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Dear editor,
Recent years have witnessed a rapid growth of dis-
tributed design in multi-agent networks because
of the scalability, robustness and low cost. Com-
pared with the conventional centralized and par-
allel design, all agents in fully distributed design
aim to achieve the global goal only based on the
local measurement and information sharing with
neighbors. Therefore, the distributed algorithms
have been more and more popular in many areas,
including economical systems, smart grids and ma-
chine learning [1–3].

Machine learning has attracted more and more
research attention in recent years owing to various
applications in data mining, pattern recognition,
and knowledge discovery [4]. The most classical
regression model, belonging to the supervised ma-
chine learning methods, is the least-squares, which
aims to minimize the summation of the squared
residuals to find the underlying rules between re-
gression vectors and corresponding responses [5].

Note that many least-squares methods are ba-
sically centralized, and can process the whole
dataset without active data selection. Unfortu-
nately, the challenges with rapid growth of data
and large scale networks appeal more effective al-
gorithms to save the limited computational re-
sources and process data over the networks [6].
To deal with the large size of data, random sam-
pling is one of major methods, which only uses a
small subset of data for the model fitting and infer-

ence. The gradient-based sampling algorithm for
least-squares proposed in [7], different from uni-
form sampling and leverage-based sampling, takes
both input vectors and response values into con-
sideration. The sampling probability is propor-
tional to the norm of gradient, which needs less
computational resources. To deal with the circum-
stance that data are distributed over the networks,
some fully distributed algorithms have been inves-
tigated [8, 9]. Unfortunately, if the local datasets
are too large to process, these algorithms will fail
to work, without considering the computational
ability of each agents. Therefore, designing dis-
tributed algorithms with sampling becomes an ur-
gent task for effective distributed large-size data
processing.

Motivated by the above analysis, we study the
distributed design with sampling for least-squares.
By combining the idea of distributed subgradient
method presented in [8] with the gradient-based
sampling idea in [7], the distributed gradient-based
sampling algorithm (DGSA) is proposed. As far as
we know, DGSA is the first distributed algorithm
that adapts the sampling idea to the circumstance
that the computational ability of each agent is lim-
ited. Furthermore, the communication network
in DGSA is assumed to be time-varying, which is
more suitable to the complicated situations in re-
ality. Both theoretical and empirical analyses are
given to illustrate the effectiveness of DGSA.

Preliminaries. Consider a network with N
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agents, which is modeled by the graph G = (V , E),
where V and E represent the set of agents and
edges, respectively. If agent i can receive infor-
mation from agent j directly, then there exists a
directed edge from j to i, which is denoted by
(j, i) ∈ E . A graph G is strongly connected if
there is a directed path between any pair agents
i, j ∈ V . The time-varying network can be mod-
eled by G(t) = (V , E(t)). A(t) = [ai,j(t)] ∈ R

N×N

is the adjacency matrix, where ai,j(t) > 0 for any
(j, i) ∈ E(t) and ai,i(t) > 0. Otherwise, ai,j(t) = 0.

Assumption 1. The graph G(t) = (V , E(t)) with
its weighted adjacency matrix A(t) is jointly con-
nected; that means

• A(t) is doubly stochastic;
• For all i ∈ V , ai,i(t) > ǫ and ai,j(t) > ǫ if

(j, i) ∈ E(t), where ǫ is a positive scalar;
• The graph (V , E(t)∪E(t+1)∪· · ·∪E(t+T−1))

is strongly connected for all t > 0, where T > 0 is
an integer.

Obviously, Assumption 1 guarantees that each
agent can receive information from all its neigh-
bors at least one time during each period of T .

