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Abstract This paper discusses a distributed design for clustering based on the K-means algorithm

in a switching multi-agent network, for the case when data are decentralized stored and unavailable to

all agents. The authors propose a consensus-based algorithm in distributed case, that is, the double-

clock consensus-based K-means algorithm (DCKA). With mild connectivity conditions, the authors

show convergence of DCKA to guarantee a distributed solution to the clustering problem, even though

the network topology is time-varying. Moreover, the authors provide experimental results on vari-

ous clustering datasets to illustrate the effectiveness of the fully distributed algorithm DCKA, whose

performance may be better than that of the centralized K-means algorithm.

Keywords Consensus-based algorithm, distributed K-means clustering, multi-agent network, switch-

ing topology.

1 Introduction

Due to the scalability, robustness, and low cost, distributed algorithms in multi-agent net-
works have attracted much attention in recent year. Each agent in the network can achieve
the global goal based only on information exchange between neighbors or local measurement,
because an agent has great difficulty getting all the information directly in a large-scale net-
work. To guarantee all the agents to work for the same goal, the consensus-based algorithms
have gained its popularity in the field of distributed control, estimation and optimization. In
fact, network connectivity plays a vital role in achieving multi-agent coordination and making
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distributed algorithms/methods suitable or effective to deal with large data or complicated net-
work structures. Due to energy-saving policies or link failures, variable topologies of communi-
cation or interaction networks are widely found in distributed designs, and it is no surprise that
distributed consensus or optimization with time-varying topologies has become a hot topic[1–5].

In recent years, machine learning has attracted more and more research attention because
of various applications in knowledge discovery, pattern recognition, and data mining[6, 7]. Data
clustering, one of the unsupervised machine learning problems for data analysis, has also been
significantly investigated and widely applied to many areas since it is proposed to effectively
divide data into small subgroups[8]. Based on the similarity among data, partitional cluster-
ing algorithms (opposite to those hierarchical algorithms) become important research topics,
partially because these algorithms can obtain all the clusters synchronously without requir-
ing a hierarchical structure[9]. For instance, the K-means algorithm given in [10], one of the
most popular partitional clustering algorithms, is well known for its simplicity and fast con-
vergence rate[11, 12]. Some other clustering algorithms, such as the expectation-maximization
(EM) algorithm[13] for Gaussian mixtures is also based on its idea.

Note that many clustering (including K-means) algorithms are basically centralized. How-
ever, the challenges with the rapid growth of data and large-scale networks, ask us to store and
process data among different agents over the network. For example, in networked surveillance[14],
wireless sensor networks[15–17], or distributed databases[18], data have been distributed over the
network. To deal with these troubles, parallel K-means clustering schemes were studied widely.
For example, [19] and [20] focused on multiprocessor architectures of parallel K-means algo-
rithms. To realize parallel algorithms, people set a reliable center or the third party, to process
all the information from the other agents over the network, and with job assignment, these
parallel clustering designs can be applied to all the agents[21]. Moreover, privacy preservation
has also been an important concern in the design of parallel clustering algorithms, [22] and [23]
proposed different ways to partition data vertically and arbitrarily, before sharing the data.
Nevertheless, if the central unit or the third party fails for some reasons, parallel clustering
designs will be inoperative, too. Therefore, designing distributed clustering algorithms without
requiring any center or third party becomes an urgent task for effective data processing or
clustering.

Up to now, some distributed K-means clustering algorithms have been constructed. For
example, [24] and [25] proposed distributed algorithms motivated by local and random sampling
strategies, while [26] formulated a K-means clustering problem as a distributed optimization
problem with consensus constraints on the centroids obtained by all agents, and provided a
distributed algorithm based on the duality theory. [27] designed a distributed algorithm for
vertically and horizontally distributed datasets. Additionally, [28] and [29] gave distributed
K-means algorithms based on max-consensus and average-consensus. However, most existing
distributed K-means algorithms were proposed for fixed topologies (which may fail in the cases
of link failures or switching network connectivity) and analyzed on basis of simulations.

The motivation of this paper is to study the distributed K-means algorithm in a time-varying
communication network with some convergence analysis. Here each agent in the network can



1130 LIN PENG, et al.

have access to only a portion of clustering observations and can share information with its
one-hop neighbours. The technical contribution of the paper includes:

1) Distributed design for switching networks: Different from many distributed K-means
algorithms for fixed topologies[26, 28], we propose a double-clock consensus-based K-means al-
gorithm (DCKA), based on time-varying networks. In other words, the topology of the network
just need to be jointly-connected. DCKA is of relatively low communication cost, because it is
unnecessary for the communication network to keep connected throughout.

