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Abstract This paper investigates the stability of (switched) polynomial systems. Using semi-tensor
product of matrices, the paper develops two tools for testing the stability of a (switched) polynomial
system. One is to convert a product of multi-variable polynomials into a canonical form, and the other
is an easily verifiable sufficient condition to justify whether a multi-variable polynomial is positive
definite. Using these two tools, the authors construct a polynomial function as a candidate Lyapunov
function and via testing its derivative the authors provide some sufficient conditions for the global
stability of polynomial systems.

Key words Global asymptotical stability, semi-tensor product, switched polynomial systems.

1 Introduction

Stability is a long standing and challenging topic for investigating nonlinear (control) sys-
tems. Lyapunov function is a fundamental tool for studying stability and stabilization of
(control) systems. The stability of polynomial systems has been attracting special research
interest(' 4. It is because not only this kind of systems are practically important, but also con-
structing Lyapunov functions for them is relatively easier. For instance, Roser®! constructed
a homogeneous Lyapunov function for homogeneous system under the hypothesis that zero is
locally asymptotically stable. M’Closkey and Murray!?) considered the problem of exponen-
tial stabilization of controllable, driftless systems using time-varying, homogeneous feedback.
Grun® showed that for any asymptotically controllable homogeneous system in Euclidian space,
there exists a homogeneous control Lyapunov function and a homogeneous, possibly discontin-
uous state feedback law stabilizing the corresponding sampled closed loop system. The Kro-
necker product is used for non-quadratic stability analysis and sufficient conditions for global
asymptotic stability of polynomial systems are obtained in terms of LMI feasibility tests for
the existence of homogeneous Lyapunov functions of even degreel!l. But in these investigations
the homogeneity plays an important role. For instance, in [3-5] the system considered is homo-
geneous; in [1, 3] the Lyapunov function is homogeneous; in [2] the feedback is homogeneous;
in [6] the derivative is homogeneous, etc. Obviously, homogeneity brings restriction and/or
conservative to the application of the methods presented above.
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STABILITY OF SWITCHED POLYNOMIAL SYSTEMS 363

In this paper the polynomial systems considered are not assumed to be homogeneous. We
first develop some results for homogeneous case and then extend them to non-homogeneous
case.

The paper is organized as follows. Section 2 gives a brief review for semi-tensor product
of matrixes. Converting polynomials and their derivatives into canonical forms is discussed in
Section 3. Section 4 provides an easily verifiable sufficient condition for testing the positivity
of homogeneous polynomials. Section 5 discusses the global stability of vector fields via two
Lyapunov functions. In Section 6 some sufficient conditions are obtained for the stability of
polynomial systems. Section 7 contains some concluding remarks.

2 Semi-Tensor Product

This section is a brief review on semi-tensor product of matrices, which plays a fundamental
role in the following discussion. We restrict it to the definitions and some basic properties, which
are useful in the sequel. In addition, only left semi-tensor product for multiple-dimension case
is involved in the paper. We refer to [7—8] for right semi-tensor product, general dimension case,
and many details. Through out this paper “semi-tensor product” means the left semi-tensor
product.

Definition 2.1 1) Let X be a row vector of dimension np, and Y be a column vector with
dimension p. Then, we split X into p equal-size blocks as X', X2 ... XP, which are 1 x n
rows. Define the STP, denoted by x, as

p
XxY:}ZW%ewz
=y . (1)
YT XT =3 (X" e R™.
=1

2) Let A € My« and B € My, If either n is a factor of p, say nt = p and denote it as
A <; B, or p is a factor of n, say n = pt and denote it as A >; B, then we define the STP of A
and B, denoted by C = A x B, as the following: C consists of m x ¢ blocks as C' = (C%¥) and
each block is
CY"=A"xB;, i=1,2---,m, j=12--,q,

where A° is i-th row of A and B; is the j-th column of B.

Remark 2.2 Note that when n = p the STP coincides with the conventional matrix prod-
uct. Therefore, the STP is only a generalization of the conventional product. For convenience,
we may omit the product symbol x.

Some fundamental properties of the STP are collected in the following.

Proposition 2.3 The STP satisfies (as long as the related products are well-defined)

1) (Distributive rule)

Ax (aB+pBC)=aAx B+ pBAXC,
(aB+pC)x A=aBx A+ pCx A, «,f€R.

