 0 0 1
ξ5 0 0 0 0 0 0 0 0 0 1 0 0
ξ6 0 0 0 0 0 0 1 0 0 0 0 0
ξ7 0 0 0 0 0 0 0 0 0 0 0 1
ξ8 0 0 0 0 0 0 0 0 0 0 1 0
ξ9 0 0 0 0 0 0 1 0 0 0 0 1
ξ10 0 0 0 0 0 0 0 1 0 0 0 0
ξ11 0 0 0 0 0 0 0 0 0 0 1 1

Finally, we have u3
i,r+1 = 1, for i ∈ J3 := {1, 2, 4, 5, 6, 7, 8, 9, 10,

11}, and then

V ∗

d = V 4
d = Colr+1


U3 

∪i∈J3 Coli

U3

= [1 1 1 1 1 1 1 1 1 1 1]T .

We conclude that the BN (21) is observable.

The second example is a Boolean model for biological system.

Example 4.2. Consider a Boolean model for the lac operon in the
bacterium Escherichiacoli [30]:

x1(t + 1) = ¬x3(t) ∧ x7(t)¬x8(t),
x2(t + 1) = x1(t),
x3(t + 1) = ¬x4(t) ∧ ¬x9(t),
x4(t + 1) = x2(t) ∧ x5(t),
x5(t + 1) = ¬u1(t) ∧ u2(t) ∧ x6(t),
x7(t + 1) = ¬u1(t),
x8(t + 1) = x3(t) ∨ (¬x4(t) ∧ ¬x9(t)),
x9(t + 1) = x5(t) ∨ x10(t),
x10(t + 1) = ¬u1(t) ∧ (u2(t) ∨ (u3(t) ∧ x6(t))).
yi(t) = xi(t), i = 1, 2, 6, 7;
y3(t) = x3(t) ∧ x8(t), y4(t) = x4(t) ∨ x9(t),
y5(t) = x5(t) ∧ x10(t)

(23)

where the variable meanings are as follows:

x1: lac mRNA;
x2: lacβ-galactosidase;
x3, x8: the repressor protein LacI and medium LacI resp.;
x4, x9: allolactose and medium allolactose resp.;
x5, x10: lactose and medium resp.;
x6: lac Permease;
x7: the catabolite activator protein(CAP);
u1, u2, u3: extracellular glucose, high extracellular lactose and
medium extracellular lactose resp.;
yi: outputs.
Then it is easy to figure out its algebraic form (22) with

L = δ1024[682, 682, 682, 682, . . . ,
1014, 1016, 882, 884] ∈ L1024×8192;

H = δ128[1, 5, 1, 5 · · · 120, 120, 128, 128] ∈ L128×1024.

Next, it is easy to figure out Ξ , which is

Ξ =

{δ1

1024, δ
3
1024}, {δ

1
1024, δ

65
1024}, {δ

2
1024, δ

4
1024}, {δ

2
1024, δ

33
1024}, . . .

{δ1021
1024, δ

1022
1024}, {δ

1023
1024δ

1024
1024}


and |Ξ | = 7488. After the iteration algorithm the remained
indistinguishable pairs, denoted by Ξr , is

Ξr =

{δ1

1024, δ
3
1024}, {δ

1
1024, δ

65
1024}, {δ

2
1024, δ

4
1024},

{δ2
1024, δ

33
1024}, . . . , {δ

1020
1024, δ

1024
1024}


,

where |Ξr | = 2032. So the system is not observable.

5. Concluding remarks

Motivated by Zhang & Zhang’s work [27,28], an alternative
approach to the observability of Boolean networks was proposed
in this note. It significantly simplified the necessary and sufficient
condition in [27,28], which is based on finite automata. Since
our approach is straightforward, which does not involve finite
automata or any other auxiliary machine, it is much simpler and
easily understandable.

In our approach, the transferable matrix W of h-indistingui-
shable pairs is constructed. Then W is modified into a Boolean
matrix U0, called the observability matrix. Using it an iterative
algorithm is proposed to update an index set. After finite (less
than the number of h-indistinguishable pairs, say r) very simple
iterations, the index set is stable. Then the system is observable, if
and only if, the last column of the observability matrix Uk∗ is 1r .

The following are some further discussions.

5.1. Multi-valued logical dynamic systems

Observe network (9) again. Now assume xi, uj, yℓ ∈ Dk, k >

2, then the system is called a k-valued logical control network.
More general, we may have xi ∈ Dki , i = 1, . . . , n, ui ∈ Dpi ,
i = 1, . . . ,m, yi ∈ Dqi , i = 1, . . . , s, then the system is called
a multi-valued logical control network or multi-valued logical
control system. Multi-valued logical control system could come
from biological (economical) systems, or game-based model [31].
Then they do not have logical form (9), but they can be described
as (10).