2) Convergence and performance analysis: In light of graph theory[30], we prove that DCKA
converges to a local optimal solution of the clustering problem. Different from existing dis-
tributed K-means algorithms[26] by mixing the consensus of the centroids of all the agents with
the update of these centroids in one iteration step, DCKA separates these procedures in two
clear steps, which can help us take good advantage of good properties such as high convergence
rate of the conventional K-means algorithm[28]. Experimental results show that our algorithm
is also less sensitive to initialization and therefore, is more likely to get better experimental
results than conventional centralized ones.

The organization of the paper is presented as follows. First, some necessary preliminar-
ies are introduced in Section 2. Next, the double-clock consensus-based K-means algorithm
(DCKA) is proposed in time-varying networks and then analysed in Section 3. In Section 4,
the experimental results are shown. Finally, the conclusions are presented in Section 5.

2 Preliminaries and Problem Formulation

In this section, we first introduce preliminaries about graph theory[30] for multi-agent sys-
tems. Then we give our problem formulation and briefly describe traditional centralized K-
means algorithm.

2.1 Graph Theory

To describe networks in a distributed design, we consider a graph G = (V , E) as the in-
formation sharing topology among N agents. V = {1, 2, · · · , N} represents the set of agents
and E ⊂ V × V denotes the set of the communication links among the agents. If agent i can
receive information from agent h directly, then there exists a directed edge from h to i and
denoted by (h, i) ∈ E . Denote the one-hop neighbours of agent i as Ni = {h|(h, i) ∈ E}.
The graph G is said to be undirected, if (h, i) ∈ E , whenever (i, h) ∈ E . A directed path,
whose length is p, is a non-empty graph P = (Vp, Ep) of the form Vp = {i1, i2, · · · , ip+1} ⊆ V ,
Ep = {(i1, i2), (i2, i3), · · · , (ip, ip+1)} ⊆ Ep, where iks are all distinct. The graph G is strongly
connected if there is a directed path between them for any pair i, h ∈ V . More details can be
found in [30].

Consider this graph G(s) = (V , E(s)), which represents the time-varying communication
topology among the agents at time s. The adjacency matrix of G(s) is denoted by A(s) ∈ RN×N ,
whose elements are defined as follows:

(i) ai,h(s) > 0 for any (h, i) ∈ E(s), including agent i itself, that is, ai,i(s) > 0;
(ii) ai,h(s) = 0 for any agent h that is not the one-hop neighbor of agent i.
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Next, we consider two assumptions for an important time-varying network, which is the
jointly-connected network. The first assumption is about the weighted adjacency matrix, and
the second one is about the connectivity of the network.

Assumption 2.1 The weighted adjacency matrix A(s) of graph G(s) = (V , E(s)) is as-
sumed to satisfy

(i) A(s) is doubly stochastic;
(ii) For all i ∈ V , ai,i(s) ≥ ε and ai,h(s) ≥ ε if (h, i) ∈ E(s), where ε is a positive scalar.

Assumption 2.2 The graph G(s) = (V , E(s)) is jointly connected, i.e., the graph (V , E(s)∪
E(s + 1) ∪ · · · ∪ E(s + τ − 1) is strongly connected for all s ≥ 0 and some integer τ > 0.

Clearly, Assumption 2.2 ensures that each agent i can get information from all its neighbors
at least once during each period of τ , though the network topology is switching and may not be
connected at each moment. The following result is also well known for this switching topology.

Lemma 2.3 (see [1]) Under Assumptions 2.1 and 2.2, for all i, h and all s1 ≥ s2, we
have

∣
∣
∣
∣
[ϕ(s1 : s2)]i,h − 1

N

∣
∣
∣
∣
≤ ζ−2�s1−s2+1,

where ζ = 1 − ε
4N2 , � = ζ1/τ , ϕ(s1 : s2) is a transition matrix defined by ϕ(s1 : s2) =

A(s2)A(s2 + 1) · · ·A(s1) with ϕ(s1 : s1) = A(s1).