2) (Associative rule)

Ax (Bx(C)=(Ax B)x C,

_ (3)
(BxC)x A=Bx (Cx A).
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364 ZHIQIANG LI et al.

Proposition 2.4 Let A € Myyq and B € My,xn. If ¢ = km, then
Ax B=A(B®I). (4)
If kq = m, then
Ax B=(A®I;)B. (5)

Proposition 2.5 1) Assume A and B are of proper dimensions such that A x B is
well-defined, then

(Ax B)T =BT x AT; (6)
2) In addition, assume both A and B are invertible, then
(Ax B ' =B7'x A% (7)

Proposition 2.6 Assume A € M, «xn is given.
1) Let Z € R" be a row vector, then

AX Z=7Zx(I; ® A); (8)
2) Let Z € R" be a column vector, then
ZxA=(T, @A) x Z. 9)

For notational ease, hereafter we omit the symbol x.

3 Polynomials and Their Derivatives

In this section, we show how to convert a polynomial and its derivative along a trajectory
of polynomial system into normal form. Note that when £ € R™ is a column or a row vector,
ExEx - x € is well-defined. We denote it briefly as
|

k
Fi=ExEx-xE.
k

Now let @ = (w1,22, - ,2,)T € R". Then 2% is well-defined. Using it, a k-th degree
polynomial Py (x) can be expressed as

Py.(z) = Ex*, (10)

where E is a row of dimension n*. Note that such E is not unique.
Let P(z) be a polynomial with lowest degree k and highest degree k + s. Then, it can be
expressed as

P(z) = Exa® + Ejra™ + - + Bzt (1)

We call (11) the canonical form of a polynomial. Similarly, a polynomial system can be expressed
as

T = f(x) = Fozb + Fk+1xk+1 NI Fk+s$k+s, (12)
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STABILITY OF SWITCHED POLYNOMIAL SYSTEMS 365

where F;, i =k, k+1,--- ,k+ s, are n x n’ matrices.

Next we consider the derivative of a polynomial. For this purpose we need the swap ma-
trix, which is also called the permutation matrix and is defined implicitly by Magnus and
Neudecker!®). Many properties can be found in [7-8]. The swap matrix Wim,n) 18 an mnxmn ma-
trix constructed in the following way: label its columns by (11,12,--- /1n,--- ,ml,m2,--- ;mn)
and its rows by (11,21,--- ,m1,--- ,1n,2n,--- ;mn). Then, its element in the position ((I,J),
(,7)) is assigned as

1, I=diandJ =3
o s , ) 13
W(1.J),(i5) 1] {07 otherwise. "

When m = n we simply denote Wi, ,,; by Wiy,.
Let A € My, xn, i.e., A is an m X n matrix. Denote by V,.(A) the row stacking form of A,

that is,
Vr(A) = (au 12 Qip " Qml1 Am2 ° amn)T;

and by V.(A) the column stacking form of A, that is,

‘/c(A) = (all 12" Qm1 " Alp A2n " a/mn)T~

The following “swap” property shows the meaning of the name.
Proposition 3.1 1) Let X € R™ and Y € R™ be two columns, then

Wimnm X X XY =Y XX, Wyp,mxY xX=XxY. (14)
2) Let A € Myyxn, then
WimnVe(A) = Ve(A), Wi Ve(4) = Vi (4). (15)
Proposition 3.2 Let A € My,xy, and B € Mpy,, then
Wil = Wi = Winm)- (16)

Using swap matrix, we can prove that
Proposition 3.3 If X ¢ R?, YT € R™, then

XY =Y X Wiy ¥ X. (17)

Now we consider how to calculate the differential form of a polynomial. We construct an
nFtt x nktl matrix @, as

k

D= Ine @ Wigies ). (18)
s=0

Then, we have the following differential form of X*, which is fundamental in later approach.
Proposition 3.4

D(XFH) = @, x X*, (19)
Now let
J+t

Vix) = Z E;2?
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be a candidate of Lyapunov function. We calculate its derivative with respect to system (13)
as

