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Abstract This paper provides a comprehensive survey on semi-tensor product (STP) of matrices and its

applications to different disciplines. First of all, the STP and its basic properties are introduced. Mean-

while, its inside physical meaning is explained. Second, its application to conventional dynamic systems is

presented. As an example, the region of attraction of stable equilibriums is discussed. Third, its application

to logical systems is presented. Particularly, the algebraic state space representation of logical systems and

the important role it plays in analysis and control of logical systems are emphasized. Fourth, its application

to finite games is discussed. The most interesting problems include potential game, evolutionary game, and

game theoretic control. Finally, the mathematical essence of STP is briefly introduced.

Keywords semi-tensor product of matrices, Boolean network, logical (control) system, finite game, game

theoretic control

Citation Cheng D Z, Qi H S, Liu Z Q. From STP to game-based control. Sci China Inf Sci, 2018, 61(1): 010201,

https://doi.org/10.1007/s11432-017-9265-2

1 An introduction: what is STP

This paper gives a comprehensive survey on semi-tensor product (STP) from its very beginning till

nowadays. The STP of matrices is a generalization of conventional matrix product. It was born about

twenty years ago. Then it has been developed promptly and has been applied to some related disciplines,

including (1) nonlinear (control) systems, (2) logical (control) systems, (3) finite games.

This introduction consists of two parts. First, we discuss the multi-linear functions and use them to

see the geometric inside of STP, and how the STP is used to express multi-linear functions into a matrix

form. Second, some basic properties of STP are presented. It can be seen that as a generalization of

conventional matrix product, it keeps all the properties of conventional matrix product available.

For statement ease, we first give some notations:

(1) R: Field of real numbers.

(2) Rn: n dimensional Euclidean space.

(3) Mm×n: the set of m× n real matrices.

(4) Col(M) (Row(M)): the set of columns (rows) of M . Coli(M) (Rowi(M)): the i-th column (row)

of M .

(5) A matrix L ∈ Mm×n is called a logical matrix if the columns of L are of the form of δkm. That is,

Col(L) ⊂ ∆m. Denote by Lm×n the set of m× n logical matrices.

(6) A matrix C > 0 means all the entries are positive, that is, ci,j > 0, ∀i, j.
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(7) Given a (Cω) manifold M , the set of Cω functions is Cω(M); the set of vector fields is V ω(M);

the set of co-vector fields is V ∗ω(M).

1.1 Geometric inside of STP

After unsuccessful submissions for several years, the first paper on STP of matrices was published in

2001 [1]. Since then, the criticism, questioning or doubts on STP had been lasted for years. The

most frequently asked question is: is it reasonable to generalize the conventional matrix product to two

arbitrary matrices? To answer this question we first give a motivation to reveal the insight structure of

STP.

Consider a linear function f ∈ L(Rn,R), where L(Rn,R) is the set of linear functions from R
n to R.

Then there exists a row vector a = (a1, . . . , an) such that

f(x) = ax, x ∈ R
n. (1)

Similarly, for a bilinear function g ∈ L(Rm × R
n,R), there exists a matrix A = (ai,j) ∈ Mm×n such

that

g(x, y) = xTAy, x ∈ R
m, y ∈ R

n. (2)

To calculate (2), we may first consider xTA, which is

xTA =

m∑

i=1

xi(ai,1, ai,2, . . . , ai,n) ∈ L(Rn,R). (3)

That is, a bilinear function is a linear combination of linear functions, with an argument x as its

coefficients.

Since (3) is a linear mapping of x, intuitively, it may be expressed as a linear product form. Say, we

write it into a “product form” as

xTA = [Row1(A), . . . ,Rowm(A)](?)x, (4)

where (?) is an undefined product, which sum up the product of x1 with the first block of the row stacking

form of A, and x2 with the second block, . . ., and xm with the last block.

Now if we consider a trilinear mapping h(x, y, z) ∈ L(Rp × R
m × R

n,R). It is well known that the

classical matrix theory cannot be used directly for this. In 1980’s, the cubic matrix was proposed to

describe it [2], which is depicted in Figure 1, where

di,j,k = h(δip, δ
j
m, δkn), i = 1, . . . , p; j = 1, . . . ,m; k = 1, . . . , n.

Unfortunately, the cubic expression needs many new formulas/rules in applications. Moreover, it

cannot be extended to higher order multi-linear functions.

Now if we fix x, then h(x, y, z) = hx(y, z) becomes a bilinear function. Denote the cubic matrix as

C = [A1, A2, . . . , Ap]
T,

where Ai is the i-th layer of C. Then it is clear that

hx =

p
∑

i=1

Aixi = [A1, . . . , Ap](?)x, (5)

where the last “product form” is with the undefined product (?), which can be proceeded in the same

way as for (4).

In fact, (?) is exactly the STP of matrices, which is formally defined as follows.
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d 111 d 112 · · · d 11 n

d 121 d 122 · · · d 12 n

··· ··· ···

d 1m 1 d 1m 2 · · · d 1mn

dk11 dk12 · · · dk1n

dk21 dk22 · · · dk2n

··· ··· ···

dkm1 dkm2 · · · dkmn

kt
h
 l
ay

er

d p11 d p12 · · · d p1n

d p21 d p22 · · · d p2n

··· ··· ···

d pm1 d pm2 · · · d pmn

Figure 1 A cubic matrix.