2.2 Problem Formulation

For every agent i ∈ V , a training set Yi = [y1
i , y2

i , · · · , ymi

i ] ∈ Rn×mi is available, where n

is the dimension of data and mi is the size of data. Denote Y = [Y1, Y2, · · · , YN ] as the whole
dataset. The goal of agent i is to divide dataset Yi into K clusters [Y 1

i , Y 2
i , · · · , Y K

i ], according to
K-means clustering criterion. The K centroids, which agent i obtains to represent the clusters,
may not belong to the dataset. Let ck denote the k-th centroid and C = {c1, c2, · · · , cK} be the
collection of K centroids. The K-means clustering problem of agent i can be stated as follows:

min
θ∈Di,C

fi(Yi, C, θi) =
mi∑

j=1

K∑

k=1

θj
i,k||yj

i − ck||2, (1)

where

Di =
{

θj
i,k :

K∑

k=1

θj
i,k = 1, j = 1, 2, · · · , mi,

θj
i,k = {0, 1}, k = 1, 2, · · · , K, j = 1, 2, · · · , mi

}

(2)

and

θi = {θj
ik, k = 1, 2, · · · , K, j = 1, 2, · · · , mi}. (3)

The similarity between the data points is measured by the Euclidean norm. In distributed
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K-means clustering learning, the purpose of agents is to partition the dataset Y into K clusters
[Y 1, Y 2, · · · , Y K ] and minimize the sum of squares of distances between the data points and the
centroids of the clusters. Moreover, the K centroids that all agents get should be consistent with
each other. The distributed K-means clustering problem, which was also introduced in [26, 28],
is formulated as follows:

min
θ∈D,C

F (Y, C, θ) =
N∑

i=1

fi(Yi, C, θi), (4)

where D = {D}N
i=1 and θ = {θi}N

i=1.
The cluster number K is assumed to be known for all agents as a priori knowledge in this

paper; if it is unknown, the methods proposed in [31] can be used in our algorithms to estimate
the number K.

Centralized K-means algorithm (CKA)[32] supplies a two-step (an assignment step and a re-
finement step) iterative approach to solve Problem (4). Denote C(t) = {c1(t), c2(t), · · · , cK(t)}
as the K centroids at time t. It starts with K random centroids C(0) or through the K-
means++ algorithm[33] with only one random centroid. In the assignment step, each data
point yj

i is assigned to the cluster which can be represented by the nearest centroid, that is,

θj
i,k(t + 1) = argmin

θ∈D

N∑

i=1

mi∑

j=1

K∑

k=1

θj
i,k||yj

i − ck(t)||2.

In other words,

θj
i,k(t + 1) =

⎧

⎨

⎩

1, if yj
i ∈ Cluster k;

0, if yj
i /∈ Cluster k.

(5)

Obviously,
∑N

i=1

∑mi

j=1 θj
i,k(t + 1) and

∑N
i=1

∑mi

j=1 θj
i,k(t + 1)yj

i stand for the size of data points
and the summation of all the data points, respectively, which belong to the k-th cluster at time
t + 1. For simplicity, we denote

mk(t + 1) =
N∑

i=1

mi∑

j=1

θj
i,k(t + 1), (6)

uk(t + 1) =
N∑

i=1

mi∑

j=1

θj
i,k(t + 1)yj

i . (7)

In the refinement step, the K centroids are updated by the new ones in each cluster, namely,

ck(t + 1) =

∑N
i=1

∑mi

j=1 θj
i,k(t + 1)yj

i
∑N

i=1

∑mi

j=1 θj
i,k(t + 1)

=
uk(t + 1)
mk(t + 1)

, k = 1, 2, · · · , K. (8)

The algorithm guarantees that a local optimal solution can be obtained. In CKA, both (5)
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and (8) need global (or centralized) information. Equation (5) requires the global information
of centroids ck and (8) asks for the global information of all the data points, which belong to
cluster k. However, if data points are spatially distributed or collected by different agents, the
centralized form may not work any more. It calls for the distributed implementation of the
traditional K-means algorithms.

3 Distributed K-Means Algorithm

In this section, we first introduce our double-clock consensus-based K-means algorithm
(DCKA). Then the convergence analysis, communication and computational complexity of
DCKA are given.

3.1 Double-Clock Consensus-Based K-Means Algorithm

In this subsection, our double-clock consensus-based K-means algorithm (DCKA) is intro-
duced, considering that the distributed coordination design for consensus or optimization was
widely studied in jointly-connected cases[34].

