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Nonlinear quantum neuron: A fundamental building block for quantum neural networks
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Quantum computing enables quantum neural networks (QNNs) to have great potential to surpass artificial
neural networks. The powerful generalization of neural networks is attributed to nonlinear activation functions.
Although various models related to QNNs have been developed, they are facing the challenge of merging the
nonlinear, dissipative dynamics of neural computing into the linear, unitary quantum system. In this paper,
we establish different quantum circuits to approximate nonlinear functions and then propose a generalizable
framework to realize any nonlinear quantum neuron. We present two quantum neuron examples based on the
proposed framework. The quantum resources required to construct a single quantum neuron are polynomial in
function of the input size. Finally, both IBM Quantum Experience results and numerical simulations illustrate
the effectiveness of the proposed framework.
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I. INTRODUCTION

Artificial neural networks are intelligent computing models
vaguely inspired by the biological neural networks that con-
stitute animal brains. Various artificial neural network (ANN)
models have been widely applied in diverse fields such as
computer vision, speech recognition, machine translation, and
medical diagnosis [1]. As a new type of computing paradigm
with quantum properties, quantum computing has been exhib-
ited to be exponentially or geometrically faster than classical
counterparts to solve certain computational problems [2–4].
Combining neural networks with quantum computing, QNNs
are considered to be superior to the ANNs in memory ca-
pacity, information processing speed, network scale, stability,
and reliability [5]. There have been many approaches to
build QNNs from different perspectives [6,7]. In recent years,
connecting quantum circuit models to neural network archi-
tectures has attracted extensive research interest [8–17].

Even the most complicated neural networks are built by a
regular connection of identical units called neurons. Usually,
a neuron includes two operations: one is the inner product
and the other is represented by an activation function. The
inner product is a linear operation and generally the activation
function is nonlinear. Linear operations are easily realized
with quantum computing. As for activation functions, most
quantum neurons would like to use the threshold function due
to its easy implementation. Reference [10] proposes a type
of quantum neuron that can simulate a sigmoid-like nonlin-
ear function in light of developed repeat-until-success (RUS)
techniques [18–20]. Reference [12] further proposes a non-
periodic nonlinear activation function based on RUS circuit
and its quantum neuron can be trained with efficient gradient
descent. Reference [21] theoretically proposes an architecture
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to realize any nonlinear quantum neuron using quantum phase
estimation. More existing solutions to nonlinear quantum neu-
rons include the quadratic form of the kinetic term [22],
dissipative quantum gates [23] and reversible circuits [11], etc.
Although there has been a lot of discussions about nonlinear
quantum neurons, these solutions are restricted to exhibit full
nonlinear properties except Ref. [21]. However, Ref. [21] does
not give full play to the quantum advantage to obtain well-
performed quantum neurons, and it still has the problem of
high quantum resource cost.

To explore universal methods of building any well-
functioning and resource-saving quantum neuron, we es-
tablish different quantum circuits to approximate nonlinear
functions. Moreover, a quantum framework with strong gener-
alization is proposed to obtain any nonlinear quantum neuron.
We present two quantum neuron examples based on the pro-
posed framework. The neurons satisfy the criteria proposed
by Ref. [6] in a way that naturally combines the advantages
of quantum computing and neuron networks. The quantum
resources required to construct a single quantum neuron are
polynomial functions in the size of the input. Finally, both
IBM Quantum Experience results and numerical simulations
illustrate the effectiveness of the proposed framework.

This paper is organized as follows. Section II describes two
circuits of approximating nonlinear functions. In Sec. III, we
propose a generalized framework to implement any nonlinear
quantum neuron and present the analysis of neuron exam-
ples. Section IV verifies our results by IBMQ experiments
and numerical simulations. Conclusions and discussions are
presented in Sec. V.

Notation. X , Y , and Z are Pauli matrices. I represents the
identity matrix and H is the Hadamard gate. Throughout the
paper, the base of the logarithm defaults to 2. [α, β] indi-
cates an interval from decimal α to decimal β. The norm
‖ · ‖ always refers to the 2-norm of vectors. The bold italic
i represents the imaginary unit of the complex field. xT is the
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transpose of the column vector x. yD indicates the decimal
representation of the binary y. The symbol ⊕ represents the
bitwise XOR. FT † is the inverse quantum Fourier transform.
The S gate and Rz(α) gate are defined as

S =
[

1 0
0 i

]
, Rz(α) =

[
1 0
0 e2π iα

]
.