' g+t ‘ k+s
Vias) = (Z E; @ilx’_l) ( Z Fax“>
i=j a=k
= (B; ®j1277") Fra® (20)
+ (Ej+1 @jijka:k + Ej @jfle_leJrlkarl)
R Ej+t ¢j+t711’j+t_1Fk+s$k+s.
Using Proposition 2.6, we can express the derivative into canonical form as
Vlag) = Bj®j—1(Lni- © F)alth!
+ (Ej11 91 @ Fr) + Ej @5 1 (Iyi-1 @ Fryr)) 2l tF
4.4 Ej+t ¢j+t—1(Inﬁ'+t*1 ® Fk+s)l‘j+t+k+s_1

— j+k—1 +k j+t+k+s—1
= Djp1@? T 4 D pad T o Dy @ TS

4 Positivity of Homogeneous Polynomials

In this section we consider when a homogeneous polynomial is positive definite. In general,
this is a very hard open problem. We give an easily verifiable sufficient condition. The argument
is based on the following lemma.

Lemma 4.106 Let S e 77 and x € R™. Then, we have the following inequality:

n
HESY %\W', (22)
j=1

where 5 =T, (z:)%, and |S| = Y1, si.
Sometimes we need a modification. Assume X; > 0 and [[\_, A" = 1. Then, replacing z;
by A\;jz;, we have a modification of (22) as

1z5] < ZEZ'AL a1, (23)
j=1

To use this lemma for a k-th homogeneous polynomial of z € R™, we must know the powers of

x; in each component of z¥. Since z* has n¥ components, for each z;, we use an n* dimensional

vector, denoted by V!, to represent the powers of z; in each component of zk.
Example 4.2 Let x € R?, then,
4 _ (4 .3 2 2,2 2 2 3
Tr = (1‘1,.731$2,331I2$1,331.732,,1311‘2581,1‘1332.7311‘2,331562331,xll‘g,
3 2 2 2.2 .2 3 4
$2$17$2$1$2,$2$1$21’17CL’2$1(E2,.’E2$1,$21'1$2,£C2.’E17x2).
Hence,
1 T
V4 = [4’3737273’2’2717372’2’1727]‘7 ]"O] )

and
VE=100,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4]".
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STABILITY OF SWITCHED POLYNOMIAL SYSTEMS 367

Next, we consider the general form of V}.
Lemma 4.3 Let x € R™. Then the powers of x; in each components of x*, expressed by
Vi, are

Vki = (1n)k_151n + (1n)k_251n1n +oeeet 171517‘1(171)]6_2 + 5?(171),6_17 (24)
where 1, = (1,1,--- ,1)T, 87 is the i-th column of I,,.
——

n
Proof First, we prove a recursive form as follows:

Vli =07
(25)

Vsi+1 = 171‘/51 + 67:‘”1715*1, s> 1.

Since 2! = (w1, 72, -+ ,x,) ", z; appears only on its i-th component with power 1, so V; = 6.
Now assume V' is known, it is a vector of dimension n®. We may get V' ; from V through
the following two steps: First, repeating it n times to get an n**! vector. This is produced by
multiplying z* with 21,29, , 2, respectively. It is represented by 1, V. Next, the i-th n®
dimensional block of 251! is obtained by multiplying 2* with x;. Hence, in this block the power
of z; must be raised by 1. This is performed by 6'1,,. Combining these two steps yields (25).

Using (25) repetitively, we can prove (24) easily. |

In ¥, the terms of highest degree of x;, i.e., z¥, are particularly important. When k = 2,
they are called the diagonal elements, because in quadratic form zTQz, they correspond to
diagonal elements of Q. It is well known that for quadratic form we have so-called diagonal
dominating principle (DDP), that is, 27Qx is positive definite if the diagonal elements are
dominating, i.e.,

J#i

For k > 2, we still call z¥ diagonal elements. The DDP has been extended to general case
when k > 2 is evenl®. In the following we give a matrix expression of the cross row diagonal
dominating principle (CRDDP) and DDP proposed by Chenglf! for general case.

First, we want to figure out the positions of diagonal elements in z*. It is easy to prove the
following lemma.

Lemma 4.4 Let x € R™. The position of diagonal element z¥ in x*

is on d;-th, where

nkF—1

di=(i—1)

+1, i=12,---n. (27)

For instance, assume x € R* and k = 2. Using (27), we have d; = 1, dy = 6, d3 = 11, and
ds = 16. It is easy to verify this from Example 4.2.