To deal with (4), we define Ci(t) as the set of centroids, which are obtained by agent i at
time t. In the light of the centralized K-means clustering algorithm, given Ci(t), θi(t + 1) can
be assigned by the following equation:

θj
i,k(t + 1) = arg min

θi∈Di

mi∑

j=1

K∑

k=1

θj
i,k||yj

i − ci,k(t)||2.

In another word,

θj
i,k(t + 1) =

⎧

⎨

⎩

1, if yj
i ∈ Cluster k;

0, if yj
i /∈ Cluster k.

(9)

It is obvious that
∑mi

j=1 θj
i,k(t + 1) stands for the size of data, in the k-th cluster at time

t + 1, which belong to agent i. We denote

mi,k(t + 1) =
mi∑

j=1

θj
i,k(t + 1), (10)

and Mi(t + 1) as the collection of mi,1(t + 1). Then a new local summation ui,k(t + 1) can be
obtained by

ui,k(t + 1) =
mi∑

j=1

θj
i,k(t + 1)yj

i . (11)

Hence, the global centroid ck(t + 1) in (8) is rewritten as follows:

ck(t + 1) =
∑N

i=1 ui,k(t + 1)
∑N

i=1 mi,k(t + 1)
, k = 1, 2, · · · , K. (12)
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Denote xi,k(0, t) = col{x1
i,k(0, t), x2

i,k(0, t)}, where

⎧

⎨

⎩

x1
i,k(0, t) = ui,k(t),

x2
i,k(0, t) = mi,k(t).

(13)

In each iteration of the algorithm, agent i updates its centroids through three steps: A local
K-means step, a consensus step over the jointly-connected topology, and a local update step:

1) Local K-means step: Agent i calculates θj
i,k(t + 1), mi,k(t + 1) and ui,k(t + 1) according

to (9), (10), and (11), respectively.
2) Consensus step: Over an information sharing topology G(s) = (V , E(s)), which is time-

varying and satisfies Assumptions 2.1 and 2.2, agent i exchanges information with its one-hop
neighbor h according to the following equation until consensus:

xi,k(s + 1, t + 1) =
∑

h∈Ni(s)

ai,h(s)xh,k(s, t + 1), k = 1, 2, · · · , K. (14)

The stop time of the consensus step over jointly-connected topology is denoted by S.
3) Local update step: Agent i updates ci,k(t + 1) as follows:

ci,k(t + 1) =
x1

i,k(S, t + 1)
x2

i,k(S, t + 1)
, k = 1, 2, · · · , K.

Let us summarize the procedure of DCKA in Algorithm 1.

Algorithm 1: Double-clock consensus-based K-means algorithm (DCKA)

Input The datasets Y = [Y1, Y2, · · · , YN ] and {Ci(0)}N
i=1

1: for t = 0, 1, · · · do
2: for i = 1, 2, · · · , N do
3: Calculate θj

i,k(t + 1) according to (9).
4: Calculate mi,k(t + 1) according to (10).
5: Calculate ui,k(t + 1) according to (11).
6: end for
7: for i = 1, 2, · · · , N do
8: Calculate xi,k(0, t + 1) according to (13)
9: end for

10: for i = 1, 2, · · · , N do
11: Do consensus step until convergence according to (14), obtain xi,k(S, t + 1).
12: end for
13: for i = 1, 2, · · · , N do

14: ci,k(t + 1) = x1
i,k(S,t+1)

x2
i,k(S,t+1)

.
15: end for
16: end for

Remark 3.1 Different from the existing works, DCKA proposed in this paper has two



DISTRIBUTED K-MEANS IN SWITCHING NETWORKS 1135

clocks: A clock of the of the consensus between agents over time axis s and another clock of
the local K-means computation over time axis t. In the consensus step, agent i exchanges
information with its one-hop neighbor agent h, until the consensus can be achieved within
some tolerant bound, which is easy to implement for fixed time clock t + 1 of the local steps
and can be adapted to the case where the global communication topology is unavailable. The
consensus rate in the consensus step is still exponential, even if the network topologies are
jointly-connected switching due to link failure/recovery procedures or energy saving policies.

3.2 Analysis of DCKA

In this subsection, the convergence analysis is given first and then the communication and
computational complexity of DCKA are discussed.

Theorem 3.2 is provided to address the convergence of DCKA.

Theorem 3.2 Under Assumptions 2.1 and 2.2, DCKA achieves a local optimal solution
of distributed clustering problem (4).