II. QUANTUM CIRCUITS OF APPROXIMATING
NONLINEAR FUNCTIONS

The basic task of a computer is assigning values to Boolean
functions, which is to give a one-bit output for an n-bit in-
put [24]. Digital computers compute any complicated function
by combining such Boolean functions. Similarly, quantum
computers can do the task with black-boxed quantum oracles.
There has been some research on quantum oracles [25–28].
An oracle may be a circuit, a physical device, or a pure theory,
which helps transform a system from a state to another state.

For a general Boolean function f : {0, 1}n → {0, 1}m,
when m = 1, a standard oracle S f is defined to act on two
input states and return two outputs,

S f : |x〉 |y〉 �→ |x〉 |y ⊕ f (x)〉, (1)

where |x〉 ∈ (C2)⊗n, |y〉 ∈ C2. The following two oracles are
examples of standard oracles: The function fD : {0, 1} →
{0, 1} is calculated by Deutsch’s oracle

S fD : |x〉 |−〉 �→ |x〉 |− ⊕ fD(x)〉 , (2)

where |− ⊕ fD(x)〉 = eπ i fD (x) |−〉. The function fG :
{0, 1}n → {0, 1} is calculated by Grover’s oracle

S fG : |x〉 |−〉 �→ |x〉 |− ⊕ fG(x)〉 , (3)

where |− ⊕ fG(x)〉 = eπ i fG(x) |−〉.
When the Boolean function f satisfies m � 2, we present

the following general oracle:

Pf : |x〉 |0 · · · 01〉 �→ e
2π i
2m f (x) |x〉 |0 · · · 01〉 , (4)

where |0 · · · 01〉 ∈ (C2)⊗m and only the last qubit of the
|0 · · · 01〉 is in the state |1〉 . The oracles in Eqs. (2)–(4)
have the minimal forms, which we denote as minimal phase
oracles. Without any auxiliary qubit, a minimal phase oracle
M f is defined to act on one input state and return one output
with a specific phase,

M f : |x〉 �→ e
2π i
2m f (x)|x〉. (5)

Since S f and Pf are equivalent to M f in the sense that they
can denote the same Boolean function f , S f and Pf can be
converted to M f . In Table I, the Boolean functions are needed
to be computed by corresponding oracles. Deutsch’s oracle,
Grover’s oracle, and the general oracle (4) can be transformed
to minimal phase oracles, which are explicitly expressed as
diagonal unitary matrices.

In Fig. 1, we demonstrate two natural quantum circuits to
implement the Boolean function f : {0, 1}n → {0, 1}m with a
general oracle

Uf : |x〉 |0〉⊗m �→ |x〉 | f (x)〉. (6)

After Uf acting on two input states |x〉 |0〉⊗m, we could recover

f (x) = fm−1(x) × 2m−1 + · · · + f0(x) × 20 (7)

TABLE I. Transformations of quantum oracles.

Minimal phase
Boolean functions oracles

Deutsch’s oracle {0, 1} → {0, 1} ∑2n−1
x=0 eπ i fD (x) |x〉 〈x|

Grover’s oracle {0, 1}n → {0, 1} ∑2n−1
x=0 eπ i fG (x) |x〉 〈x|

The oracle in {0, 1}n → {0, 1}m ∑2n−1
x=0 e

2π i
2m f (x) |x〉 〈x|

Eq. (4)

by introducing measurements to the second output state. For
i = 0, 1, . . . , m − 1, fi(x) ∈ {0, 1} denotes the binary expan-
sion of the f (x). Equation (7) can be regarded as a nonlinear
function whose binary input and first m bits of binary output
are equal to x and f (x), respectively. Thus, by Eqs. (6) and (7),
we note that Boolean functions approximate the correspond-
ing nonlinear functions through quantum oracles.

Figure 1(a) shows the first quantum circuit of Uf in Eq. (6),
where Ufi (x) ∈ {I, X }. The circuit in Fig. 1(a) can be under-
stood as a process of function assignment. Each bit of the
input string x controls each bit of the output string f (x). Then
a specific output f (x) is carried out.