Definition 1. Let A ∈ Mm×n, B ∈ Mp×q and t = lcm(n, p) be the least common multiple of n and p.

Then the STP of A and B is defined as follows:

A⋉B =
(
A⊗ It/n

) (
B ⊗ It/p

)
. (6)

It is obvious that the operator (?) in (4) and (5) is exactly the “⋉”. Hence, the above argument

on bilinear and trilinear functions shows the geometric insight of STP. Moreover, continuing this order

reducing process, any multi-linear function can be expressed into a matrix form.

Let f ∈ L(Rn1 × R
n2 × · · · × R

nk ,R) be a k-th order multi-linear function. Set the constants

di1,i2,...,ik := f(δi1n1
, . . . , δiknk

), ij = 1, . . . , nj ; j = 1, . . . , k. (7)

Next, we arrange {di1,i2,...,ik} into a row vector in an alphabetic order as

Vf = [d1,1,...,1, d1,1,...,2, . . . , dn1,n2,...,nk
] . (8)

Then we have a matrix form expression of f as follows.

Proposition 1. Let f ∈ L(Rn1 × R
n2 × · · · × R

nk ,R) be a k-th order multi-linear function. Then

f(x1, . . . , xk) = Vf ⋉
k
i=1 xi. (9)

1.2 Some basic properties

According to the definition it is obvious that STP is a generalization of conventional matrix product.

Fortunately, it keeps all major properties of conventional matrix product available. Because of this, the

symbol ⋉ is mostly omitted. Next, we list some main properties of STP, and refer to [3, 4] for details.

Proposition 2. (1) (Distributive law)

{

F ⋉ (aG± bH) = aF ⋉G± bF ⋉H,

(aF ± bG)⋉H = aF ⋉H ± bG⋉H, a, b ∈ R.
(10)

(2) (Associative law)

(F ⋉G)⋉H = F ⋉ (G⋉H). (11)

(3) (Transpose)

(A⋉B)T = BT
⋉AT. (12)
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(4) (Inverse) Assume both A and B are invertible. Then

(A⋉B)−1 = B−1
⋉A−1. (13)

There are some new properties for STP.

Proposition 3. (1) Let X ∈ R
t be a column, A an arbitrary matrix. Then

XA = (It ⊗A)X. (14)

(2) Let Y ∈ R
t be a row, A an arbitrary matrix. Then

AY = Y (It ⊗A). (15)

For improving the commutativity of STP, we define a swap matrix.

Definition 2. A swap matrix W[m,n] ∈ Mmn×mn is defined as follows:

W[m,n] = δmn[1,m+ 1, . . . , (n− 1)m+ 1; 2,m+ 2, . . . , (n− 1)m+ 2; . . . ;m, 2m, . . . , nm], (16)

where δk[i1, . . . , is] is a shorthand of
[
δi1k , . . . , δisk

]
.

A swap matrix is an orthogonal one.

Proposition 4.

WT
[m,n] = W−1

[m,n] = W[n,m]. (17)

Its main function is to exchange the factors.

Proposition 5. Let X ∈ R
m and Y ∈ R

n be two column vectors. Then

W[m,n] ⋉X ⋉ Y = Y ⋉X. (18)

There are two major drawbacks of conventional matrix product comparing with scalar product:

(1) conventional matrix product has dimension restriction for the factor matrices; (2) the matrix prod-

uct is not commutative. Where the conventional matrix product is generalized to STP, the dimension

restriction has been completely removed. Moreover, the STP has certain commutativity, called the

pseudo-commutativity. In the light of swap matrix, the “commutativity” of STP has been improved.

The rest of this paper is organized as follows. Section 2 considers the application of STP to dynamic

control systems. Using STP, the formulas for calculation Lie derivatives of smooth functions, vector fields,

co-vector fields are obtained. Then they are applied to nonlinear systems. Particularly, as an example, the

calculation of region of attraction of a stable equilibrium is presented. Section 3 discusses the application

of STP to Boolean networks. The algebraic state space representation is discussed in detail. It converts a

logical system to an algebraic system, and then the conventional tools for differential/difference equations

can be used to the analysis and control design of logical systems. Section 4 generalizes the technique

developed in Section 3 for Boolean networks to general logical systems. Section 5 is devoted to finite

games. A finite game is essentially a mix-valued logical system, and hence the STP approach to logical

systems is also applicable to finite games. Particularly, the potential game, the networked evolutionary

game, and the game theoretic control are introduced. Section 6 briefly mentioned the mathematical

essence of STP. It is revealed that STP is essentially an operator over equivalence class of matrices.

Section 7 is a brief conclusion.

2 Application to dynamic control systems

2.1 Nonlinear computations

In this subsection some basic computation formulas/algorithms are provided via STP. They make STP

powerful in analyzing the dynamics or designing control for nonlinear systems.
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Differential formula. Let f(x), x = (x1, . . . , xn)
T ∈ R

n, be an analytic function. Define its

differential as

Df(x) :=

(
∂f(x)

∂x1
, . . . ,

∂f(x)

∂xn

)

. (19)

Denote by xk = x⋉ · · ·⋉ x
︸ ︷︷ ︸

k

. Then we have the following fundamental formula.

Proposition 6.

D
(
xk+1

)
= Φn

kx
k, (20)

where Φn
k =

∑k
i=0 Ini ⊗W[nk−i,n].