Proof Denote xk(0, t + 1) = col{x1
k(0, t + 1), x2

k(0, t + 1)}, where

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x1
k(0, t + 1) =

1
N

N∑

i=1

x1
i,k(0, t + 1) =

∑N
i=1 ui,k(t + 1)

N
,

x2
k(0, t + 1) =

1
N

N∑

i=1

x2
i,k(0, t + 1) =

∑N
i=1 mi,k(t + 1)

N
.

From the definition of ck(t + 1) in (12), we have ck(t + 1) = x1
k(0,t+1)

x2
k(0,t+1)

. Define ĉi,k(s, t + 1) as
follows:

ĉi,k(s, t + 1) =
x1

i,k(s, t + 1)
x2

i,k(s, t + 1)
, k = 1, 2, · · · , K, (15)

which is the estimation of agent i for ck(t + 1) at time s in the consensus step.
In light of the fact that CKA can obtain a local optimal solution, the conclusion follows if

we can show that ĉi,k(s, t + 1) converge to ck(t + 1) as s → ∞ first, and then prove there exists
an S, such that the error between ĉi,k(S, t + 1) and ck(t + 1) have no effect on θj

i,k(t + 2).
First, we prove that ĉi,k(s, t + 1) converge to ck(t + 1) as s → ∞.
For any s with s ≥ 0, we have

x1
i,k(s, t + 1) =

N∑

h=1

[ϕ(s − 1 : 0)]i,hx1
h,k(0, t + 1), (16)

x2
i,k(s, t + 1) =

N∑

h=1

[ϕ(s − 1 : 0)]i,hx2
h,k(0, t + 1). (17)
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Let

ξ1
i,k(s, t + 1) = x1

i,k(s, t + 1) − x1
k(0, t + 1) =

N∑

h=1

(

[ϕ(s − 1 : 0)]i,h − 1
N

)

x1
h,k(0, t + 1),

ξ2
i,k(s, t + 1) = x2

i,k(s, t + 1) − x2
k(0, t + 1) =

N∑

h=1

(

[ϕ(s − 1 : 0)]i,h − 1
N

)

x2
h,k(0, t + 1).

By Lemma 2.3, we obtain

‖ξ1
i,k(s, t + 1)‖ ≤

N∑

h=1

∣
∣
∣
∣
[ϕ(s − 1 : 0)]i,h − 1

N

∣
∣
∣
∣
‖x1

h,k(0, t + 1)‖

≤ Nζ−2�smax
h

‖x1
h,k(0, t + 1)‖, (18)

‖ξ2
i,k(s, t + 1)‖ ≤

N∑

h=1

∣
∣
∣
∣
[ϕ(s − 1 : 0)]i,h − 1

N

∣
∣
∣
∣
‖x2

h,k(0, t + 1)‖

≤ Nζ−2�smax
h

‖x2
h,k(0, t + 1)‖. (19)

Therefore,

‖ĉi,k(s, t + 1) − ck(t + 1)‖

=

∥
∥
∥
∥
∥

x1
i,k(s, t + 1)

x2
i,k(s, t + 1)

− x1
k(0, t + 1)

x2
k(0, t + 1)

∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥

x1
k(0, t + 1) + ξ1

i,k(s, t + 1)

x2
k(0, t + 1) + ξ2

i,k(s, t + 1)
− x1

k(0, t + 1)
x2

k(0, t + 1)

∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥

ξ1
i,k(s, t + 1)x2

k(0, t + 1) − ξ2
i,k(s, t + 1)x1

k(0, t + 1)

[x2
k(0, t + 1) + ξ2

i,k(s, t + 1)]x2
k(0, t + 1)

∥
∥
∥
∥
∥

≤

∥
∥
∥ξ1

i,k(s, t + 1)
∥
∥
∥

∥
∥x2

k(0, t + 1)
∥
∥ +

∥
∥
∥ξ2

i,k(s, t + 1)
∥
∥
∥

∥
∥x1

k(0, t + 1)
∥
∥

∥
∥x2

k(0, t + 1)
∥
∥

2 . (20)

Denote

σk(t + 1) = max

⎧

⎨

⎩

max
h

‖x1
h,k(0, t + 1)‖

‖x2
k(0, t + 1)‖ ,

‖x1
k(0, t + 1)‖max

h
‖x2

h,k(0, t + 1)‖
‖x2

k(0, t + 1)‖2

⎫

⎬

⎭
.