To explore the second quantum circuit of Uf in Eq. (6),
the basic procedures are stated as follow. First, we construct a
typical minimal phase oracle

O f =
2n−1∑
x=0

e
2π i
2m f (x) |x〉 〈x| , (8)

which adds a phase factor related with the f (x) to any input
|x〉. Second, we use the inverse quantum Fourier transform to
recover the f (x) with a certain precision. Figure 1(b) shows
the second quantum circuit of Uf in Eq. (6). The controlled-
Or

f gates are treated as a composition of a series of controlled-
O2s

f gates by considering the sth qubit in the first register as the
control qubit, where s = 0, 1, . . . , m − 1.

III. NONLINEAR QUANTUM NEURONS

Deep learning needs a lot of computation resources to
train a model. As the amount of transistors in silicon chips

(a)

(b)

FIG. 1. Panels (a) and (b) show two quantum circuits for imple-
menting Uf in Eq. (6).
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FIG. 2. A schematic of a classical neuron.

approaches the physical limit, QNN is a potential solution to
deal with massive and ultrahigh-dimensional data. However,
a recognized definition of QNN has not been proposed on ac-
count of the different dynamics between ANNs and quantum
computing.

Figure 2 shows the schematic of a classical neuron. As
the fundamental building block of ANNs, a neuron classically
maps an input vector x = (x0, . . . , xn−1)T ∈ Rn to an output
z = g(xT w), where w = (w0, . . . ,wn−1)T ∈ Rn is the weight
vector. xT w is the inner product, and g is usually a nonlinear
activation function.

Motivated by this schematic, we propose a generalizable
framework of implementing nonlinear quantum neurons in
Fig. 3. The framework maps the existing neuron designed
for classical computers to quantum circuits and achieves the
nonlinear mapping of classical data through three processes:
encoding, evolution, and measurement. The encoding is to
represent the features of classical data by a quantum system.
Following the postulates of quantum mechanics, the evolution
maps a quantum state |x〉 onto |z〉 with unitary operators,
which are the key to successfully implement nonlinear quan-
tum neurons. Reducing the dimension of the state space, the
measurement is necessary to induce nonlinear quantum neu-
rons. When quantum neurons are connected to build QNNs,
the measurement of each neuron in all middle layers should
be postponed until the last layer.

A. Neuron examples

Let M � {xi : i = 1, 2, . . . , q} ∈ Rn be a clas-
sical dataset. We denote a sample vector as xi =
(xi

0, xi
1, . . . , xi

n−1)T , where xi
j for j = 0, 1, . . . , n − 1

represents the jth component value of the ith sample in
M. M has been processed to ensure that each xi

j satisfies
0 � xi

j < 1. Reference [29] has systematically introduced
encoding methods and discussed state preparation routines.

FIG. 3. The proposed framework of implementing a nonlinear
quantum neuron. V1 represents the initialization of auxiliary qubits.
V2 refers to the preparation of quantum dataset. U (θ1) denotes the
calculation of the inner product of the input vector and the weight
vector. U (θ2 ) denotes the approximation of nonlinear functions. θ1

and θ2 are the circuit parameters.

(a)

(b)

FIG. 4. Panels (a) and (b) show nonlinear quantum neuron exam-
ples based on basis encoding and amplitude encoding, respectively.

Since data can be encoded into computational basis states or
amplitudes, we apply basis encoding and amplitude encoding
to our framework.

Figure 4 shows two nonlinear quantum neuron examples.
Both neurons are composed of three quantum registers, which
are labeled as the first register, the second register, and the
third register (from top to bottom). If we perform measure-
ments on the first register, we can obtain the output of a
quantum neuron. The second register is an auxiliary register to
calculate the inner product of the input vector and the weight
vector. The third register is the sample encoding register,
which is used to encode the classical data into quantum states.
The parameter m is an integer that always relates to precision.
In the following analysis, we denote the weight vector w to
compute inner product with the sample xi.

Figure 4(a) is an example of nonlinear quantum neurons
based on basis encoding. Basis encoding transforms each xi

into a product state:

|xi〉b = ∣∣xi
0, xi

1, . . . , xi
n−1

〉 ∈ (C2)⊗pn, (9)

where p is a fixed number of qubits for a given precision
to approximate the component xi

j , xi
j = xi

j1/21 + · · · + xi
jp
/2p,

xi
jk ∈ {0, 1} for k = 1, 2, . . . , p. By encoding classical data

into an orthonormal basis of the Hilbert space, quantum par-
allelism allows a linear combination of the basis to represent
M in only one quantum state, which means it is possible to
process all data in parallel.