Using Taylor expression and collecting terms, f(x) can be expressed as

f(x) = F0 + F1x+ F2x
2 + · · · . (21)

Then using (20) to (21) term by term, the differential of f(x) is computable.

Calculating Lie derivatives. Assume h ∈ Cω(M), X,Y ∈ V ω(M), α ∈ V ∗ω(M), where M is an

n-dimensional analytic manifold. Express h, X, Y , α into their Taylor expansions as

h = h0 + h1x+ h2x
2 + · · · ;

X = X0 +X1x+X2x
2 + · · · ;

Y = Y0 + Y1x+ Y2x
2 + · · · ;

αT = α0 + α1x+ α2x
2 + · · · .

Then the corresponding Lie derivatives can be calculated.

Proposition 7. (1)

LXh =

∞∑

i=0

cix
i, (22)

where ci =
∑i

k=0 hk+1Φ
n
k (Ink ⊗Xi−k).

(2)

LXY =

∞∑

i=0

dix
i, (23)

where di =
∑i

k=0 [Yk+1Φ
n
k (Ink ⊗Xi−k)−Xk+1Φ

n
k (Ink ⊗ Yi−k)] .

(3)

(LXα)T =

∞∑

i=0

eix
i, (24)

where ei =
∑i

k=0[αk+1Φ
n
k (Ink ⊗Xi−k)− V T

c (Ink ⊗Xk+1Φ
n
k )

T(Ink ⊗ αi−k)].

2.2 Analysis and control of nonlinear systems

Since the nonlinear control theory is based on the differential geometry, the technique developed in the

previous subsection can be used to deal with nonlinear (control) systems [5]. Some applications including

the numerical solution to Morgan’s problem [1], some applications to physics [6] and algebra [7], to power

systems [8–10], to fuzzy control systems [11, 12], and the application to control design [13].

Particularly, its application to estimate the region of attraction of a stable equilibrium is a theoretically

meaningful and practically useful result. We briefly review this result [14].
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Table 1 Truth table for unary operators

x ¬x

1 0

0 1

Table 2 Truth table for binary operators

x y x ∨ y x ∧ y x → y x ↔ y x ↓ y x ↑ y x∨̄y

1 1 1 1 1 1 0 0 0

1 0 1 0 0 0 0 1 1

0 1 1 0 1 0 0 1 1

0 0 0 0 1 1 1 1 0

Consider the following nonlinear dynamic system:

ẋ = f(x), x ∈ R
n, (25)

where f(x) is an analytic field.

Let xs be a stable equilibrium of (25). The region of attraction of xs is denoted by A(xs), the boundary

of A(xs) is denoted by ∂A(xs). An equilibrium xe is said to be hyperbolic, if the Jacobi matrix of f at

xe, Jf (xe), has no zero real part eigenvalues. A hyperbolic equilibrium is said to be of type-k, if Jf (xe)

has exactly k positive real part eigenvalues.

It is well known that [15] if the state manifold is of dimension n, then the boundary of the stability

region is of dimension n− 1. Hence, the boundary is basically generated by the stable sub-manifolds of

type-1 equilibriums.

Using STP, the following result is obtained to calculate the stable sub-manifolds of type-1 equilibriums.

Theorem 1 ([14]). Let xu = 0 be an equilibrium of type-1 of system (25).

W s(eu) = {x |h(x) = 0}. (26)

Then h(x) is uniquely determined by the following equations (27)–(29).

h(0) = 0, (27)

h(x) = ηTx+O(‖x‖2), (28)

Lfh(x) = µh(x), (29)

where Lfh(x) is the Lie derivative of h(x) with respect to f , η is the eigenvector of JT
f (0) with respect

to its unique positive eigenvalue µ.

This result has then been extended for any type of equilibriums [16].

3 Application to logical systems

3.1 STP expression of logical functions

A logical variable x can only take two possible values, either true (1) or false (0). We can say x ∈ D,

where, D = {0, 1}.

Some operators can be defined for logical variables. They can be expressed via truth table.

• Unary operators (Table 1).

• Binary operators. Disjunction (∨), conjunction (∧), conditional (→), bi-conditional (↔), nor or (↓),

not and (↑), exclusive or (∨̄). Table 2 shows the truth table of some commonly used binary operators.
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Table 3 Structure matrices of binary operators

σ ∨ ∧ → ↔ ↓ ↑ ∨̄

Mσ δ2[1, 1, 1, 2] δ2[1, 2, 2, 2] δ2[1, 2, 1, 1] δ2[1, 2, 2, 1] δ2[2, 2, 2, 1] δ2[2, 1, 1, 1] δ2[2, 1, 1, 2]

To use algebraic expression of logical functions, we identify 1 ∼ δ12 , 0 ∼ δ22 , where δ
k
n is the k-th column

of the identity matrix In.

Under this vector expression it is easy to verify that

¬x = Mnx, (30)

where Mn = δ2[2, 1] is called the structure matrix of “negation”. Note that δn[i1, . . . , ik] is a shorthand

for
[
δi1n , . . . , δikn

]
, which is called a logical matrix.

Similarly, for binary operator σ, we can also find its corresponding structure matrix Mσ, such that

xσy = Mσxy. (31)

Some commonly used binary operators and their structure matrices are listed in Table 3.