According to (18), we get

‖ĉi,k(s, t + 1) − ck(t + 1)‖ ≤ 2Nζ−2�sσk(t + 1).
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Hence, ∀δ > 0, there exists an S = logρ(
ζ2δ

2Nσk(t+1) ), for any s ≥ S,

‖ĉi,k(s, t + 1) − ck(t + 1)‖ ≤ δ,

where ζ = 1 − ε
4N2 , � = ζ1/τ . In other words, ĉi,k(s, t + 1) converge to ck(t + 1) as s → ∞.

Then we show that there exists an S, such that the error between ĉi,k(S, t+1) and ck(t+1)
have no effect on θj

i,k(t + 2).
Since θ is decided by the centroids of each cluster, we denote θ(t + 1) = θ[C(t)]. Given the

centroids C(t + 1), we take

δ(t + 1) = min
1≤i≤N

min
1≤k≤K

δi,k(t + 1), (21)

where

δi,k(t + 1) = min
y∈Y k

i

min
k′ �=k

{
1
2
(‖y − ck′ (t + 1)‖2 − ‖y − ck(t + 1)‖2)

}

.

Then for any ci,k ∈ B(ck(t+1), δ(t+1)), we have θ[{Ci}N
i=1] = θ[C(t+1)], where Ci = {ci,k}K

k=1.
For this δ(t + 1), if we choose S ≥ logρ(

ζ2δ(t+1)
2Nσ(t+1) ), where

σ(t + 1) = max
k

σk(t + 1),

then ĉi,k(S, t + 1) ∈ B(ck(t + 1), δ(t + 1)), for all i = 1, 2, · · · , N and k = 1, 2, · · · , K.
In other words, if S ≥ logρ(

ζ2δ(t+1)
2Nσ(t+1) ), we have θ[{Ci(t + 1)}N

i=1] = θ[C(t + 1)]. Therefore,

DCKA and CKA should get the same θj
i,k(t + 2) in the next iteration.

Next, we analyse the communication and computational complexity of DCKA. Denote T as
the maximal iteration of DCKA and M =

∑N
i=1 mi as the total number of the data points in

all agents. Denote Nl as the average number of links in the communication network. When the
topology of the communication network is assumed to be jointly-connected, Nl can be much
smaller than that when the network keeps connected throughout.

Then we provide another main result.

Theorem 3.3 The communication consumption, space complexity, and time complexity
of DCKA are O(ST ), O((2N + M)K), and O(TK(M + NS + N)), respectively.

Proof Let us first check the communication complexity of DCKA, which is close related
to the clusters, iterations, network links, etc. During one loop of the consensus step in DCKA,
each agent sends xi,k(s, t) about cluster k to its one-hop neighbors. By denoting Nb as the
number of bytes for sending xi,k(s, t), the communication consumption is 2NlKSNb during S

loops. Hence, the total communication consumption is 2NlKSTNb ∼ O(ST ).
Then we check the computational complexity of DCKA. Agents in the network need O(NK)

space to store K centroids, O(MK) space to store the value of θ, and O(NK) space in consensus
step. Hence, the total space complexity is O((2N + M)K). The time complexity of DCKA
depends on the size of dataset, the number of agents in the network, number of clusters and
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related factors. Per iteration, the time complexity is O(KM) for the local K-means step,
O(NKS) for the consensus step, O(NK) for the local update step. Hence, the total time
complexity of DCKA is O(TK(M + NS + N)). Moreover, when the size of dataset Y is very
large, the total time complexity of DCKA is O(TKM).

In DCKA, agents in the considered network share their information with their one-hop
neighbors to get the same K centriods. Since the consensus of all the centroids in all agents
and the update of the centroids are separated completely, DCKA inherits the convergent rate of
the CKA. The communication topology among the agents is assumed to be jointly-connected.
Every agent in the network communicates with its one-hop neighbors at least once during each
period of τ . The jointly-connected connectivity is applicable to failures of the links among the
agents and also the reduction of the communication cost. Different from the results given in [24],
we give convergence analysis for switching-network cases due to the link switching (maybe
resulting from link failure or active energy saving).

4 Experimental Results

In this section, examples are given to evaluate the performance of our consensus-based clus-
tering algorithms DCKA on both synthetic datasets and open dataset from [35]. The first
example is on synthetic dataset to illustrate the performance of our algorithm on switching
communication networks, and the results that DCKA gets are as well as the CKA. Compared
with the DKM algorithm proposed in [26], which can not adapt to the time-varying communi-
cation network, DCKA converges faster and need less communication cost. The second one is
on the open datasets to reveal that DCKA is less sensitive to the initialization compared with
CKA, and more likely to get better results.