The method developed in this note can be used for multi-
valued logical control systems directly. We give an example to
demonstrate it.
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Example 5.1. 1. Consider a multi-valued logical dynamic system,
assume that x1(t), x3(t), u(t) ∈ ∆2, x2(t) ∈ ∆3. First, we
consider the casewhen there is only one output node y(t) ∈ ∆3.
Its algebraic form is

x(t + 1) = Lu(t)x(t),
y(t) = Hx(t), (24)

where
L = δ12[2, 9, 5, 4, 7, 12, 9, 6, 7, 12, 3, 2, 9, 12, 9, 5, 8, 1, 12,

1, 10, 1, 6, 9] ∈ L12×24;

H = δ3[2, 1, 2, 3, 3, 2, 2, 1, 3, 2, 3, 1] ∈ L3×12.

It is easy to calculate that

Ξ =

{δ1

12, δ
3
12}, {δ

1
12.δ

6
12}, . . . , {δ

8
12, δ

12
12}, {δ

9
12, δ

11
12}


,

and |Ξ | = 19, the number of h-indistinguishable pairs is
2. After first iteration the number of h-indistinguishable pairs
is 1 and then the algorithm stopped. The only remained h-
indistinguishable pair is {δ6

12, δ
10
12}. The system is unobservable.

2. Consider the system (24) again. Now assume we have two
outputs, where y1 = y is the old one hence H1 = H . We add
a new output y2(t) ∈ ∆ and assume its structure matrix is

H2 = δ2[2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1].

Then we have the overall output y = y1 n y2, which has the
structure matrix as

H = H1 ∗ H2

= δ6[4, 1, 3, 5, 5, 3, 4, 1, 5, 4, 5, 1] ∈ L6×12.

It is easy to obtain that

Ξ =

{δ1

12, δ
7
12}, {δ

1
12.δ

10
12}, . . . , {δ

8
12, δ

12
12}, {δ

9
12, δ

11
12}


,

where |Ξ | = 13. Moreover, we also have Col14(U0) = 113.
Hence, there are no h-indistinguishable pairs.We conclude that
the system is observable.

5.2. Observability subspace

For a BCN (similarly, for a multi-valued logical control system),
a set of states, O ⊂ ∆2n (correspondingly, O ⊂ ∆k, k =

n
i=1 ki),

we may define the observable subspace as follows.

Definition 5.2. For a BCN (or multi-valued logical control system)
O ⊂ ∆2n (correspondingly, O ⊂ ∆k) is called an observable
subspace, if

(i) any two distinct points x0, x̄0 ∈ O are distinguishable;
(ii) if U ⊃ O and U ≠ O, then U is unobservable.

It is worth noting that the sets satisfying the two conditions in
Definition 5.2, are far no unique.We give an example to depict this.

Example 5.3. Consider the following system

x1(t + 1) = x2(t) ∧ u1(t),
x2(t + 1) = x3(t) ∨ x4(t),
x3(t + 1) = x4(t)∨̄x5(t),
x4(t + 1) = ¬x5(t),
x5(t + 1) = x1(t) ↔ u2(t),

y1(t) = x1(t) → x3(t),
y2(t) = x2(t) ∨ x5(t),
y3(t) = x1(t) ∧ x4(t).

(25)

We skip the detailed discussion and give the eventually
h-indistinguishable pairs as
{δ17

32, δ
21
32}, {δ

18
32, δ

22
32}, {δ

25
32, δ

29
32}, {δ

26
32, δ

28
32}, {δ

26
32, δ

30
32}{δ

28
32, δ

30
32}


.

Then you may have

O1 = ∆32 \ {δ21
32, δ

22
32, δ

25
32, δ

26
32, δ

30
32};

O2 = ∆32 \ {δ17
32, δ

18
32, δ

28
32, δ

29
32, δ

30
32};

O3 = ∆32 \ {δ17
32, δ

22
32, δ

25
32, δ

26
32, δ

28
32}; · · ·

(26)

We may call such sets the sup-observable subspaces. Note that
when you mention the observable subspace, it is not clearly
defined.

For a linear or nonlinear system, the unobservable subspace
(sub-manifold) is well defined. But for logical systems, ‘‘unobserv-
able subspace’’ seems very confusing. For instance, if we consider
the complement of O1 in (26), which is

Oc
1 = {δ21

32, δ
22
32, δ

25
32, δ

26
32, δ

30
32}. (27)

It is almost observable except one pair {δ26
32, δ

30
32}. In other words,

it is obvious that either {δ21
32, δ

22
32, δ

25
32, δ

26
32} or {δ21

32, δ
22
32, δ

25
32, δ

30
32} is

observable. So for logical systems, ‘‘unobservable subspace’’ is not a
well defined concept. Therefore, if O is a sup-observable subspace,
its complement Oc may be called co-observable subspace.

According to the argument in Example 5.3, it is obvious that
several concepts discussed in [32,33], which involve the observ-
ability subspace, may need to be reconsidered. A fundamental
problem is: how to convert the set sense subspace discussed above
forward/backward to the logical function sense subspace, dis-
cussed in [32,33] or [9].
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