Using the structure matrices of fundamental operators and the STP, the structure matrix of general

logical expression can easily be constructed.

Let f : Dn → D be a logical function. The following theorem gives its matrix expression.

Theorem 2. y = f(x1, . . . , xn). Then there exists a unique logical matrix Mf ∈ L2×2n , called the

structure matrix of f , such that when the logical variables xi, i = 1, . . . , n, y are expressed into their

vector forms we have

y = Mf ⋉
n
i=1 xi. (32)

Let F : Dn → Dm be a logical mapping consisting of m logical functions:

F :







y1 = f1(x1, . . . , xn),

y2 = f2(x1, . . . , xn),
...

ym = fm(x1, . . . , xn).

(33)

According to Theorem 2, if the structure matrix of fi is Mi, i = 1, . . . ,m, then F can be expressed as:

F :







y1 = M1 ⋉
n
i=1 xi,

y2 = M2 ⋉
n
i=1 xi,

...

ym = Mm ⋉
n
i=1 xi.

(34)

Denote by y = ⋉
m
i=1yi, x = ⋉

n
i=1xi. The following theorem gives an overall matrix expression of F .

Theorem 3. Assume a logical mapping F is given by (33) (equivalently, by (34)), then there exists a

unique logical matrix MF ∈ L2m×2n , called the structure matrix of F , such that in vector form we have

y = MFx, (35)

where MF = M1 ∗M2 ∗ · · · ∗Mm. Note that ∗ is the Khatri-Rao product of matrices [4].

3.2 Algebraic representation of Boolean networks

A Boolean network is described as follows:






x1(t+ 1) = f1(x1(t), . . . , xn(t)),
...

xn(t+ 1) = fn(x1(t), . . . , xn(t)),

(36)
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where xi(t) ∈ D, fi : Dn → D are logical functions.

Correspondingly, a Boolean control network is as follows:







x1(t+ 1) = f1(x1(t), . . . , xn(t);u1(t), . . . , um(t)),

x2(t+ 1) = f2(x1(t), . . . , xn(t);u1(t), . . . , um(t)),
...

xn(t+ 1) = fn(x1(t), . . . , xn(t);u1(t), . . . , um(t)),

yj(t) = hj(x1(t), . . . , xn(t)), j = 1, . . . , p,

(37)

where xi, uj , yk ∈ D, i = 1, . . . , n, j = 1, . . . ,m, k = 1, . . . , p; fi : Dn+m → D, i = 1, . . . , n and

hk : Dn → D, k = 1, . . . , p are logical functions.

Using vector expression of logical variables, the dynamics of both Boolean networks and Boolean

control networks can be converted into an algebraic form.

Theorem 4. (1) There exists a unique logical matrix M , such that (36) can be expressed into its

algebraic form as

x(t+ 1) = Mx(t), (38)

where x(t) = ⋉
n
i=1xi(t).

(2) There exist unique logical matrices L and H , such that (37) can be expressed into its algebraic

form as

x(t+ 1) = Lu(t)x(t),

y(t) = Hx(t),
(39)

where u(t) = ⋉
m
j=1uj(t), y(t) = ⋉

p
i=1yi(t).

3.3 Analysis and control of logical systems

The algebraic expression of Boolean networks and Boolean control networks converts the logical form

of dynamics into an algebraic form. This converting makes the analysis and control design of Boolean

networks much more convenient. In the following, we review some fundamental results using algebraic

expression of Boolean networks.

3.3.1 Topological structure of Boolean networks

It seems that the dynamic equations of Boolean network (36) and Boolean control network (37) are

similar to the discrete time equations of mechanical (control) systems. In fact, since the variables in

Boolean (control) networks are logical, the techniques used for differential or difference equations are not

applicable to solve the problems of analysis, synthesis and control design of Boolean networks. Once

upon the time, the investigation for Boolean networks remained on “try and error” and “one by one”,

and very limited systematic results were revealed. For instance, since there are finite nodes and each

node can take only finite values, each trajectory will converge to a fixed point or a cycle, which is called

an attractor.

Before the algebraic state space representation (ASSR), there were many papers discussing the at-

tractors. But usually one paper considers only one or two special networks, without knowing general

conclusion. Some of the papers are [17–19].

The topology of a Boolean network is determined by the following facts (1) number of attractors;

(2) region of attraction of each attractor; (3) how long for each trajectory to enter its attractor. These

questions are answered in [20]. For instance, the following theorem tells the number of attractors:
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Theorem 5 ([20]). Consider a logical dynamic system (36). Its ASSR is (38). Denote by Nl the number

of cycles of length l. Then Nl can be iteratively calculated by the following formulas (a fixed point is

considered as a cycle of length 1).






N1 = Trace(M),

Nl =
Trace(Ml)−

∑
k∈P(l) kNk

l , 2 6 l 6 2n,
(40)

where P(l) is the set of proper factors of l (including 1).

This general formula can be used to verify the results in [17–19]. Ref. [20] also pointed out some errors

there.

3.3.2 State space description of logical (control) systems

The state space approach proposed by Kalman provides a framework for investigating dynamic control

systems. It becomes one of three pillars of modern control theory. For logical systems, Ref. [21] proposed

a dual approach, which defines the state space via the set of logical functions.