Example 4.1 The example is on an synthetic dataset, wherein the clustering data corre-
spond to K = 9 different Gaussian distributions in a two-dimension space. The nine different
Gaussian distributions are assumed to have different means, which are denoted by w1 = (0, 0)T,
w2 = (0, 3)T, w3 = (0,−3)T, w4 = (3, 0)T, w5 = (−3, 0)T, w6 = (3,−3)T, w7 = (3, 3)T,
w8 = (−3, 3)T and w9 = (−3,−3)T, respectively, and they share the same covariance matrix
Σ = 0.64I2, where I2 is a two-dimension identity matrix. Suppose that there are five agents in
the network. Each agent i has access to a partial dataset Yi of size 900, with 100 data points
per Gaussian distribution which are all randomly generated.

The goal of each agent i is to find the same nine cluster centroids with a partial dataset
Yi. To measure the clustering performance of the proposed algorithms, the sum of squares of
distances (SSD) is defined as follows [cf. (4)]:

SSD = F (Y, CY ) =
N∑

i=1

mi∑

j=1

K∑

k=1

θj
i,k||yj

i − ci,k||2,

where CY = {ci,k} and Y = ∪5
i=1Yi. The initial cluster centriods ci,k(0), k = 1, 2 · · · , 9, for

agent i are randomly chosen from the partial dataset Yi.
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In DCKA, the communication topology of is assumed to be jointly-connected. The com-
munication topology is assumed to be Figure 1(b) at time s = 2n, and Figure 1(c) at time
s = 2n + 1, for n = 1, 2, · · · .

1

2

3

45
(a)

1

2

3

45
(b)

1

2

3

45
(c)

Figure 1 The topologies of the networks: (a) is connected; (b) with (c) is jointly-connected

First, we investigate the SSD of DCKA compared with CKA, and the results are pre-
sented in Figure 2. The SSDs are the same for both of the algorithms, which is 5028.54. Fig-
ure 3 displays the clustering results more visually, with centroids c1 = (0.0946, 0.0449)T, c2 =
(−0.0336, 3.0507)T, c3 = (−0.024,−3.0223)T, c4 = (2.9454,−0.0521)T, c5 = (−3.0908, 0.013)T,
c6 = (3.0551,−3.058)T, c7 = (3.0144, 3.0049)T, c8 = (−2.9562, 3.0391)T. The pentagonal ones
in Figure 3 are centroids obtained by CKA. The other ones represent the centroids obtained
by DCKA. Figure 3 illustrates that DCKA performs as well as CKA, in spite of switching
communication topology among the agents.

1 1.5 2 2.5 3 3.5 4 4.5 5
Iterations

5000
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7000
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D
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DCKA

Figure 2 The sum of squares of distances (SSDs) of CKA and DCKA
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Figure 3 The centroids obtained by different algorithms: Pentag-

onal ones are for CKA; the other ones for DCKA

Next, we investigate the consensus performance of the proposed algorithm DCKA. Figure 4
shows the performance x2

i,1(s, t) of each agent i for DCKA. We can see that x2
i,1(s, t) converges

fast to the value x2
1(0, t) =

∑ N
i=1 mi1(t)

N in consensus step, which the rate of convergence is, in
fact, exponential.
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Figure 4 The consensus of x2
i (t) for all i = 1, 2, · · · , N

The behavior of DCKA with different values of K should also be taken into consideration.
Figure 5 shows that DCKA performs as well as CKA in spite of different values of K.



DISTRIBUTED K-MEANS IN SWITCHING NETWORKS 1141

1 2 3 4 5 6 7 8
Iterations

0

0.5

1

1.5

2

2.5

3

3.5

4
SS
D

× 10 4

DCKA
CKA

K=11

K=9K=7K=5

Figure 5 The performance of distributed algorithms for different values of K

Since the clustering results of DCKA and CKA are both related to the choice of the initial
centroids, we simulated 100 Monte Carlo runs with different Ks in order to test the algorithms.
The results of which are shown in Table 1. From Table 1, we can see that both DCKA and
CKA share the same minimum SSD. However, DCKA outperforms CKA on the means and
the standard deviation of SSDs thanks to the diversity of initial centroids of DCKA. CKA has
to be initialized with K centroids randomly, while each agent is initialized with K centroids
in DCKA according to their partial datasets Yi, i = 1, 2, · · · , 5. Thus, DCKA can usually get
better results than CKA.