When the controlled-phase gate CRz( α
2m ) acts on two quan-

tum states |+〉 |xi
jk 〉, we obtain

CRz

(
α

2m

)( |+〉 ∣∣xi
jk

〉 ) = 1√
2

( |0〉 ∣∣xi
jk

〉 + e
2π i
2m xi

jk
α |1〉 ∣∣xi

jk

〉 )
,

(10)
where α

2m is a quantum phase factor and CRz( α
2m ) can be

written as

CRz

(
α

2m

)
=

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 e

2π i
2m α

⎤
⎥⎥⎦. (11)

Thus, in Fig. 4(a), the controlled-U r
w gates are constructed

with a series of CRz(2−(k+m)w j ) gates, which are performed
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on the kth qubit of the jth component of xi. Meanwhile, the
controlled-U r

w gates can be regarded as a composition of a
series of controlled-U 2s

w gates by considering the sth qubit in
the second register as the control qubit. After the application
of the controlled-U 2s

w on the second and third registers, these
two registers become

1√
2m

2m−1∑
t=0

e
2π i
2m t (xi )T w |t〉 |xi〉b .

To apply the inverse quantum Fourier transform to the sec-
ond register, the output of the second register is |v〉, where v ∈
{0, 1}m. Since (xi )T w can be positive or negative, we denote
the v as the original code of a number, whose complement is
an approximation of (xi )T w. Then we use the Boolean func-
tion g1(v) : {0, 1}m → {0, 1}m to approximate any activation
function. The g1(v) is calculated by the oracle

Ug1 : |v〉 |0〉⊗m �→ |v〉 |g1(v)〉, (12)

which can be implemented by the circuit in Fig. 1(a) or 1(b).
Figure 4(b) is an example of nonlinear quantum neurons

based on amplitude encoding. Amplitude encoding encodes
the sample xi into an entangled state

|xi〉a = 1

‖xi‖
n−1∑
j=0

xi
j | j〉 ∈ Cn. (13)

This process only uses logn qubits to represent a sample con-
sisting of n features, where without loss of generality, we have
assumed that the value of log n is an integer for convenience.

In Fig. 4(b), the weight vector w is encoded in

|w〉 = 1

‖w‖
n−1∑
j=0

w j | j〉 ∈ Cn. (14)

The quantum states |xi〉a and |w〉 could be carried out by
quantum random access memory (qRAM) [30], which is an
efficient algorithm to prepare the quantum state under certain
data structures. The inner product 〈w |xi〉a could be esti-
mated with swap test which has been widely used in quantum
machine learning [13,16,31,32]. First, we can prepare the
quantum state,

|φ〉 = 1√
2

(|+〉 |xi〉a + |−〉 |w〉), (15)

which can be rewritten as

|φ〉 = 1
2 [|0〉 (|xi〉a + |w〉) + |1〉 (|xi〉a − |w〉)]. (16)

The amplitude of |0〉 is

sin γ =
√

1 + 〈w |xi〉a/
√

2, (17)

and the amplitude of |1〉 is

cos γ =
√

1 − 〈w |xi〉a/
√

2 , (18)

where γ ∈ [0, π
2 ]. With the Schmidt decomposition, |φ〉 is

decomposed into

|φ〉 = −i√
2

(eiγ |w+〉 − e−iγ |w−〉), (19)

TABLE II. Comparison of different quantum neurons.

Quantum Input Number Gate
neurons features of qubits complexity

Fig. 4(a) Binary pn + 2m O(pn + m2m )
Fig. 4(b) Continuous logn + 2m + 1 O(mn2 + m2m )
Ref. [21] Binary 2pn + m O(m22pn + m2)

where

|w±〉 = 1√
2

[|0〉 (|xi〉a + |w〉) ± i |1〉 (|xi〉a − |w〉)]. (20)

Second, we can construct a unitary transformation

G = (I⊗(log n+1) − 2 |φ〉 〈φ|)(Z ⊗ I⊗ log n). (21)