Problem formulation. For every agent i ∈ V , a
training set Di = {(xk

i , y
k
i )}

mi

k=1 is available, where
xk
i ∈ X is the input vector belonging to the input

space X ⊆ R
d, yki ∈ R is the response value, and

mi is the number of the data points. D = {Di}
N
i=1

is the whole dataset. The least-squares problem
is to minimize the sample risk function of the pa-
rameters ω as follows:

N
∑

i=1

fi(Xi, Yi, ω) =

N
∑

i=1

1

2

mi
∑

k=1

(yki − ωTxk
i )

2, (1)

where Xi = (x1
i , x

2
i , . . . , x

mi

i )T ∈ R
mi×d and Yi =

(y1i , y
2
i , . . . , y

mi

i )T ∈ R
mi represent the local in-

put matrix and response vector, respectively. The
global input matrix and response vector are de-
fined by X = (XT

1 , X
T
2 , . . . , X

T
N )T ∈ R

M×d and
Y = (Y T

1 , Y T
2 . . . , Y T

N )T ∈ R
M separately, where

M =
∑N

i=1 mi is the total number of data points.
The solution of the problem (1) has the form of

ω∗ = (M−1XTX)−1(M−1XTY ) = Ω−1
M bM , (2)

where ΩM = M−1XTX and bM = M−1XTY .
When the size of input data is very large or dis-

tributed stored, Eq. (2) cannot be obtained in just
one central agent in fact. Therefore, some dis-
tributed algorithms have been proposed [8]. Un-
fortunately, if the size of local data in every agent
is also very large, which means mi ≫ d, the dis-
tributed algorithms cannot perform normally ei-
ther.

To reduce the computational cost in each agent,
sampling method is a good choice. The sam-
pling probabilities in all agents are denoted by

{βi}
N
i=1, where βi = (β1

i , β
2
i , . . . , β

mi

i )T, such that
∑N

i=1

∑mi

k=1 β
k
i = 1. According to the sampling

probabilities, subsample set Ds = {Ds
i }

N
i=1 are

randomly chosen, and problem (1) is transformed
to the following weighted least squares function:

N
∑

i=1

f̃i(X
s
i , Y

s
i , β

s
i , ω) =

N
∑

i=1

∑

k∈Ds

i

1

2βk
i

(yki −ωTxk
i )

2.

(3)
The solution ω̃ of (3) has the following form: ω̃ =
(M−1XT

s Φ
−1
s Xs)

−1(M−1XT
s Φ

−1
s Ys) = Ω−1

s bs,
where Φs is the partition of Φ = diag{Msβ

k
i }, and

Ms =
∑N

i=1 m
s
i is the size of Ds.

The gradient-based sampling methods assume
the data point that has large gradient is more
important to detect the optimal solution. That
means βk

i ∝ ||gki ||, where gki = xk
i (y

k
i − ωT

0 x
k
i ),

and ω0 is a pilot estimate for the ω. The pilot
estimate ω0 can be obtained by a good guess or
from an initial subsample of size Ms0 by uniform
sampling [7].

However, in fully distributed systems, the data
are collected and stored spatially in different
agents. Only based on the local data set Di, agents
cannot obtain the sampling probability βk

i , be-
cause they have no knowledge of other gradients
in other agents. Therefore, it calls for a new dis-
tributed algorithm, which is based on the gradient
sampling, to reduce the computational cost obvi-
ously.

Distributed gradient-based sampling algorithm.
To deal with the problem (1) using the distributed
sampling approach, our DGSA algorithm consists
of two steps: the sampling step and the optimiza-
tion step.

In the sampling step, the sampling probabilities
for all data points should be determined. To make
sure that

∑N
i=1

∑mi

k=1 β
k
i = 1, all agents need the

total norm of gradients
∑N

i=1

∑mi

k=1 ||g
k
i ||.

