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Abstract Semi-tensor product of matrices is a generalization of conventional matrix product for

the case when the two factor matrices do not meet the dimension matching condition. It was firstly

proposed about ten years ago. Since then it has been developed and applied to several different fields.

In this paper we will first give a brief introduction. Then give a survey on its applications to dynamic

systems, to logic, to differential geometry, to abstract algebra, respectively.
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1 Introduction

Consider two matrices A ∈ Mm×n and B ∈ Mp×q. For statement ease, when n = p, A and
B are said to satisfy matching dimension condition, as n is a factor of p or p is a factor of n, they
are said to satisfy factor dimension condition, otherwise, they have general dimensions. From
Linear Algebra, it is well known that as A and B have matching dimension, the conventional
matrix product AB is well defined. Otherwise, it is not defined. Of course, we have some other
matrix products, such as Kronecker product, which can be used for two matrices with arbitrary
dimensions[1]; Hadamard product for two matrices with the same sides[2]. But they are different
products, which have nothing to do with the conventional product.

Now we are facing two basic questions: 1) Is it possible to extend the conventional matrix
product to more general cases, say, factor dimension case or even general dimension case? 2) Is
it necessary to extend it? The second question is the same as: Is the extended product useful?
The purpose of this paper is to answer these two questions.

The answer to the first question is positive. We defined the semi-tensor product (STP) of
matrices for both factor dimension case and general dimension case. In matching dimension
case, them coincide with conventional one. For the second question, we found many applications
of the semi-tensor product. But so far, all of them are of factor dimension case. So, we should
say that we didn’t find a meaningful application for general dimension case.

The paper is organized as follows. Section 2 gives a brief introduction to semi-tensor product
of matrices. Section 3 gives some simple motivating examples.
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2 Semi-Tensor Product

This section is a brief review on semi-tensor product of matrices. It plays a fundamental
rule in the following discussion. We restrict it to the definitions and some basic properties,
which are useful in the sequel. In addition, only left semi-tensor product for factor dimension
case is discussed in the paper. We refer to [3,4] for right semi-tensor product, general dimension
case and much more details.

Definition 2.1 1) Let X be a row vector of dimension np, and Y be a column vector
with dimension p. Then we split X into p equal-size blocks as X1, X2, · · · , Xp, which are 1×n
rows. Define the left STP, denoted by �, as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

X � Y =
p∑

i=1

X iyi ∈ R
n,

Y T
� XT =

p∑
i=1

yi(X i)T ∈ R
n.

(1)

2) Let A ∈ Mm×n and B ∈ Mp×q. If either n is a factor of p, say nt = p and denote it as
A ≺t B, or p is a factor of n, say n = pt and denote it as A �t B, then we define the left STP
of A and B, denoted by C = A � B, as the following: C consists of m × q blocks as C = (Cij)
and each block is

Cij = Ai
� Bj , i = 1, 2, · · · , m, j = 1, 2, · · · , q,

where Ai is i-th row of A and Bj is the j-th column of B.
We use some simple numerical examples to describe it.

Example 2.2 1) Let X =
[
1 2 3 −1

]
and Y =

[
1
2

]
. Then

X � Y =
[
1 2

] · 1 +
[
3 −1

] · 2 =
[
7 0

]
.

2) Let

A =

⎡⎣1 2 1 1
2 3 1 2
3 2 1 0

⎤⎦ , B =
[
1 −2
2 −1

]
.

Then

A � B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(
1 2 1 1

)(1
2

) (
1 2 1 1

)(−2
−1

)
(
2 3 1 2

)(1
2

) (
2 3 1 2

)(−2
−1

)
(
3 2 1 0

)(1
2

) (
3 2 1 0

)(−2
−1

)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎣3 4 −3 −5
4 7 −5 −8
5 2 −7 −4

⎤⎦ .

Remark Note that when n = p the left STP coincides with the conventional matrix
product. Therefore, the left STP is only a generalization of the conventional product. For
convenience, we may omit the product symbol �.

Some fundamental properties of the left STP are collected in the following:
Proposition 2.3 The left STP satisfies (as long as the related products are well defined)
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1) (Distributive rule)

A � (αB + βC) = αA � B + βA � C,

(αB + βC) � A = αB � A + βC � A, α, β ∈ R;
(2)

2) (Associative rule)

A � (B � C) = (A � B) � C,

(B � C) � A = B � (C � A).
(3)

Proposition 2.4 Let A ∈ Mp×q and B ∈ Mm×n. If q = km, then

A � B = A(B ⊗ Ik); (4)

If kq = m, then

A � B = (A ⊗ Ik)B. (5)

Proposition 2.5 1) Assume A and B are of proper dimensions such that A � B is well
defined. Then

(A � B)T = BT
� AT. (6)

2) In addition, assume both A and B are invertible, then

(A � B)−1 = B−1
� A−1. (7)

Proposition 2.6 Assume A ∈ Mm×n is given.
1) Let Z ∈ R

t be a row vector. Then

A � Z = Z � (It ⊗ A); (8)

2) Let Z ∈ R
t be a column vector. Then

Z � A = (It ⊗ A) � Z. (9)

Note that when ξ ∈ R
n is a column or a row, then ξ � · · · � ξ︸ ︷︷ ︸

k

is well defined. We denote it

briefly as
ξk := ξ � · · · � ξ︸ ︷︷ ︸

k

.