For convenience, we define the position set of diagonal elements as D = {d;|i = 1,2,--- ,n},
where d; is the position of z¥ in x*.

Note that if an even degree homogeneous polynomial P(z) = Fx* is positive definite, then
its diagonal elements xf must have positive coefficients, that is,

Fy, >0, i=1,2,---,n.
Using Lemmas 4.1, 4.3, and 4.4, we have the following result.
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Theorem 4.5 Let k be even, and P(x) = Fa* be a k-th homogeneous polynomial with

e R™. _
1) Assume Fyq, >0,1=1,2,--- ,n. Define F by
ﬁ» _ 0, 1€ Dg,
’ |F;|, otherwise.
If

1~
Fa > 2FVi, i=12n,

then P(x) is positive definite.
2) Assume Fy, <0,i=1,2,--- ,n. Define F by

~ 0 i € DF
s ) (S .
|F;|, otherwise.

If
1~ .
_Fd1>EFVk17 Z:1727"'7na

then P(x) is negative definite.

(29)

(30)

(31)

Proof  Using (22) to each term of P(x), one sees that for each component ok of 2, its

v

coefficient is -&. Keeping diagonal elements x¥ i =1,2,---  n, unchanged, and enlarging the
absolute values of other terms by (22), it is easy to check that (29) assures the positivity. The

argument for negativity is similar.
We give some examples to describe this.
Example 4.6 1) Consider polynomial

P(x) = 2} — 2322 4 1.5xy25 + 223
Express P(z) = Fx*, then,
F =11,0,0,—1,0,0,0,1.5,0,0,0,0,0,0,0, 2.
Using (28), F is constructed as
F =10,0,0,1,0,0,0,1.5,0,0,0,0,0,0,0,0].
It is easy to calculate that
Vi =135 + 13315 + 15313 + 313
=[4,3,3,2,3,2,2,1,3,2,2,1,2,1,1,0]"

and )
V2 =132 +1221, + 1,212 + 213

=10,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4]*.
Note that Fy, =1 and Fy, = 2. Checking (29), we have
Fy, — 1
@Springer
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STABILITY OF SWITCHED POLYNOMIAL SYSTEMS 369

Thus, P(z) > 0, that is, P(z) is positive definite.
2) Consider
Q(z) = ] + 62222 + 1.5z, 25 + 2175,

Express Q(x) = Hx*, then,
H=11,0,0,6,0,0,0,1.5,0,0,0,0,0,0,0,2].

Construct H as

H =10,0,0,6,0,0,0,1.5,0,0,0,0,0,0,0,0].
Checking (29), we have

mh—?ﬂﬁz—%<q H&-imﬁ:-%<o
We can conclude nothing.

Comparing P(z) with Q(x), it is easy to see that Q(xz) > P(x). Therefore, for Q(z) the
inequality (29) is not sharp enough. The problem is that we don’t need to enlarge positive
semi-definite term 62222 in Q(x). We can simply ignore it.

To find positive semi-definite terms, we construct the following matrix:

Vi = [Vlclavlc27"' 7VIJL}'

Then, the (i, j)-th element of Vj is the power of x; in the i-th component of z*. For instance,
in Example 4.6, we have

4332322132212110

Vit = .
0112122312232334

4

If the elements in i-th row of Vj are all even, then the i-th term of P(x) = Fz* has all even
powers. We call such terms the even power terms. Now, if the corresponding coefficient F; of
F' is positive, i.e., F; > 0, then in estimating the inequality such terms can be omitted. We,
therefore, have the following corollary.

Corollary 4.7 In Theorem 4.5 the positivity of P(x) remains true when (28) is replaced

by
E _ 0, even te1'ﬂm with F; > 0, (32)
|E;|,  otherwise.
Similarly, the negativity of P(x) remains true when (30) is replaced by
E _ 0, even te1'"m with F; <0, (33)
|Fi|,  otherwise.
5 Global Stability via Two Lyapunov Functions
Consider a dynamic system
&= f(zx), zeR", (34)
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where f(z) is a smooth vector field.

First, we define a kind of stability, called U stability.