To help all agents to obtain this value, let
{zi(t)}

N
i=1 denote the local variables, and zi(0) =

∑mi

k=1 ||g
k
i ||, which can be calculated by agent i it-

self. Then agent i communicates with its one-hop
neighbor j according to the following equation un-
til consensus:

zi(t+ 1) =
∑

j∈Ni(t)

ai,j(t)zj(t). (4)

Eventually, zi(t) converges to the average of the

initial states z̄(0) =
∑

N

i=1

∑mi

k=1
||gk

i
||

N . Therefore, βk
i

can be obtained according to βk
i =

||gk

i
||

Nzi(T ) , where

T is the stop time of (4). After the sampling prob-
abilities are obtained, the poisson sampling is ap-
plied to determine {Ds

i }
N
i=1. The independent ran-

dom variable ski ∼ Bernoulli(1, pki ) is generated,
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where pki = Msβ
k
i . The local sampling data set

Ds
i consists of the data points according to the set

{k : ski = 1}, which means if ski = 1, the k-th data
point in agent i is chosen.

In the optimization step, because the sampling
probabilities {βk

i } are fixed, the goal of all agents
is to optimize the weighted loss function (3). To
solve this problem, the distributed gradient-based
algorithm is proposed as follows:

ωi(t+1) = PΓ





N
∑

j=1

ai,j(t)ωj(t)− α(t)di(t)



 , (5)

where di(t) is the subgradient of f̃i(X
s
i , Y

s
i , β

s
i , ω)

at ω =
∑N

j=1 ai,j(t)ωj(t) and Γ =
⋂N

i=1 Γi is the
common domain of ωi, which is always assumed
to be non-empty and the optimal solution is con-
tained in it. Γi is a convex and compact domain of
ωi, which is only known by agent i. The step-size
α(t) satisfies the stochastic approximation condi-
tions:

{

α(t) > 0, limt→∞ α(t) = 0,
∑∞

t=1 α(t) = ∞,
∑∞

t=1 α
2(t) < ∞.

(6)

Through this distributed algorithm, a good esti-
mation ω̂i of ω̃ can be obtained by agent i. There-
fore, all agents can achieve a good estimation ω̂

of ω∗ according to the above two steps. The
whole procedure of our DGSA is summarized in
Appendix A.

Here, we give a theorem to illustrate that the
optimal solution of problem (3), which is deter-
mined by the sampling step, is actually a good
estimate of the optimal solution of problem (1).
For simplicity, we have the following notations:



















Rx = maxi,k ||x
k
i ||

2,

R2
b = M−2

∑N
i=1

∑mi

k=1(β
k
i )

−1||ǫki x
k
i ||

2,

RΣ = M−2
∑N

i=1

∑mi

k=1(β
k
i )

−1||xk
i ||

4,

ǫki = yki − ω∗Txk
i .

Theorem 1. For any δ > 2Rx log d
3Mλmin(ΩM ) , if Ms sat-

isfies Ms >
72R2

Σ
M2 log d

(3Mδλmin(ΩM )−2Rx log d)2 , it is obtained

that P(||ω̃ − ω∗|| 6 CMM
−1/2
s ) > 1 − δ, where

CM = 3λmin(ΩM )δ−1Rb.
The following theorem shows that all agents can

achieve the optimal solution of problem (3) in the
optimization step.

Theorem 2. In the optimization step in DGSA,
if Assumption 1 and the step-size condition (6)
hold, then limt→∞ ||ωi(t) − ω̃|| = 0 for all i =
1, 2, . . . , N .

Therefore, through our DGSA algorithm, good
estimates of the optimal solution of problem (1)
can be obtained by all agents.

The proofs of Theorems 1 and 2 are included
in Appendixes B and C, respectively. Simulations
on both synthetic datasets and real datasets are
given to evaluate the performance of our DGSA
algorithm, which can be found in Appendix D.

Conclusion. In this study, we discussed a dis-
tributed design for the least-squares problem with
sampling in a time-varying multi-agent network.
To solve the problem and deal with the large lo-
cal data size, a distributed gradient-based sam-
pling algorithm was proposed. Moreover, theoret-
ical analysis and simulations on synthetic and real
datasets were presented to demonstrate the effec-
tiveness of the proposed algorithm. There are still
many challenging problems related to distributed
optimization without considering the limited abil-
ity of every agent, which are still under our inves-
tigation.
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