In general, let A ∈ Mm×n and assume either m is a factor of n or n is a factor of m. Then

Ak := A � · · · � A︸ ︷︷ ︸
k

is well defined.
Next, we define the swap matrix, which is also called the permutation matrix and is defined

implicitly in [5]. Many properties can be found in [3,4]. The swap matrix, W[m,n] is an mn ×
mn matrix constructed in the following way: label by (11, 12, · · · , 1n, · · · , m1, m2, · · · , mn) its
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columns and by (11, 21, · · · , m1, · · · , 1n, 2n, · · · , mn) its rows. Then its element in the position
((I, J), (i, j)) is assigned as

w(IJ),(ij) = δI,J
i,j =

{
1, I = i and J = j,

0, otherwise.
(10)

When m = n we simply denote by W[n] for W[n,n].
Example 2.7 Let m = 2 and n = 3, the swap matrix W[2,3] is constructed as

(11) (12) (13) (21) (22) (23)

W[2,3] =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
(11)
(21)
(12)
(22)
(13)
(23)

.

Let A ∈ Mm×n, i.e., A is an m × n matrix. Denote by Vr(A) the row stacking form of A,
that is,

Vr(A) = (a11 · · · a1n · · · am1 · · · amn)T,

and by Vc(A) the column stacking form of A, that is,

Vc(A) = (a11 · · ·am1 · · · a1n · · · amn)T.

The following “swap” property shows the meaning of the name.
Proposition 2.8 1) Let X ∈ R

m and Y ∈ R
n be two columns. Then

W[m,n] � X � Y = Y � X, W[n,m] � Y � X = X � Y. (11)

2) Let A ∈ Mm×n. Then

W[m,n]Vr(A) = Vc(A), W[n,m]Vc(A) = Vr(A). (12)

3) Let Xi ∈ R
ni , i = 1, 2, · · · , m. Then(

In1+···+nk−1 ⊗ W[nk,nk+1] ⊗ Ink+2+···+nm

)
X1 � · · · � Xk � Xk+1 � · · · � Xm

=X1 � · · · � Xk+1 � Xk � · · · � Xm. (13)

Proposition 2.9 Let A ∈ Mm×n and B ∈ Mp×q. Then

WT
[m,n] = W−1

[m,n] = W[n,m]. (14)

Proposition 2.10

W[pq,r] =
(
W[p,r] ⊗ Iq

) (
Ip ⊗ W[q,r]

)
. (15)

Taking transpose on both sides of (15) yields

W[r,pq] =
(
Ip ⊗ W[r,q]

) (
W[r,p] ⊗ Iq

)
. (16)
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The swap matrix can be constructed in the following method: Denote the i-th canonical
basic element in R

n by δn
i . That is, δn

i is the i-th column of In. Then we have
Proposition 2.11

W[m,n] =
(
δn
1 � δm

1 · · · δn
n � δm

1 · · · δn
1 � δm

m · · · δn
n � δm

m

)
. (17)

In [5], (17) is used as the definition.
Using swap matrix, we can prove that
Proposition 2.12 Let A ∈ Mm×n and B ∈ Ms×t. Then

A ⊗ B = W[s,m] � B � W[m,t] � A = (Im ⊗ B) � A. (18)

Particularly, if X ∈ R
n, Y T ∈ R

m, then

XY = Y � W[n,m] � X. (19)

Since � is a generalization of the conventional matrix product, hereafter, we omit the
notation �.

Denote X = (x1, x2, · · · , xn)T, then Xk is a (redundant) basis of the k-th degree homoge-
neous polynomials. That is, if Pk(x) is a k-th order homogeneous polynomial, then there exists
a numerical matrix F ∈ 1 × nk, such that Pk(x) = FXk. Note that since Xk is redundant, F
is not unique.

Next, we define a differential of a matrix of functions.
Definition 2.13 Let M(x) be a p× q matrix with entries mi,j(x) as functions of x ∈ R

n.
Then the differential of M(x) is defined as a p×qn matrix with mi,j(x) be replaced by dmi,j(x).

Now if f(x) is an analytic function, then we can use Taylor series expansion to expand it as

f(x) = F0 + F1X + F2X
2 + · · · .

So if we want to find a formula for the differential of f(x), the key is to find DXk. We construct
an nk+1 × nk+1 matrix Φk as

Φk =
k∑

s=0

Ins ⊗ W[nk−s,n]. (20)

Then we have the following differential form of Xk, which is fundamental in later approach.
Proposition 2.14

D(Xk+1) = Φk � Xk. (21)

3 Motivating Examples

This section gives some motivating examples to show the motivations for semi-tensor prod-
ucts.