Definition 5.1 Let U be a neighborhood of the origin. System (34) is said to be U-stable,
if it is Lyapunov stable and for any zy € R™,

tlim d(z(xo,t),U) =0,

where x(z0,t) is the solution to (34) with initial point 2y and d is the distance.

The following result is obvious.

Proposition 5.2 Consider system (34).

1) Assume there is a positive definite radially unbounded function Vi(x) > 0. U = {z|Vi(z) <
a}, for some o > 0, is a neighborhood of the origin. If

V1|(34) < 07 HAES UC7

then, system (34) is U-stable.
2) Assume there is a positive definite function Va(x) > 0. W = {z|Va(x) < B}, for some
B > 0, is a neighborhood of the origin. If

Valzay <0, 0#z €W,

then, (34) is asymptotically stable at the origin, and W is a region of attraction.
3) If there are Vi(z) and Va(x), which are the same as in the items 1 and 2, respectively.
Moreover, assume U C W, then, system (34) is globally asymptotically stable.

6 Stability of Polynomial Systems

Consider a polynomial

k+1 4 +s-

P(z) := pra® + priax R e

We define its lowest degree terms and highest degree terms by

Lp(z) = pkflfk, Hp(l’) = pk+sxk+s.
Similarly, for a polynomial vector field f(z) the lowest and highest terms form two homogeneous
vector fields, denoted by Ly(z) and H¢(x), respectively.

The following result is obvious.

Lemma 6.1 Assume a polynomial P(x) is positive definite, then the two polynomials Lp(x)
and Hp(x) are positive semi-definite.

Based on this lemma, we assume

Assumption 1 System (13) is an odd-ended system, i.e., both deg(Ls(x)) and deg(Hy(z))
are odd. Then, we can express (13) as

i = f(z) = Faip12®™ + Foion®2 4o 4 Py jyqa?H) T
= Ly(x) + foiva + fairsz + -+ foigs) + Hp (),

where fi, = Fpa®, k=2i +1,2i +2,--- ,2(i +j) + 1.
Now assume we can find two positive definite homogeneous polynomials V;(z) > 0 and
Va(z) > 0 with deg(V1(z)) = 2p and deg(Va(x)) = 2g. Moreover,

(35)

Vil o) <0, 2#0 and Vh|p,@) <0, z#0.
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Next, we define a cub, C, as
C:= {xeRn | |'fL"L| Sria Z:1727 7n}7

where r; > 0. We want to estimate V1|f(w) for z € C° and Vg|f(gc) for z € C. To use the result
for the positivity (equivalently, negativity) of homogeneous polynomials, we want to convert
them into homogeneous forms. We provide two algorithms for this purpose.

Algorithm 6.2

1) Calculate

Vilfy(a) = Zopsr—12”PTFL (36)

where k =2i+1,2i +2,--- ,2(i + j).
2) Remove negative semi-definite terms:

Dy () = Zopy 2P HH1 (37)

where k =2i+1,2i 4+ 2,---,2(i + j) and the components of ng+k_1 are defined as

)
i
|22

i _ {0 even power term with 23 ., | <0,
2p+k—1 .
, otherwise.

p+k—1
3) Enlarge it to homogeneous case:

|y |2EFD=RHL g |, |20HI) - R

> 1 (
Hk(.’L') = Zo +k,1|$‘2p+k 1 — 38
! max {rf(lﬂ)*kﬂb =1,2,--- ,n} (38)
where x € C°, k=2i+1,2i+2,--- ,2(i + j).
Using Algorithm 6.2, we can define an estimation as
) 2(i+7)
Ei(z) = Vil + », Hil(x). (39)
k=2i+1
From the constructing of the algorithm, it is easy to see the following lemma.
Lemma 6.3
Vilfe) < Br(z), =z € C“ (40)

Since F; is a homogeneous function, it is easy to use previous methods to check its negativity.
Next, we check the negativity of V2| Frl@)-

Algorithm 6.4

1) Calculate

Valfi() = Zaqer—12®™h 70 k=20 42,2043, ,2(i +5) + 1. (41)
2) Remove negative semi-definite terms:
Dk(!L‘) = 22q+k,1$2q+k_1, (42)

where k =2i+2,2i4+3,--- ,2(i+ j) + 1, and the components of qu+k_1 are defined as
@ Springer
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i = 0, even power term with Z3 , ; <0,
2g+k—1 — i ;
| Ziyik1|,  otherwise.