Definition 3. Consider the logical system (36) or logical control system (37). (1) The state space,

denoted by X , is defined as the set of logical functions of X = {x1, . . . , xn}, expressed as

X := Fℓ(x1, . . . , xn). (41)

(2) Let W = {w1, . . . , ws} ⊂ X . Then the subspace generated by W , denoted by W , is defined as

W := Fℓ(w1, . . . , ws). (42)

Definition 4. Consider the logical system (36) or logical control systems (37). Let Z = {z1, . . . , zn} ⊂

X . T : X → Z is called a coordinate change, if T is one-to-one and onto.

Theorem 6. Let Z = {z1, . . . , zn} ⊂ X . Z is the subspace generated by Z with its structure matrix

ΦZ , that is

z = ΦZx,

where ΦZ ∈ L2n×2n . T : X → Z is a coordinate change, if and only if, ΦZ is nonsingular.

Definition 5. Let Z0 = {z1, . . . , zs} ⊂ X . The subspace generated by Z0, denoted by Z0 = Fℓ(Z0), is

called a regular subspace, if there exists Z1 = {zs+1, . . . , zn} ⊂ X , such that T : X → Z = {Z0, Z1} is a

coordinate change.

Regular subspace is very important in structure analysis and control design of logical systems.

3.3.3 Controllability of Boolean networks

The first fundamental work on controllability and observability of logical control systems was presented

in [3]. The following result is fundamental for controllability.

Consider system (37), its ASSR is (39). Split L into 2m equal blocks as

L = [L1, L2, . . . , L2m ],

where Li ∈ L2n×2n , i = 1, . . . , 2m. Define

M :=

2m∑

i=1

Li,

MC :=
2n∑

B
i=1

M i ∈ B2n×2n ,

where the operator
∑

B is a Boolean addition, that is, for Boolean variables a, b, a+b = a∨̄b. The matrix

MC is called the controllability matrix. Then we have the following result.
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Theorem 7 ([22]). Denote by MC = (cij), then

(1) δi2n is reachable from δ
j
2n , if and only if, ci,j > 0;

(2) System (37) is controllable at δj2n , if and only if, Colj(MC) > 0;

(3) System (37) is controllable, if and only if, MC > 0.

3.3.4 Observability

The observability of Boolean networks is more complicated than controllability. Recently, Ref. [23]

mentioned 9 different definitions. Moreover, the following 4 definitions have been compared.

Definition 6 ([3]). System (37) is observable, if for any x0, there exists a control sequence such that

for any x̄0 6= x0, Hx̄0 = Hx0, the corresponding output sequences are different.

Definition 7 ([22]). System (37) is observable, if for any pair of initial values x0 6= x̄0, with Hx̄0 = Hx0,

there exists infinite control sequence such that the corresponding output sequences are different.

Definition 8 ([24]). System (37) is observable, if there exists a finite control sequence such that for any

pair of initial states x0 6= x̄0, with Hx̄0 = Hx0, the corresponding finite output sequences are different.

Definition 9 ([25]). System (37) is observable, if for a pair of initial values x0 6= x̄0, with Hx̄0 = Hx0,

for any infinite control sequence the output sequences are different.

Ref. [23] has compared these 4 definitions of observability, and concluded that Definition 7 is the most

reasonable one. They also given a necessary and sufficient condition for this observability by constructing

corresponding finite automata.

The following result is motivated by [23] and is easily verifiable [26].

Divide the pair of states into 3 classes

X × X = D ∪ Ξ ∪Θ,

where D := {{x, x}|x ∈ X} ⊂ X × X called the diagonal pairs; Ξ := {{x, x̄}|x 6= x̄ and Hx = Hx̄} ⊂

X × X called the h-indistinguishable pairs; Θ := {{x, x̄}|x 6= x̄ and Hx 6= Hx̄} ⊂ X × X called the

h-distinguishable pairs.

Naming the h-indistinguishable pairs as Ξ = {ξ1, ξ2, . . . , ξr} , we construct a matrix as

W =










w1,1 w1,2 · · · w1,r w1,r+1

w2,1 w2,2 · · · w2,r w2,r+1

...

wr,1 wr,2 · · · wr,r wr,r+1










, (43)

where wi,j is the number of controls, which transfer ξi to ξj in one step (j 6 r), or transfer ξi to D

(j = r + 1). Define

di =

r+1∑

j=1

wi,j , i = 1, . . . , r. (44)

Construct a Boolean matrix of the size same as W , denoted by U0 = (ui,j) ∈ Br×(r+1) as

u0
i,j =

{

1, wi,j > 0,

0, wi,j = 0, i = 1, . . . , r, j = 1, . . . , r,

and

u0
i,r+1 =

{

1, di < 2m,

0, di = 2m, i = 1, . . . , r.

Then iteratively construct U as Algorithm 1.
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Algorithm 1 Construct U

1. Let Uk = (uk
i,j) be known.

2. for i = 1, . . . , r do

3. if uk
i,r+1 = 1 then

4. Colr+1(Uk+1) = Colr+1(Uk) ∨ Coli(Uk).

5. end if

6. if Uk∗+1 = U
k∗

then

7. Set U := Uk∗

.

8. Stop.

9. end if

10. end for

Theorem 8. Consider system (37) (or (39)).

(1) System (37) is observable, if and only if,

Colr+1 U = 1r. (45)

(2) ξi is a pair of indistinguishable, if and only if, the (i, r + 1)-th entry of U , ui,r+1 = 0.