Example 3.1 (Incompleteness of conventional matrix product)
1) Consider X, Y, Z, W ∈ R

n as column vectors. Then

(XY T)(ZWT) ∈ Mn, (22)
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where Mn is the set of n × n matrix. Now by associativity of matrix product and considering
Y T Z is a scalar, we have

(XY T)(ZWT) = X(Y T Z)WT = Y T ZXWT = Y T(ZX)WT. (23)

But now what is ZX? It is not defined.
2) Consider X, Y ∈ R

n, W ∈ Mm. Then (XT Y )W is well defined. Using associativity, we
have

(XT Y )W = XT Y W = XT(Y W ). (24)

Again (24) is nonsense.
But when we generalize the conventional matrix product to semi-tensor product, both (23)

and (24) are meaningful and the resulting matrices are the same as the original ones.
Next example shows semi-tensor product may much simplify the computation.
Example 3.2 Assume the inputs u(i) ∈ R

m and the state x(i) ∈ R
n have the following

linear relation:

x(i + 1) = Ax(i) + Bu(i), i = 1, 2, · · · . (25)

We want to estimate A, B from input-state data. Using column stacking form, we have

x(i + 1) = (x(i)T, u(i)T) �

[
Vc(A)
Vc(B)

]
.

Define

W =

⎡⎢⎣ x(2)
...

x(N + 1)

⎤⎥⎦ , H =

⎡⎢⎣ x(1)T u(1)T
...

x(N)T u(N)T

⎤⎥⎦ , Y =

[
Vc(A)
Vc(B)

]
,

Then we have
W = HY.

Assume H has full column rank, we have a least square estimation of parameters A, B as

Ŷ = (HT H)−1HT
� W. (26)

Here the use of semi-tensor product simplified the computation a lot.
The following example shows an advantage of semi-tensor product over conventional product

plus Kronecker product:
Example 3.3 Let V be an n dimensional vector space, its dual space is denoted by V ∗.

Suppose {e1, e2, · · · , en} be a given basis of V , with its dual basis on V ∗ as {α1, α2, · · · , αn},
where dual means 〈αi, ej〉 = i,j . Let σ ∈ T r

s (V ), i.e., σ is a tensor on V with covariant order r
and contra-variant order s[6].

Denote by

σ(ei1 , ei2 , · · · , eir , αj1 , αj2 , · · · , αjs) = σi1···ir

j1···js
, 1 ≤ ip, jq ≤ n.

Then we construct a matrix, called the structure matrix, as

Mσ =

⎡⎢⎢⎢⎢⎣
σ1···11

1···11 σ1···12
1···11 · · · σ1···1n

1···11 · · · σn···nn
1···11

σ1···11
1···12 σ1···12

1···12 · · · σ1···1n
1···12 · · · σn···nn

1···12
...

...
...

...
...

...
σ1···11

n···nn σ1···12
n···nn · · · σ1···1n

n···nn · · · σn···nn
n···nn

⎤⎥⎥⎥⎥⎦ . (27)
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Express vector and co-vector as column and row vectors respectively as X =
∑n

i=1 aiei :=
(a1, a2, · · · , an)T, ω =

∑n
i=1 biαi := (b1, b2, · · · , bn). Using Kronecker product with conven-

tional product, we have

σ(X1, X2, · · · , Xr; ω1, ω2, · · · , ωs) = (ω1 ⊗ · · · ⊗ ωs)Mσ(X1 ⊗ · · · ⊗ Xr). (28)

Using semi-tensor product, we have

σ(X1, X2, · · · , Xr; ω1, ω2, · · · , ωs) = ωs � · · · � ω1MσX1 � · · · � Xr. (29)

The advantage of (29) over (28) is that since semi-tensor product has the property of associa-
tivity, we can manipulate it easily. For instance, let X ∈ V , iX : T r

s (V ) → T r−1
s (V ) is defined

as:

iX(σ)(X1, X2, · · · , Xr−1; ω1, ω2, · · · , ωs) = σ(X, X1, X2, · · · , Xr−1; ω1, ω2, · · · , ωs)

Now the structure matrix of iX(σ) can be obtained from (29) immediately as

MiX (σ) = MσX. (30)

To see another application, let σ ∈ T r
x(V ) and χ ∈ T p

q (V ), we want to find the structure
matrix of σ ⊗ χ. Using (8), (9), (19), and (11), we have

σ ⊗ χ(X1, X2, · · · , Xr, Xr+1, · · · , Xr+p; ω1, ω2, · · · , ωs, ωs+1, · · · , ωs+q)
= ωs · · ·ω1MσX1 · · ·Xrωs+q · · ·ωs+1MχXr+1 · · ·Xr+p

= ωs · · ·ω1Mσωs+q · · ·ωs+1W[nr ,nq ]X1 · · ·XrMχXr+1 · · ·Xr+p

= ωs · · ·ω1ωs+q · · ·ωs+1(Inq ⊗ Mσ)W[nr ,nq](Inr ⊗ Mχ)X1 · · ·XrXr+1 · · ·Xr+p

= ωs+q · · ·ωs+1ωs · · ·ω1W[nq,ns](Inq ⊗ Mσ)W[nr ,nq](Inr ⊗ Mχ)X1 · · ·XrXr+1 · · ·Xr+p.