3) Enlarge it to homogeneous case:
o 1 7 1 —1-2i 2q+2i —1-2¢ 2q+2i
Ly(x) := 2q+k_1Z2q+k—1 [V2q+k717"1 |z |25 4+ V27]+k7171n | z} , (43)

where k =2i+2,2i4+3,--- ,2(i+j) + 1.
Using Algorithm 6.4, we can define an estimation as

2(i+j)+1

By(z):=Valp,m+ Y Li(@). (44)
k=2(i+1)

From the algorithm it is easy to see the following lemma.
Lemma 6.5

Valt@y < Ea(z), z€C. (45)

Since Fy is a homogeneous function, it is easy to use the tool developed in Section 4 to
check its negativity.

Summarizing the above arguments, we have

Theorem 6.6 Consider system (35). Assume that there exist homogeneous Vi(x) > 0,
Va(z) > 0, and an invariant cub C, such that

Ei(z) <0, xecC°

(46)
Ey(x) <0, 0#zeC.

Then, the system is globally asymptotically stable.
Consider a switched polynomial system

T = fo’(t)(x)a (47)

where o(t) : [0,00) — A = {1,2,---,N} is a switching signal, f), A € A, are odd-ended
polynomial vector fields.

Using Theorem 6.6, we have

Theorem 6.7  Consider system (47). Assume that there exist homogeneous Vi(x) > 0,
Va(x) > 0, and an invariant cub C, such that for the i-th switching mode,

FEi(z) <0, z€C°,

) (48)
Ei(x) <0, 0#zeC.
Then, the system is globally asymptotically stable under arbitrary switches.
7 An Illustrative Example
Example 7.1 Consider the following polynomial system:
3:51 = —fz1 427 + 23 — agx“f, (49)
To = —fxa + 2x122 — 3.
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We can express the polynomial system (49) as
T =Aix+ A2x2 + Agl‘s, (50)

where

[-B 0 1001 [-a 000000 0
Al_[og’ A2=10110" =10 000000-al
2

r = ($17x2)T7 T = ($%a$1$27$2$1a$3)Ta

3_ (3.2 2 2 2 3\T
x° = (a7, xTa, T1T2X1, T1T5, ToLT, T2T1 L2, T5T1, TH)

Denote f; := Aiz, fo := As2?, f3 := Asz>, and choose candidate Lyapunov functions

Vi) = 2(od b ad), Vale) = 5(0F +a3). (51)

It is obvious that V;(x) and Va(z) are two positive definite homogenous polynomials. More-
over, _
Vilfy(e) = —a(2f +28) <0, z#0, a>0,

Volfr ey = —B(xi+a3) <0, x#0, 3>0.
Next, we define a cub C' as
C:={xc Rz <1, i=1,2}

Now, using Algorithm 6.2, the estimation E(x) can be obtained.
First, we have

‘./i‘fl(ﬂé) = *ﬂ(xéll + I%) = le4a

. (52)
Vilfa@) = 23 (21 + 2) + 20125 = Zoa®,
where
Z, =[-p4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,—5],
Z» =1[1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0] (53)
Removing the negative semi-definite terms, we get
Di(z) = Zya*, Do) = Zoa® = Zoab, (54)

where
Zl =0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0],
Zy = [1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0].
Thus, Hy(z) = 0. Then, we enlarge Ds(x) to Ha(z), where
H(x) = Zalal*(Ja1] + |a)
= 2§ + 2}23 + 22228 + |21 P|2e| + |71 3|72 + 2] 21| |22)°

=[1,1,0,1,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 2,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]|z[5.  (55)
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It is easy to see that
Dg(ﬂ?) < HQ(J})

Define
E(x): = Vi|fy) + Hi(z) + Ha(2) = Vi|f,(2) + Ha(2)
= —a(af + 29) + 2 + zix3 + 20725 + |21 [P|w2] 4 |21 |22]? + 2]z [|22]°
= Elz[°,
where

E=[1-a,1,0,1,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, —a].