3.3.5 Stability and stabilization

A logical system is globally stable if its each trajectory converges to a preassigned point. The following

is a basic result.

Theorem 9 ([27]). System (36) is globally stable, if and only if it has exactly one attractor, which is

a fixed point.

Consider the stabilization of system (37), we have the following result.

Theorem 10 ( [27]). System (37) is stabilizable, if and only if, there exist a 1 6 k 6 2n, and a

1 6 j 6 2m, such that Lk
j is a constant matrix.

3.3.6 Disturbance decoupling

A logical control system with disturbances is described as






x1(t+ 1) = f1(x1(t), . . . , xn(t);u1(t), . . . , um(t); ξ1(t), . . . , ξr(t)),

x2(t+ 1) = f2(x1(t), . . . , xn(t);u1(t), . . . , um(t); ξ1(t), . . . , ξr(t)),
...

xn(t+ 1) = fn(x1(t), . . . , xn(t);u1(t), . . . , um(t); ξ1(t), . . . , ξr(t)),

yj(t) = hj(x1(t), . . . , xn(t)), j = 1, . . . , p,

(46)

where ξ1, . . . , ξr are disturbances. The purpose of disturbance decoupling is the design controls such that

the disturbances will not affect the outputs.

Ref. [28] proposes a procedure for solving disturbance decoupling problem via two steps.

(1) Find a y-friendly regular subspace: that is, find Z2 := Fℓ(z
2
1 , z

2
2 , . . . , z

2
q ), such that hj ∈ Z2, j =

1, . . . , p. Then find Z1 = Fℓ(z
1
1 , z

1
2 , . . . , z

1
n−q), such that Z = Z1 ∪Z2 = Fℓ(z

1
1 , z

1
2 , . . . , z

1
n−q, z

2
1 , z

2
2 , . . . , z

2
q)

becomes a new coordinate frame. Then, under z coordinate frame, system (46) becomes
{

z1(t+ 1) = g1(z1(t), z2(t), u(t), ξ(t)),

z2(t+ 1) = g2(z1(t), z2(t), u(t), ξ(t)),

yj(t) = ηj(z
2(t)), j = 1, . . . , p.

(47)

(2) Design u(t) = F (z1(t), z2(t)), such that

g2(z1(t), z2(t), F (z1(t), z2(t)), ξ(t)) = g̃2(z2(t)). (48)

Note that if (48) holds, the feedback control u(t) = F (z1(t), z2(t)) can solve the disturbance decoupling

problem. About the solvability and the control design please refer to [28].
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3.3.7 Optimal control

Optimization of Boolean control networks is another important problem. The first significant result

is: the optimal trajectory can be found as a cycle [29]. Combining this result with the calculation of

cycles, [30] obtained a feedback optimal control.

The above result can only be used for deterministic logical control systems. As for stochastic logical

systems it is not applicable because there is no limit cycle. Combining dynamic programming with

receding horizon control, [31] obtained a feedback optimal control for mix-valued logical dynamic control

systems.

Another meaningful result is the Pontryagin maximum principle for logical control systems. As for

classical control systems, it also provides necessary conditions for optimal control of logical control sys-

tems [32].

3.3.8 Identification of logical systems

The identification of Boolean network (36) means to identify the M matrix in ASSR (38) using a sequence

of states. It is clear that each adjacent pair of states x(t), x(t + 1) can identify a column of M : assume

x(t) = δi2n , x(t + 1) = δ
j
2n , then one knows that the i-th column of M is Coli(M) = δ

j
2n [33]. When the

Boolean network is large, the above method requires a large number of data. In general, the in-degree of

a Boolean network is much smaller than its size. Hence [33] proposes a method called the least in-degree

identification, which can tremendously reduce the required data. This problem comes from the growth

of cancer. The infecting process may be determined by observed data.

Consider the identification of Boolean control network (37), the purpose of the identification is to

find the L and H of (39). To identify L from state-control data is similar to the identification of

Boolean networks. But the identification of L and H from input-output data is more difficult. The first

problem is the identifiability. If the system is controllable and observable, the identification is theoretically

executable. Next, since the realization is not unique, the solution is not unique. For instance, under a

coordinate change, the different L’s and H ’s produce the same input-output relations. Ref. [34] provided

an algorithm. Under the assumption of controllability and observability the algorithm converges to a

realization within finite steps.

When the size of a network is large, the structure matrix will have a large dimension. Some techniques

need to be developed to solve the computational complexity problem. For instance the aggregation seems

to be an efficient method in certain circumstances [35, 36].

Before ending this section, we would like to mention that IET Control Theory and Applications is

organizing a special issue on STP and its applications to logical systems. There are many updated

materials in it. Particularly, we would like to recommend a survey paper in this special issue, which

provides a comprehensive introduction for this new field [37].

4 From Boolean network to generalized logical system

4.1 What is a generalized logical system

Definition 10 ([26]). (1) A finite mapping f :
∏k

i=1 Dni
→ Dn0 is called a generalized logical mapping.

Denote by

y = f(x1, . . . , xk). (49)

(2) A dynamic system







x1(t+ 1) = f1(x1(t), . . . , xn(t)),
...

xn(t+ 1) = fn(x1(t), . . . , xn(t)),

(50)
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where Dn := {1, 2, . . . , n}, xi(t) ∈ Dni
, and fi, i = 1, . . . , n are generalized logical mappings, is called a

generalized logical network (or generalized logical dynamic system).