We conclude that

Mσ⊗χ = W[nq,ns](Inq ⊗ Mσ)W[nr ,nq ](Inr ⊗ Mχ). (31)

In fact, in statistics the so-called “cubic product” of matrices has been developed for 3-
linear multiplication. Semi-tensor product can perform any finite multi-linear multiplication,
and even in 3-linear case, it is much more general and convenient than “cubic product”[7].

4 Application to Dynamic (Control) Systems

4.1 Stability Region

Consider a smooth nonlinear system of the form

ẋ = f(x), x ∈ R
n, (32)

where f(x) is an analytic vector field.
Suppose xe is an equilibrium point of (32). The stable and unstable sub-manifolds of xe are

defined respectively as

W s(xe) =
{

p ∈ R
n
∣∣∣ lim

t→∞ x(t, p) → xe

}
,

Wu(xe) =
{
p ∈ R

n
∣∣∣ lim

t→−∞x(t, p) → xe

}
.

(33)
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Suppose xs is a stable equilibrium point of (32). The region of attraction of xs is defined as

A(xs) =
{
p ∈ R

n
∣∣∣ lim

t→∞x(t, p) → xs

}
. (34)

The boundary of the region of attraction is denoted by ∂A(xs).
An equilibrium point xe is hyperbolic if the Jacobian matrix of f at xe, denoted by Jf (xe),

has no eigenvalues with zero real part. A hyperbolic equilibrium point is said to be of type-k if
Jf (xe) has k positive real part eigenvalues.

[8] and [9] proved that for a stable equilibrium point xs the stability boundary is composed
of the stability sub-manifolds of equilibrium points on the boundary of the region of attraction
under the assumptions that

i) the equilibrium points on the stability boundary ∂A(xs) are hyperbolic;
ii) the stable and unstable sub-manifolds of the equilibrium points on the stability boundary

∂A(xs) satisfy the transversality condition;
iii) every trajectory on the stability boundary ∂A(xs) approaches one of the equilibrium

points as t → ∞.
It is well known that the stability boundary is of dimension n−1[9]. Therefore, the stability

boundary is composed of the closure of stability sub-manifolds of type-1 equilibrium points
on the boundary. Based on this fundamental fact, it is of significant meaning to calculate or
estimate the stable sub-manifold of type-1 equilibrium points.

Our first result is to give a complete description of the stable sub-manifold of type-1 equi-
librium points.

Theorem 4.1 Assume xu = 0 is a type-1 equilibrium point of system (32).

W s(eu) = {x |h(x) = 0}. (35)

Then h(x) is uniquely determined by the following necessary and sufficient conditions (36)–(38).

h(0) = 0, (36)

h(x) = ηTx + 0(‖x‖2), (37)
Lfh(x) = µh(x), (38)

where Lfh(x) is the Lie derivative of h(x) with respect to f ; η is an eigenvector of JT
f (0) with

respect to its only positive eigenvalue µ.
Using semi-tensor product, we can find the quadratic approximation of h(x) as
Theorem 4.2 The stable sub-manifold of xu, expressed as h(x) = 0, can be expressed as

h(x) = H1x +
1
2
xTΨx + O(‖x‖3), (39)

where⎧⎪⎨⎪⎩
H1 = ηT,

Ψ = V −1
c

{[(µ

2
In − JT

)
⊗ In + In ⊗

(µ

2
In − JT

)]−1

Vc

(
n∑

i=1

ηiHess(fi(0))

)}
,

where µ and η are respect to J = F1, Hess(fi) is the Hessian matrix of the i-th component fi

of f .
Express h(x) as

h(x) = H1x + H2x
2 + · · · .
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Since the coefficients are not unique, we convert them into symmetric form by

Hk = GkTB(n, k), Gk = HkTN (n, k). (40)

Then we have
Theorem 4.3 Assume the matrices

Ck := µId − TB(n, k)Φk−1(Ink−1 ⊗ F1)TN (n, k), k ≥ 3 (41)

are non-singular, then

Gk =

[
k−1∑
i=1

GiTB(n, i)Φi−1(Ini−1 ⊗ Fk−i+1)

]
TN (n, k)C−1

k . (42)

We refer to [10–15] for details.

4.2 Singular Feedback Linearization

Consider a nonlinear system

ẋ = f(x) +
m∑

i=1

gi(x)ui. (43)

Singular feedback linearization means find a (single input) feedback⎡⎢⎣u1

...
um

⎤⎥⎦ =

⎡⎢⎣α1(x)
...