The eigenvalues of G are e±i2γ and the corresponding eigen-
vectors are |w±〉. Then we can use quantum phase estimation
to estimate γ . The controlled-Gr gates denote a composition
of a series of controlled-G2s

gates by considering the sth qubit
in the second register as the control qubit. After applying
quantum phase estimation, the output of the second and third
register is

|ψ〉 = −i√
2

(eiγ |u〉 |w+〉 − e−iγ |2m − uD〉 |w−〉), (22)

where the first qubit of |u〉 is in state |0〉 and u ∈ {0, 1}m.
uDπ/2m−1 is an approximation of 2γ . By Eq. (18), we obtain

uD ≈ arccos(−〈w |xi〉a)2m−1/π. (23)

Then we use the Boolean function g2(u) : {0, 1}m → {0, 1}m

to approximate any activation function. The g2(u) is calcu-
lated by the oracle

Ug2 : |u〉 |0〉⊗m �→ |u〉 |g2(u)〉, (24)

which can be implemented by the circuit in Fig. 1(a) or 1(b).
By Eqs. (12) and (24), we note that the outputs of the

second registers can be seen as the inputs of the Boolean func-
tions. Other existing quantum computing models can apply to
our framework. So long as the outputs of the second registers
are the bijective functions with respect to (xi )T w, a specific
oracle would be available to approximate any corresponding
activation function.

B. Comparisons

The generalizable framework has been proposed to imple-
ment nonlinear quantum neurons, which are suitable to deal
with massive and ultrahigh-dimensional data. The numbers of
qubits and elementary quantum gates measure the quantum
resources to implement a quantum neuron. Table II shows the
comparisons of different nonlinear quantum neurons, with n
representing the input size (the dimensions of input vectors).

Considering the space cost, the m and p are parameters
that influence the binary representation precisions of the num-
bers. For example, the long int types and double-precision
floating-point types are represented by fixed 64 bits in a com-
mon digital computer. Reference [21] encodes input vectors
and the corresponding weight vectors into the basis states. If
each component of the vectors is represented by p qubits,
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Ref. [21] needs 2pn + m qubits to implement its quantum
neuron. From the analysis in Sec. III A, Fig. 4(a) requires
pn + 2m qubits for a neuron and Fig. 4(b) needs logn +
2m + 1 qubits. When n is much larger than the parameters
m and p, Fig. 4(a) uses about half fewer qubits than Ref. [21].
Moreover, Fig. 4(b) exponentially reduces the requirement of
qubits.

Turning to the time cost, the elementary gates are physi-
cally implementable gates, include single-qubit rotations and
entangling two-qubit gates. A general unitary operator can
be decomposed into elementary gates following the general
principles presented by Refs. [33,34]. We use Cd−1Rz gates to
represent multiple controlled-Rz gates acting on d − 1 control
qubits and one target qubit. A Cd−1Rz gate can be simu-
lated by O(d2) elementary gates or else O(d ) gates with one
auxiliary qubit ([33], Corollary 7.6). The accurate evaluation
of diagonal unitary operators is often the most resource-
intensive element of quantum algorithms. There are some
discussion of decomposition methods for arbitrary diagonal
unitaries [35–37]. Generally, an arbitrary d-qubit diagonal
unitary operator could be decomposed into 2d Cd−1Rz gates.
Therefore, constructing quantum circuits for diagonal compu-
tations generally requires O(d22d ) elementary gates without
any auxiliary qubit. Specially, Ref. [35] provides circuits of
size O(2d ) for arbitrary d-qubit diagonal unitaries, which is
the best-known compiling algorithm. An efficient implemen-
tation of the phase estimation includes O(m2) elementary
gates for an inverse quantum Fourier transform and one call
to controlled unitary operator black box [38]. Here, we would
discuss the elementary gate complexity of constructing a
black box rather than the query complexity. Reference [21]
consists of arbitrary 2pn-qubit diagonal operations, which
should be decomposed into O(22pn) elementary gates with the
asymptotically optimal circuits of standard techniques [35].
Therefore, Ref. [21] needs O(m22pn + m2) gates to implement
a single neuron. In our cases, the corresponding unitary oper-
ator black box in Figs. 4(a) and 4(b) are the U r

w gate and the
Gr gate, respectively. The analysis in Sec. III A shows that the
U r

w gate can exactly be decomposed into pn Rz gates. The Gr

gate can be expressed as O(n2) elementary gates according
to the decomposition method for general multiqubit gates in
Ref. [34]. If Ug1 and Ug2 are implemented by Fig. 1(b), the gate
complexity is O(m2m). In summary, the total gate complexity
of the Figs. 4(a) and 4(b) is O(pn + m2m) and O(mn2 + m2m),
respectively.