Similar to Boolean case, we identify i ∈ Dn with δin. Then

(1) There exists a unique logical matrix Lf , such that (49) can be expressed in its algebraic form as

y = Lf ⋉
k
i=1 xi; (51)

(2) There exists a unique logical matrix M , such that (50) can be expressed in its algebraic form as

x(t+ 1) = Mx(t), (52)

where x(t) = ⋉
n
i=1xi(t).

Note that similar to Boolean case, we can define the generalized logical control network and get its

algebraic form, which is formally same as (39).

4.2 Applications of generalized logical (control) networks

Since the generalized logical (control) networks have the same algebraic expressions as for Boolean (con-

trol) networks, the technique developed for Boolean (control) networks can directly be used to solve the

corresponding static or dynamic problems over finite sets. The following are some of the applications.

• Application to systems biology [35, 38–41].

• Application to graph theory and formation control [42–45].

• Application to circuit design and error detection [46–49].

• Application to fuzzy control [11, 12, 50–52].

• Application to finite automata and symbolic dynamics [53–58].

• Application to coding and numerical computation [30, 59–63].

• Application to network inquiry and tele-operation [64, 65].

Before ending this section, we should like to mention an important case, where the topology of a

network is time-varying. This case can be treated by switched Boolean networks. We refer to [66–68] for

switched Boolean networks.

5 STP approach to finite game theory

The symbol for the birth of modern game theory is the book of Neumann and Morgenstern [69]. Using

STP to finite game theory is a very promising new direction. We, therefore, introduce it as a new section.

5.1 Vector space structure of finite games

Definition 11. A finite game is defined by a triple G = (N,A, U), where

(1) (Players) N = {1, 2, . . . , n};

(2) (Profile) A =
∏n

i=1 Ai, where Ai = {ai1, . . . , a
i
ki
} ∼ {1, . . . , ki}, i = 1, . . . , n, is the set of actions

of player i;

(3) (Utility) U = (u1, . . . , un), where ui : A → R is the payoff function (utility) of player i.

Definition 12. Given a finite G. A profile a = (x∗
1, . . . , x

∗
n) ∈ A is called a Nash equilibrium if

uj(x
∗
1, . . . , , x

∗
j , . . . , x

∗
n) > uj(x

∗
1, . . . , xj , . . . , x

∗
n), j = 1, . . . , n. (53)

Note that Nash equilibrium represents a scenario for which no player has a unilateral incentive to

deviate.

Since xi ∈ Dni
, it is natural to express it into a vector form in a natural way, that is xi = j ⇔ xi = δjni

.

Denote the set of finite games G = (N,A, U), with |N | = n, |Ai| = ki, i = 1, . . . , n, by G[n;k1,...,kn].

When ki = κ, ∀i, we denote G[n;κ] = G[n;κ,...,κ].
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Note that ui : Dk1 × · · · ×Dkn
→ R is a pseudo-logical mapping, then it is easy to see that there exists

a unique row vector V c
i ∈ R

k (k =
∏n

i=1 ki), such that

u(x1, . . . , xn) = V c
i ⋉

n
i=1 xi, i = 1, . . . , n. (54)

Denote

VG = [V c
1 , . . . , V

c
n ] ,

which is called the structure vector of G. Since G ∈ G[n;k1,...,kn] is uniquely determined by ui, i = 1, . . . , n,

then G[n;k1,...,kn] has a natural vector space structure as

G ∈ G[n;k1,...,kn] ∼ R
nk. (55)

The vector space structure of finite games was firstly proposed by [70]. The above vector space structure

was proposed by [71], where the inner product is the conventional one for Euclidian space.

5.2 Decomposition of G[n;k1,...,kn]

5.2.1 Potential game

Definition 13 ([72]). Consider a finite game G = {N,A, U}. G is a potential game, if there exists a

function P : A → R, called potential function, such that for each i ∈ N and a−i ∈ A−i, ∀α, β ∈ Ai

ui(α, a−i)− ui(β, a−i) = P (α, a−i)− P (β, a−i), i = 1, . . . , n. (56)

Denote

k[p,q] :=

{∏q
j=p kj , q > p,

1, q < p,
(57)

and

Ei := Ik[1,i−1] ⊗ 1ki
⊗ Ik[i+1,n] ∈ Mk×k/ki

, i = 1, . . . , n. (58)

Then the potential equation is defined as follows:










−E1 E2 0 · · · 0

−E1 0 E3 · · · 0
...

−E1 0 0 · · · En



















ξ1

ξ2
...

ξn










=










(V c
2 − V c

1 )
T

(V c
3 − V c

1 )
T

...

(V c
n − V c

1 )
T










, (59)

where ξi ∈ R
k/ki .

Briefly, we have

Eξ = b.

Theorem 11 ([73]). G ∈ G[n;k1,...,kn] is potential, if and only if, potential equation (59) has solution.