αm(x)

⎤⎥⎦ v,

and a coordinate change z = z(x) such that the closed-loop system is a linear control system.
Consider

ẋ = Ax + F2x
2 + F3x

3 + · · · . (44)

Assume
adAxηk = Fkxk.

Then we have

ηk = (Γn
k  Fk)xk, x ∈ R

n. (45)

Here  is the Hadamard product of matrices[16]. Γn
k can be constructed mechanically as

(Γn
k )ij =

1(
n∑

s=1
αj

sλs

)
− λi

, i = 1, 2, · · · , n; j = 1, 2, · · · , nk, (46)

where αj
1, αj

2, · · · , αj
n are respectively the powers of x1, x2, · · · , xn of the j-th component of

xk.
Theorem 4.4 Assume A is non-resonant. Then system (44) can be transformed into a

linear form

ż = Az (47)
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by the following coordinate transformation:

z = x −
∞∑

i=2

Eix
i, (48)

where Ei are determined recursively by

E2 = Γ2  F2,

Es = Γs 
(

Fs −
s−1∑
i=2

EiΦi−1(Ini−1 ⊗ Fs+1−i)
)

, s ≥ 3.
(49)

Theorem 4.5 System (43) is single-input linearizable, iff there exist an NR-type transfor-
mation and a constant vector b of non-zero component such that

b ∈ Span

{(
I −

∞∑
i=2

EiΦi−1x
i−1

)
gj

∣∣∣∣∣ j = 1, 2, · · · , m

}
. (50)

We refer to [17,18] for more details.

4.3 Symmetry of Control Systems

Consider an analytic control system

ẋ = f0 (x) +
m∑

i=1

fi (x) ui, x ∈ R
n, (51)

where fi(x), i = 0, 1, · · · , m are analytic vector fields. Let G be a Lie group acting on R
n (or

an open subset M ⊂ R
n).

Definition 4.6 System (51) is said to be state space(ss)-symmetric with respect to G (or
has an ss-symmetry group G) if for each α ∈ G

θ (α)∗ fi(x) = fi (θ (α) x) , i = 0, 1, · · · , m,

where θ (α)∗ is the induced mapping of θ (α), which is a diffeomorphism on R
n. If G < GL(n, R),

it is called a linear symmetry.
Using semi-tensor product, many interesting symmetric results have been obtained. Then

following is one of them.
Theorem 4.7 System (51) with n ≥ 3 has an ss-symmetry group G = SO(n, R), iff

fj(x) =
∞∑

i=0

aj
i ||x||2ix, aj

i ∈ R, j = 0, 1, · · · , m. (52)

Much more can be found in [19].

5 Application to Abstract Algebra

Semi-tensor product is a powerful tool in investigating algebraic structures.
Let e1, e2, · · · , en be a basis of a finite dimensional algebra, L, where the product ∗ : L×L →

L. The structure matrix ML is an n × n matrix with entries

mi,j = ei ∗ ej , i, j = 1, 2, · · · , n.
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Definition 5.1 An algebra, L, is symmetric if

X ∗ Y = Y ∗ X, ∀X, Y ∈ L; (53)

L is skew-symmetric if

X ∗ Y = −Y ∗ X, ∀X, Y ∈ L; (54)

L is associative if

(X ∗ Y ) ∗ Z = X ∗ (Y ∗ Z), ∀X, Y, Z ∈ L. (55)

Proposition 5.2 i) An algebra, L, is symmetric, iff

ML(W[n] − In2) = 0; (56)

ii) L is skew-symmetric, iff

ML(W[n] + In2) = 0. (57)

iii) L is associative, iff

ML(ML ⊗ In − In ⊗ ML) = 0. (58)

Next, we consider Lie algebra[20].
Proposition 5.3 An algebra L is a Lie algebra, iff the structure matrix satisfies i) (57);

ii) the following (59):

M2(In2 + W[n,n2] + W[n2,n]) = 0. (59)

Example 5.4 Cross product defined in R
3 is as follows: Let X = x1i + x2j + x3k, and

Y = y1i + y2j + y3k. Then

X × Y = det

⎡⎣ i j k
x1 x2 x3

y1 y2 y3

⎤⎦ .

Then its structure matrix can be easily obtained as

M =

⎡⎣0 0 0 0 0 1 0 1 0
0 0 −1 0 0 0 1 0 0
0 1 0 −1 0 0 0 0 0

⎤⎦ . (60)

It is ready to verify that
M(I9 + W[3]) = 0,

and
M2

(
I27 + W[3.9] + W[9,3]

)
= 0.

Therefore, R
3 with cross product is a Lie algebra.