Now we check its negativity. From (57),
Ed1 =1- a, Ed2 = —qQ.
Choose a > 4, from Lemma 4.3, then we have

Vi =1[6,5,5,4,5,4,4,3,5,4,4,3,4,3,3,2,5,4,4,3,4,3,3,2,4,3,3,2,3,2,2, 1,
5,4,4,3,4,3,3,2,4,3,3,2,3,2,2,1,4,3,3,2,3,2,2,1,3,2,2,1,2,1,1,0]T,
V2 =100,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,
1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6]T,
E =10,1,0,1,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 2,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0]

Thus, we can get the following inequalities:
L=
Eq, +6EV6 =l-a+3<0,
L= o
Eq, —l—éEVG =—a+4<0.

Using Theorem 4.5, E(z) is negative definite.
Next, using Algorithm 6.4, we get the estimation of F(x),

VZ‘fa(:c) = —a(x] + 23) = Zsa?,
Vz\h(z) = x1(2? + 23) + 23123 = Zoa3,
where

ZS = [_Oé, 07 Oa 07 0; 07 07 Oa 07 0; 07 07 Oa 07 07 —O[],
Z, =[1,0,0,3,0,0,0,0].

Removing the negative semi-definite terms, we get

Dg(.’lt) = 23%4, DQ(Z) = 221‘3 = 22333,
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where

23 = [07 07 O’ 07 07 07 07 0’ 07 07 07 07 07 07 07 0]7
Zy=11,0,0,3,0,0,0,0].
Thus, L3(x) = 0. Similarly, we enlarge Ds(x) to La(x),
1~
La(e) = 3 2a(V Vi) a? + )
1~
~ L 7viat viad
= 227 + 223, (62)
where V3 = [3,2,2,1,2,1,1,0T, V2 =[0,1,1,2,1,2,2,3]".
Then, we have
Dy(x) < Lo(z), z€C.

Define an estimation as
F(z): = ‘6|fl(m) + La(x) + L3(x)
= "/2|f1(z) + Lo(2)
—B(a] +23) + 2uf + 223
(2= B)at + (2 B)a3. (63)

When (> 2, F(x) is negative.

Using Theorem 6.6, we conclude that system (49) is globally asymptotically stable when
a>4, 6>2.

Particularly, choosing oo = 5, § = 10, we get a trajectory in Figure 1.

Remark 7.2 We may have an alternative way to enlarge Da(z) to La(x) as

Dg (.7,‘) = ZQ.Z‘B
= 2% + 3z123
<|z1|? + 3|z2|? := La(x), =z € C. (64)
Based on Example 7.1, we can provide an illustrative example for switched polynomial
system.
Example 7.3 Consider a switched polynomial system

z = o (t) (l‘), (65)

where o(t) : [0,00) — A = {1,2} is a switching signal, g, A = 1,2, are odd-ended polynomial
vector fields. The subsystems are, respectively,

i =gi(x) = Atz + Ax? + Al (66)
&= go(x) = Alw + Ala? + A2a3. (67)
where
i _|=Bi 0 ; _[too01 i [-2;000000 0
Al_[O —Bi|’ Ay = 0110}’ Az = 0 000000 —ay| (68)
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Figure 1 The trajectory of Example 7.1 when o = 5,3 = 10, and x(0)=[5,4].
(a) trajectory in interval [0, 1]; (b) trajectory in interval [0, 0.05].

and a; >4, §; >2,i=1,2.
From Example 7.1 we know that, using two candidate Lyapunov functions (51), subsystems
(66) and (67) are all globally asymptotically stable. In addition, the conditions in Theorem 6.7

are all satisfied. We conclude that the switched system (65) is globally asymptotically stable
under arbitrary switches.

8 Conclusion

The stability problem of (switched) polynomial systems was investigated in this paper.
The main results of this paper are the following. First, the semi-tensor product was used
to convert multi-variable polynomials into canonical forms. As a generalization, the product
of two polynomials can also be converted into the canonical form. Second, some sufficient
conditions were obtained for verifying the positivity of homogenous polynomials by using semi-
tensor product. Using them, a new method, called the two Lyapunov function approach, was
proposed to justify the global stability of polynomial systems, which are not assumed to be
homogeneous but only odd-ended. The method proposed is also applicable to the stability of
odd-ended switched polynomial systems.
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