As mentioned before, the parameters m and p represent the
precisions of the inputs and outputs of neurons, respectively.
In neural networks, the activation output of a neuron can be
regarded as the input of the neuron connected to it. Therefore,
the values of m and p can be considered equal (or approxi-
mately equal). In this way, our quantum neurons always use
fewer quantum resources than Ref. [21], even exponentially
reduce the costs when n is much larger than m and p.

IV. EXPERIMENTS

A. IBM Quantum Experience experiments

Nowadays, noisy intermediate-scale quantum (NISQ) tech-
nology has been available [39]. IBM Quantum Experience

(IBMQ for short), a cloud-based quantum computer, has
become a popular platform for quantum computing. We im-
plement the discrete rectified linear unit (ReLU) activation
function with different quantum circuits based on the plat-
form.

Figures 5(a) and 5(b) show the results of running the two
circuits in Fig. 1. Both the circuits are implemented with four
qubits, where half the qubits are for inputs and the other
half are for outputs. The first qubit of inputs (and outputs)
is regarded as the sign of a number and the second repre-
sents the one-bit integer. Then the domain and codomain of
discrete ReLU can be computed classically. The input states
of the two circuits are initialized to superposition states with
equal weights. Figure 5(c) presents an example of a nonlinear
quantum neuron based on Fig. 4(a), and its running results are
shown in Fig. 5(d).

Since the inputs and outputs of our typical circuits are
integers, they can be written in a binary form precisely, and the
errors are only caused by the quantum gate errors and readout
errors. We obtain 100% accuracies on ibmq_qasm_simulator
backend. As the gate errors and readout errors on real quantum
hardware reduce the executed reliability of quantum circuits,
the accuracies on ibmq_rome backend and ibmq_santiago
backend are about 70% and 60%, respectively.

From the experimental results, we conclude that the two
circuits in Fig. 1 have similar performance in the case of
using the same number of qubits. The results on the simulator
verify the feasibility of the circuits, specifically including the
circuit of a typical quantum neuron with the ReLU activa-
tion function. The results on quantum computers illustrate
that our specific circuits still have a positive performance on
real quantum hardware in the NISQ era of quantum com-
puting. Certainly, the accuracies on quantum computers can
be improved with the circuit optimization theory and well
performance of the real quantum hardware. We just show the
mapping experiment of discrete ReLU. It can be extended to
any type of function.

B. Numerical simulations of a quantum neuron

The performance of ANNs is significantly related to the
selection of activation functions. In many scenarios, it is nec-
essary to trade off both the advantages and disadvantages of
different activation functions. There are some commonly used
classical activation functions, such as sigmoid, hyperbolic
tangent (Tanh), Gaussian error linear units (GELU), and so
on. Figure 6 shows the results of simulating these activation
functions based on the nonlinear quantum neuron proposed in
Fig. 4(a), where the input is the value of (xi)T w. The neuron
has two approximate calculations: one is the approximation
of (xi)T w and the other is the approximation of the activation
function, which is computed by the classical 64-bit computer.
These two approximations are carried out by the first and
second registers, respectively. We stipulated that both of these
two approximations are accurate to eight qubits, one qubit for
representing the sign, three qubits for integers, and four qubits
for decimals.

The results exhibit that the activation functions com-
puted by the nonlinear quantum neuron can simulate classical
activation functions with a few qubits. In the numerical
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(a)

(c)

(b)

(d)

FIG. 5. Implementing discrete ReLU with different quantum circuits. All circuits are executed 8192 times (the maximum allowed) on
IBM’s quantum simulator and quantum computers. The accuracy indicates the proportion of the correct outputs of all outputs for given
inputs. (a) The results of using four qubits to implement discrete ReLU with the circuit in Fig. 1(a). (b) The results of using four qubits to
implement discrete ReLU with the circuit in Fig. 1(b). (c) An example of a typical quantum circuit for a nonlinear quantum neuron based on
the Fig. 4(a) with four qubits, where the sign bit of the activation output is ignored due to ReLU’s non-negative output. In this example, the
input data is x = 1 and the Uw = Rz(w/4),w ∈ {−2, −1, 0, 1}. (d) The running results of the circuit in Fig. 5(c).

simulations, we only consider the ideal case where the
quantum phase estimation runs successfully and returns ac-
curate results. So the approximate error is only caused by
the insufficient number of output qubits. Actually, the er-
rors would infinitely approach zero as the number of qubits
increases.