Since an algebra is uniquely determined by its structure matrix, we may search Lie algebras
via structure matrices. Consider three dimensional case. Assume the algebra is skew-symmetric,
its structure matrix should be

ML3 =

⎡⎣0 a d −a 0 g −d −g 0
0 b e −b 0 h −e −h 0
0 c f −c 0 i −f −i 0

⎤⎦ . (61)
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With the help of computer, we can calculate

M2
L3

(I27 + W[3,9] + W[9,3]),

which is a 3 × 27 matrix. Fortunately, there are very few different non-zero entries. They are

m1,6 = m1,16 = m1,22 = −m1,8 = −m1,12 = −m1,20 = bg + gf − ah − di;
m2,6 = m2,16 = m2,22 = −m2,8 = −m2,12 = −m2,20 = ae − bd + hf − ei;
m3,6 = m3,16 = m3,22 = −m3,8 = −m3,12 = −m3,20 = af + bi − cd − ch.

We conclude that
Theorem 5.5 A three dimensional algebra is a Lie algebra, iff its structure matrix is as

(61) with entries satisfying the following equations:⎧⎪⎨⎪⎩
bg + gf − ah − di = 0,

ae − bd + hf − ei = 0,

af + bi − cd − ch = 0.

(62)

Some interesting new Lie algebras have been constructed in [21]. Certain other properties,
such as invertibility etc., have also been discussed there.

6 Application to Differential Geometry

We consider the computation of connection.
Definition 6.1 Let f, g ∈ V (M) be two (C∞) vector fields on M . An R-bilinear mapping

�: V (M) × V (M) → V (M) is called a connection, if
1)

�rfsg = rs �f g, r, s ∈ R; (63)

2)

�hfg = h �f g, �f (hg) = Lf(h)g + h �f g, h ∈ C∞(M). (64)

By R-linearity, as long as a connection is defined over a basis, it is well defined. Using local
coordinates x, we have

� ∂
∂xi

(
∂

∂xj

)
=

n∑
k=1

γk
ij

∂

∂xk
,

where γk
ij are called Christoffel symbol.

We call

Γ =

⎡⎢⎣γ1
11 · · · γ1

1n · · · γ1
n1 · · · γ1

nn
...

...
...

...
...

...
...

γn
11 · · · γn

1n · · · γn
n1 · · · γn

nn

⎤⎥⎦
Christoffel matrix. We give a matrix expression of connection.

Theorem 6.2 Under new coordinates y, we have

Γ̃ = D2xDx + Γ � Dx(I ⊗ Dx). (65)
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Let M be a Riemannian manifold with structure matrix G = (gij)n×n. There exists a unique
Riemannian connection on M [22]. The Christoffel symbols of this connection can be calculated
from G by

γk
ij =

1
2

n∑
s=1

gks

(
∂gsi

∂xj
− ∂gij

∂xs
+

∂gjs

∂xi

)
, (66)

where gij is the (i, j) entry of G−1.
It is known that [6] with this connection we have

[f, g] = �fg −�gf. (67)

Christoffel matrix is said to be symmetric, if

γk
ij = γk

ji, ∀ i, j, k. (68)

Then we have
Theorem 6.3 If manifold N has symmetric Christoffel connection, then (67) holds.
Since for Riemannian manifold, Christoffel matrix is symmentric, Theorem 6.3 is more

general.
The structure matrices of curvature tensor and Riemann curvature tensor have also be

constructed in [4].

7 Application to Mathematical Logic

In this section we consider the matrix expression of logic. Under matrix expression a general
description of logical operators is proposed. Using semi-tensor product of matrices the logical
inference can be simplified a lot. We refer to [4,23,24] for details.

First, we give some necessary notations and conclusions for multi-valued or k-valued logic,
which remain true for k = 2 case, i.e., for the classical 2-valued logic.

Definition 7.1 A pure logical domain, denoted by Dl, is defined as

Dl = {T = 1, F = 0}; (69)

A k-valued logical domain (k ≥ 2), denoted by Dk, is defined as

Dk =
{

T = 1,
k − 2
k − 1

, · · · ,
1

k − 1
, F = 0

}
; (70)

A fuzzy logical domain, denoted by Df , is defined as

Df = {r | 0 ≤ r ≤ 1}. (71)

Definition 7.2 An s-ary k-valued logical operator is a mapping σ : Dk × Dk × · · · × Dk︸ ︷︷ ︸
s

→

Dk.
To use matrix expression we identify the elements in Dk with a vector as

ei =
k − i

k − 1
⇐⇒ k

i , i = 1, 2, · · · , k − 1, k,

where k
i is the i-th column of identity matrix Ik.
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Let σ be an s-ary operator and denote

mi1,i2,··· ,is = σ(ei1 , ei2 , · · · , eis), 1 ≤ i1, i2, · · · , is ≤ k.

Now we can construct the structure matrix of σ as

Mσ =
[
m1···11 · · · m1···1k · · · mk···k1 · · · mk···kk

]
. (72)

Using semi-tensor product, we have
Proposition 7.3 If a k×ks matrix Mσ is the structure matrix of an s-ary logical operator

σ, then

σ(P1, P2, · · · , Ps) = Mσ � P1 � · · · � Ps. (73)

Now we define a matrix, called the power-reducing matrix, as

Mk
r =

⎡⎢⎢⎢⎣
δk
1 0k · · · 0k

0k δk
2 · · · 0k

...
...