Moreover, assume ξ is a solution, then the potential function is

P (x1, . . . , xn) = V P
⋉

n
j=1 xj , (60)

where, V P is calculated as

V P = V c
1 − ξT1 E

T
1 . (61)
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5.2.2 Orthogonal decomposition

Definition 14 ([74]). (1) A game G ∈ G[n;k1,...,kn] is a non-strategic game, if for any a−i ∈ A−i, and

any α, β ∈ Ai, we have

ui(α, a−i) = ui(β, a−i), i = 1, . . . , n. (62)

(2) A game G ∈ G[n;k1,...,kn] is a pure harmonic game, if

n∑

i=1

ui(a) = 0, a ∈ A,

∑

ai∈Ai

ui(ai, a−i) = 0, i = 1, . . . , n.
(63)

Denoting the subspace of non-strategic games by H and the subspace of pure potential games by P ,

then we have the following orthogonal decomposition:

G[n;k1,...,kn] = ︸ ︷︷ ︸

Potential games

P ⊕

Harmonic games
︷ ︸︸ ︷

N ⊕ H . (64)

Note that P ⊕N is the subspace of potential games and H⊕N is the subspace of harmonic games.

Note that such decomposition is not unique. Recently, based on symmetric games and skew symmetric

games another orthogonal decomposition is proposed as in (65), where S, K and E are subspaces of

symmetric games, skew symmetric games and asymmetric games respectively [75].

G[n;κ] = S[n;κ] ⊕K[n;κ] ⊕ E[n;κ]. (65)

5.3 Networked evolutionary game

A Markov-type evolutionary game with G ∈ G[n;k1,...,kn] is described as







x1(t+ 1) = f1(x1(t), x2(t), . . . , xn(t)),

x2(t+ 1) = f2(x1(t), x2(t), . . . , xn(t)),
...

xn(t+ 1) = fn(x1(t), x2(t), . . . , xn(t)).

(66)

Since xi(t) ∈ Ai = Dni
, using STP, it can be expressed into the ASSR as

x(t+ 1) = Lx(t), (67)

where x(t) = ⋉
n
i=1xi(t). Then the STP approach can be used to the analysis and control design of

evolutionary games. The first paper using STP approach to control design of evolutionary games is [76].

The investigation of networked evolutionary games (NEG) was then developed, which are defined as

follows.

Definition 15 ([77]). A networked evolutionary game, denoted by ((N,E), G,Π), consists of (1) a

network (graph) (N,E); (2) an FNG, G, such that if (i, j) ∈ E, then i and j play FNG with strategies

xi(t) and xj(t) respectively; (3) a local information based strategy updating rule, Π.

A necessary and sufficient condition for an NEG to converge to a stationary profile was proposed, and a

concept of dynamic equivalence of evolutionary games is proposed, which is very useful for near potential

games.
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Potential games

Utility design

Learning design

Figure 2 “Hourglass” architecture of game theoretic control.

5.4 Game theoretic control

Game theoretic control is a cross discipline between game theory and control theory. A framework for

game theoretic control is presented in [78], and it is described as an hourglass in Figure 2.

The design process can be described as follows.

• Consider a multi-agent system with agents N = {1, . . . , n} and an objective function ϕ(x1, . . . , xn).

• Design the utility functions ui(x1, . . . , xn) such that the system becomes a potential game with

ϕ(x1, . . . , xn) as its potential function.

• Design a learning algorithm to assure the evolutionary game converges to a Nash equilibrium, which

could be the maximum point.

Based on the potential equation and STP approach, some elementary studies have been done for

this [79, 80]. As for the game theoretic control of networked games, Bayesian game may provide a nice

framework, because in a networked game a player can hardly get complete information [81].

6 Mathematics behind STP

It is well known that the set of matrices with conventional product has rich and varied algebraic and

geometric structures. It is natural to ask whether the STP can bring some new mathematical structures

to us? This is an interesting and challenging problem. In the following we sketch some results presented

in [82].

(1) Let M :=
⋃∞

m=1

⋃∞
n=1 Mm×n. Then (M,⋉) is a monoid (semi-group with identity).

(2) A,B ∈ M are called equivalent, and denoted by A ∼ B, if there exist Ip and Iq such that

A⊗ Ip = B ⊗ Iq. (68)

The equivalence class of A is denoted by 〈A〉.

(3) Over equivalence class

〈A〉⋉ 〈B〉 := 〈A⋉ B〉 . (69)

Eq. (69) is well defined.

(4) If A = B ⊗ Is, then we say that B ≺ A. 〈A〉 with the order ≺ is a lattice.

(5) ({〈A〉 |A is invertible},⋉) forms a Lie group.

(6) {〈A〉 |A is square} with [·, ·] forms a Lie algebra, where [〈A〉 , 〈B〉] := 〈A〉 ⋉ 〈B〉 − 〈B〉 ⋉ 〈A〉 . We

could have many new properties.

It is interesting and challenging to obtain new insights about mathematical structure of STP.

7 Conclusion

In the last decade, the STP has been developed rapidly. It has been applied to several related disciplines

as described in this paper. It has also been applied to various engineering problems. Its vitality comes
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from its wide applications. At the beginning of this paper we reveal the geometric inside of STP. The

various applications of STP may come from its physical rationality. This paper surveyed the applications

of STP to dynamic systems, to logical systems, and to finite games. There are many problems in each field

which need to be dug in deeply. We are also confident that more related problems might be investigated

via STP.

So for, people are mainly interested in the applications of STP, and less people are aware of the

mathematics behind STP. Ref. [82] started such an investigation. In fact, the STP-based mathematics

could be a huge uncultivated land.
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