C. Numerical simulation of a simple quantum neural network

As the proposed quantum neurons are proved to be able
to simulate any nonlinear activation function, one of their
common usages is similar to classical neurons. The quantum
neurons of one layer are connecting to quantum neurons of
the immediately preceding and immediately following layers.

FIG. 6. Different types of activation functions: (a) Sigmoid, (b) ReLU, (c) Tanh, and (d) GELU.
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(a) (b)

FIG. 7. Construction of a simple quantum feedforward neural network with the proposed nonlinear quantum neurons. Here the input states
are |x1〉 and |x2〉, and the output state is |z〉. (a) Quantum feedforward neural network model. (b) The quantum feedforward neural network
represented by a circuit, where |x〉b = |x1〉 ⊗ |x2〉, U

w
(1)
i

= Rz(w(1)
i1 ) ⊗ Rz(w

(1)
i2 ), U

w
(2)
i

= Rz(w(2)
i1 ) ⊗ Rz(w(2)

i2 ) ⊗ · · · ⊗ Rz(w
(2)
im ).

Figure 7 shows the construction of a quantum feedforward
neural network (QFNN) with the three quantum neurons pro-
posed in Fig. 4(a), where two neurons are for the hidden
layer and the other one for the output layer. The QFNN has
two inputs, which constitute the input layer, i.e., the zeroth
layer, of the neural network. For k = 1, 2, the jth neuron
in the kth layer and the ith neuron in the (k − 1)st layer
are connected by an edge w

(k)
i j , which belongs to the set

{w(1)
11 ,w

(1)
12 ,w

(1)
21 ,w

(1)
22 ,w

(2)
11 ,w

(2)
12 }.

With the quantum sigmoid activation function imple-
mented by the oracle Ug, the three-neuron QFNN was trained
with backpropagation to solve the well-known XOR problem,
which consists of four samples (q = 4). During the training
process, we applied the batch gradient descent algorithm to
minimize the following mean square loss function

L = 1

q

q∑
i=1

(di − zi )2, (25)

where for the ith sample, di is the desired output and zi is
the result of performing measurement on the output |zi〉 of the
QFNN. The update rule for the weights is

w(l+1) = w(l ) − η
∂L

∂w(l )
, (26)

where w(l+1) is the weight after the (l + 1)st step of the
iteration process and η is an adjustable positive step length.
The learning curve is presented in Fig. 8, from which we can
see that the loss converges to about 0.126. It has been shown
that the loss function and gradient can be calculated classically
as the activation function is known. Furthermore, since the
proposed QFNN is a parametrized quantum circuit, there will
be exciting work to train the QFNN in a quantum way.

V. CONCLUSIONS AND DISCUSSIONS

In this paper, we have noted that there are various oracles
to implement the same Boolean function. Even for the same
oracle, the circuits are not unique. We have established two
circuits (see Fig. 1) to implement the Boolean function f ,
which can be regarded as an approximation of the corre-
sponding nonlinear function. There should be more quantum

circuits to approximate nonlinear functions. Moreover, this
paper has proposed a generalizable framework to implement
nonlinear quantum neurons that fully realizes the combina-
tion of quantum computing and neural networks. We have
presented two quantum neuron examples that can be used
as a fundamental building block for QNNs. The quantum
neuron examples have the advantages of processing massive
or ultrahigh-dimensional data due to the quantum parallelism
and entanglement. The quantum resources required to con-
struct a single quantum neuron are the polynomial, in function
of the input size. Both IBM Quantum Experience results and
numerical simulations have illustrated the effectiveness of the
proposed framework, which could map the existing classical
neuron designed for classical computers to quantum circuits.

In addition to using the controlled-phase gates and the
swap test, many other existing quantum computing models
can apply to our framework to realize more kinds of quantum
neurons. The most far-reaching generalization of the proposed
framework is not restricted to implement nonlinear quantum
neurons, it may have more applications in quantum machine
learning [40–43]. In the future, we will connect multiple lay-
ers of our nonlinear quantum neurons to build a feedforward

FIG. 8. The learning curve.
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deep neural network, which could be fully trained on quantum
computers.
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