. . .
...

0k 0k · · · δk
k

⎤⎥⎥⎥⎦ , (74)

where 0k is the zero vector in R
k. Its name is from the following property.

Lemma 7.4 Let P ∈ Dk. Then for any p × k2q matrix Ψ, we have

ΨP 2 = ΨMk
r P. (75)

In a logic expression a logic variable is constant if its value is assigned in advance, it is called
a free variable if its value can be arbitrary. Using this concept and above lemma, we have

Theorem 7.5 Any logic expression L(P1, P2, · · · , Ps) with free logic variables P1, P2, · · · , Ps ∈
Dk can be expressed in a canonical form as

L(P1, P2, · · · , Ps) = MLP1P2 · · ·Ps, (76)

where ML is a k × ks logic matrix.
Next, we give some examples in the classical 2-valued logic.
Example 7.6 Consider one fundamental unary operator: Negation, ¬P , and four fun-

damental binary operators[25]: Disjunction, P ∨ Q; Conjunction, P ∧ Q; Implication, P → Q;
Equivalence, P ↔ Q. Their structure matrices are as follows:

M¬ := Mn =
[
0 1
1 0

]
;

M∨ := Md =
[
1 1 1 0
0 0 0 1

]
; M∧ := Mc =

[
1 0 0 0
0 1 1 1

]
;

M→ := Mi =
[
1 0 1 1
0 1 0 0

]
; M↔ := Me =

[
1 0 0 1
0 1 1 0

]
.

(77)

In fact, there are 22r

(kkr

) r-ary 2-valued (correspondingly, k-valued) logical operators.
For any binary logical operator σ, we have

PσQ = MσPQ.
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Now we use the following example to show the application of Theorem 7.5.
Example 7.7 Person A said that person B is a liar, person B said person C is a liar, and

person C said that both persons A and B are liars. Who is a liar ?
Denote A: person A is honest; B: person B is honest; and C: person C is honest. Then the

logical expression of the statement is

(A ↔ ¬B) ∧ (B ↔ ¬C) ∧ (C ↔ ¬A ∧ ¬B).

Its matrix form, L(A, B, C), is

M2
c (MeAMnB)(MeBMnC)(MeCMcMnAMnB). (78)

Its canonical form can be computed as

L(A, B, C) =
[
0 0 0 0 0 1 0 0
1 1 1 1 1 0 1 1

]
ABC.

L is true only if

A =
[
0
1

]
, B =

[
1
0

]
, C =

[
0
1

]
.

Conclusion: Only B is honest.

8 Safety Control of Power Systems

Direct applications of Theorems 4.1 and 4.2 are detailed in [14,15,26,27]. This section
further reviews the application of Theorems 4.1 and 4.2 in power system dynamic security region
(DSR)[28−33]. The concept of dynamic security region was first proposed by Felix F. Wu[28],
and then series engineering work modifications were done to make it practical[29]. Recently, the
theoretical foundation of the dynamic security region is revealed[30−32].

8.1 Power System Model

We review the classical model for transient stability analysis. Consider a power system con-
sisting of n generators. Let the loads be modeled as constant impedances. Then the dynamics
of the k-th generator can be written with the usual notation as

δ̇k = ω0ωk,

2Hkω̇k = Pmk − Pek − Dkωk, k = 1, 2, · · · , n,
(79)

where ω0 = 2πfB, δk, and ωk are the rotor angle and speed of machine k, Dk and Hk are the
damping ratio and inertia constant of machine k, Pmk and Pek are the mechanical power and
the electrical power at machine #k;

Pek =

⎧⎨⎩E2
kGkk + Ek

n∑
j �=k

Ej(Gkj cos δkj + B sin δkj)

⎫⎬⎭ ,

where δkj = δk−δj , Ek is the constant voltage behind direct axis transient reactance of machine
#k, and Y = (Gij + jBij)n×n is the reduced admittance matrix.
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Using the number n machine as the reference, (79) can be transformed into the form as
follows:

δ̇kn = ω0ωkn, k = 1, 2, · · ·n − 1,

2Hkω̇k = Pmk − Pek − Diωk, k = 1, 2, · · · , n.
(80)

If, furthermore, as usual, uniform damping is assumed, i.e., d0 = Dk

2Hk
, (k = 1, 2, · · · , n),

then using the n-th machine as the reference, (79) can be transformed into the form as follows:

δ̇kn = ω0ωkn,

ω̇kn = −d0ωkn +
Pmk − Pek

2Hk
− Pmn − Pen

2Hn
, k = 1, 2, · · · , n − 1.

(81)

Let δ = (δ1n, δ2n, · · · δn−1,n)T, m = 2n − 2, x = (δT, ωT)T, where ω = (ω1,n, · · · , ωn−1,n)T

(or m = 2n − 1 and ω = (ω1, ω2, · · · , ωn)T in the non-uniform damping case), and u =
(Pm1, Pm2, · · · , Pmn)T be the control variables, then the power system with the network re-
duction model has the following form

ẋ = f(x, u), (82)

where f is twice differentiable, x ∈ R
m.