Table 1 Results about 100 Monte Carlo runs on different Ks

K
CKA DCKA

Min. Mean Std. Dev. Min. Mean Std. Dev.

5 12688.36 12902.44 89.75 12688.36 12835.69 75.32

7 8353.62 8518.41 101.65 8353.62 8476.12 77.07

9 5028.54 5156.54 130.14 5028.54 5121.97 110.18

11 4496.72 4544.88 21.84 4496.72 4534.21 19.39

Finally, we investigate the communication and computation consumption of DCKA com-
pared to the DKM algorithm proposed in [26]. With the communication topology chosen as
Figure 1(a), the DKM algorithm can also be applied to solve the clustering problem. The SSD
performance is shown in Figure 6, where K = 9 and the parameter in DKM is assumed to
be η = 10. In DKM, about 30 iterations are needed to complete the clustering task, which
converges slowly. The agents need to communicate with their neighbors about 30 times with
total communication consumption 210Nb. However, the communication cost of DCKA is only
about 150Nb, which is much lower than that of DKM. Still, agents of the DKM algorithm in
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the network process all the 4500 data points about 30 times, while agents of DCKA only need
to process the whole dataset about 5 times.

5 10 15 20 25 30
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9000
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13000

14000

SS
D

DKM
CKA

Figure 6 The performance of DKM, the communication topology

is assumed to be connected; K = 9, η = 10

Example 4.2 Here, we choose Birch1, Birch2, and Birch3 to be the experiment datasets.
Each of them consists of 100000 entities which are all two-dimension vectors, and the true
cluster numbers are all K = 100. Consider a 20-agent network. Each agent can get 5000 data
points randomly to form its own partial dataset Yi, while CKA is taken on the entire dataset
Y = {Yi}N

i=1.
In DCKA, the time-varying communication topology of the agents is assumed to be jointly-

connected. At time s = 3n, s = 3n + 1 and s = 3n + 2, n = 1, 2, · · · the topologies are given in
Figure 7(b), Figure 7(c), and Figure 7(d), respectively, and Figure 7(a) is the union of them.
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Figure 7 The topologies of the networks, which consists of 20 agents
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We simulated 60 Monte Carlo runs with different Ks in order to test the SSD performance
of the two algorithms on these datasets, the results of which are shown in Table 2, Table 3,
and Table 4, respectively. Among all three datasets, DCKA outperforms CKA on the means
and the standard deviation of SSD, and CKA only outperforms DCKA on the minimum of
SSD on Birch3, when K = 80 and 100. The results reveal that DCKA is less sensitive to the
initialization compared with CKA, and can usually get good results.

Table 2 Results about 60 Monte Carlo runs on Birch1 (×1013)

K
CKA DCKA

Min. Mean Std. Dev. Min. Mean Std. Dev.

60 22.608 22.995 0.114 22.608 22.842 0.118

80 15.091 15.376 0.202 15.091 15.339 0.155

100 9.696 10.425 0.363 9.672 10.354 0.306

Table 3 Results about 60 Monte Carlo runs on Birch2 (×1011)

K
CKA DCKA

Min. Mean Std. Dev. Min. Mean Std. Dev.

60 34.206 44.336 2.242 30.195 31.615 0.926

80 16.348 17.777 0.927 15.434 16.091 0.365

100 6.332 8.607 1.086 4.718 6.275 0.653

Table 4 Results about 60 Monte Carlo runs on Birch3 (×1013)

K
CKA DCKA

Min. Mean Std. Dev. Min. Mean Std. Dev.

60 7.068 7.907 0.366 7.068 7.761 0.251

80 4.945 5.271 0.188 4.955 5.061 0.184

100 3.875 4.071 0.124 3.876 4.058 0.105

5 Conclusion

In this paper, we discussed the K-means clustering of a multi-agent network and provide
a fully distributed algorithm for the cases with data stored in different agents or unavailable
to all agents. We proposed a double-clock consensus-based algorithm DCKA to solve the
clustering problem by making agents achieve consensus without the global information over a
jointly-connected topology. Moreover, we gave the convergence analysis for the algorithm, and
also provided examples by using various real clustering datasets in order to demonstrate the
effectiveness of the proposed distributed algorithm.
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