8.2 Dynamic Security Region

Transient stability is the ability of the power system to maintain synchronism after a fault
such as short circuit. Mathematically, the power system suffered from a fault has three stages:
the pre-fault, fault-on, and post-fault stage. At the pre-fault stage, the system is operated at a
stable equilibrium point x0(u) of the pre-fault system

ẋ = F1(x, u), t < 0. (83)

At time t = 0, the system undergoes a fault that results in a structural change in the
system. Suppose the fault is cleared at time t = tF . Then during the fault-on stage, the system
is governed by a fault-on dynamics described by

ẋ = F2(x, u), x(t) = φ(t, x0,u), 0 ≤ t < tF . (84)

Once the fault is cleared, the system is henceforth governed by a post-fault dynamics de-
scribed by the following differential equation (82). The initial condition of the post-fault system
is the state of the fault-on system at the time of fault clearing, φ(tF , x0, u). Notice that since
the clearing time is given and x0 is a function of u, the system state at the time of clearing is
really only a function of u, we therefore write φ(u) = φ(tF , x0, u). The post-fault dynamics is
described by

ẋ = f(x, u), x(tF ) = φ(u), t ≥ tF . (85)

Assuming the post-fault system has a (asymptotically) stable equilibrium point xs(u), then
the transient stability analysis is to determine whether the initial point of the post-fault tra-
jectory, φ(u), is located inside the stability region of the equilibrium point xs(u), V (xs(u)).
Furthermore, due to both the fault and its clearing time are fixed, the setting of the control
variables u completely determines the transient stability of the system, therefore, mathemati-
cally, the dynamic security region (DSR), in the terms of control variables u in which the system
is transiently stable (with respect to a given fault) can be described as follows:

Ωd = {u |φ(u) ∈ V (xs(u))}. (86)



320 DAIZHAN CHENG · HONGSHENG QI · ANCHENG XUE

In the power system transient stability analysis, the concept of Controlling Unstable Equi-
librium Point (CUEP) has been well recognized. The CUEP of a certain fault is the unstable
equilibrium point whose stable manifold (which is a part of the boundary of the stability re-
gion) is crossed by the continuous faulted trajectory of the fault[33]. With the concept of the
CUEP, the local boundary of dynamic security region that is of interest to the study of transient
stability can therefore be written locally as

{u |h(φ(u), u) = 0}, (87)

where h(x, u) is the implicitly function with which the local stable manifold of the CUEP xe

could be denoted as {x|h(x, u) = 0}, and furthermore, the function h is the solution of following
partial differential equation:

fT · ∂h

∂x
= µ · h(x, u), h(xe, u) = 0, rank

(
∂h

∂x

)
= 1, (88)

where µ is the unstable eigenvalue of the Jacobian matrix J(u) = Dxf(x, u)|x=xe at xe.

8.3 Linear Approximation of Dynamic Security Region

Next, we briefly review one linear approximation for the DSR (for other approximation,
please refer to [30]). The linear approximation of DSR is based on the linear approximation
of stability region and sensitivities. The linear approximation of the stable manifold h(x, u) in
(88) is (see Theorem 4.1)

hL(x, u) = [x − xe(u)]Tη(u), (89)

where η(u) = (η1, η2, · · · , ηm)T is the left unstable eigen-vector of Jacobian matrix J(u), i.e.,

J(u)Tη(u) = µ(u)η(u), η(u)Tη(u) = 1. (90)

With the above linear approximation of stability region (89), one approximation for the
boundary of DSR is

hL(φ(u), u) = [φ(u) − xe(u)]Tη(u), (91)

Furthermore, with the trajectory sensitivities and sensitivities of CUEP respected to control
variable u, one linear approximations of DSR, which is called L0-linear approximation can be
obtained as follows

hL0 = {u |L0 + L1(u − u0) = 0}. (92)

9 Conclusion

The tensor product of matrices was firstly proposed by D. Cheng about 8 years ago. Since
then many colleagues and students have been worked with him on this new tool and its various
applications. Some of them are Prof. Q. Lu, Prof. S. Mei, Prof. H. Qin, Prof. Y. Hong, Prof.
W. Xie, Dr. Z. Xi, Dr. J. Ma, Dr. A. Xue, Dr. H. Qi, and many others.

It has been used to some problems on dynamic systems and dynamic control systems, such
as stability and stabilization, linearization, symmetry etc.; to pure math problems such as
computation of connections curvature tensors etc. on differential geometry; structure analysis
of algebra etc. in abstract algebra. It has also been found some applications in physics[34], to
power systems etc.

Now the authors are confident that semi-tensor product will survive and success in the
further.



A SURVEY ON SEMI-TENSOR PRODUCT OF MATRICES 321

From very beginning, the research on this subject has been supported warmheartedly by
Prof. H. F. Chen. So we dedicate this survey to him.
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