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Abstract 

Theory of completeness is essential for multi-valued logical functions. Using semi-tensor product 
(STP) of matrices, the algebraic form of k -valued logical functions is presented. Using algebraic form, 
a method is proposed to construct an adequate set of connectives (ASC), consisting of unary operators 
with conjunction/disjunction for k -valued logical functions, which can be used to express any k -valued 
logical functions. Based on it, two normal forms of k -valued logical functions are presented, which are 
extensions of the disjunctive normal form and conjunctive normal form of Boolean functions respectively. 
The ASC is then simplified to a condensed set. Finally, the normal forms are further extended to mix- 
valued logical functions. 
© 2020 The Franklin Institute. Published by Elsevier Ltd. All rights reserved. 
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. Preliminaries 

“Logic and set theory are sometimes called the foundations of mathematics, because they
re used as a basis for other branches of mathematics.” [11] . As a natural extension of
tandard 2-valued logic (or Boolean logic), multi-valued logic (or k -valued logic) has been
idely applied to computer science, automata, and circuit design, etc. [5,12] . 
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A logical variable χ can take a value from D = { 0, 1 } . A unary logical operator is a
mapping: D → D, and a binary logical operator is a mapping D × D → D. Usually logical
operators with more than two logical variables are called logical functions [9] . 

Two problems about k -valued logic are considered in this paper: (i) completeness; and (ii)
normal form. To make the problems addressed in this paper clear, we explain the correspond-
ing problems for classical logic (i.e., 2-valued logic) first. We refer to [4] or any standard
textbook for notations and concepts of classical logic. 

(1) Completeness problem: 

Find a set of logic generators, which is called an adequate set of connectives (ASC) [4] ,
such that any logical function can be expressed as a compounded function of this set of
generators. ASC is not unique. For instance, (i) A c := { ¬, ∧ }, (ii) A d := { ¬, ∨ }, (iii) A cd =
{¬ , ∧ , ∨} are commonly used ASCs. 

It was pointed out that [7] : “In the theory of multiple-valued logic, the problem of verifying
the completeness of a set of logical functions is a fundamental and important problem. This
problem must be solved when the multiple-valued logic is applied to automata, multiple- 
valued logic circuit, etc.” However, to our best knowledge, despite of quite a number of
contributions have been published on the completeness of multiple logic, this long standing 

problem has not been solved completely. 

(2) Normal form: 

It is well known that [4] a Boolean function always has a disjunctive normal form and a
conjunctive normal form. A disjunctive (or conjunctive) normal form of Boolean functions is 
based on the ASC { ¬, ∧ , ∨ }. Since the ASC of k -valued logical functions is still not clear,
the normal form of k -valued logical functions is also an open problem. 

Completeness and normal form are two closely related problems, which are important 
in analysis and property investigation of logical functions [11] , logical circuit arrangement, 
decomposition, and design [7] , control design of logical networks [2] , etc. The contribution
of this paper consists of (i) finding a convenient ASC, and (ii) providing normal forms for
k -valued logic, as well as mix-valued logic. 

Recently, a new mathematical tool, called semi-tensor product (STP) of matrices, has been 

proposed. It is the fundamental tool for the approach of this paper. By expressing a Boolean
or multi-valued logical function in a matrix form, STP is successfully applied to the analysis
and control of Boolean networks as well as of multi-valued logical networks [1,2] . We also
refer to some STP survey papers for current developments, say, [3,6,8] . 

The main technology road map in this paper is as follows: Using STP, a k -valued logical
function is converted into its algebraic form. From the algebraic form of a logical function,
its normal forms are obtained. From the normal forms an ASC of k -valued logic is obtained,
which is the set of unary operators with conjunction and disjunction. To reduce the size of
this set of generators, the set of unary operators is divided into two parts: the non-singular set
( �n 

k ), and the singular set ( �s 
k ). Using group isomorphism, �n 

k can be reduced to its set of
generators G 

n 
k . Using equivalence, �s 

k can be reduced to its set of generators G 

s 
k . Eventually,

a much smaller compact adequate set is obtained. 
Finally, the normal form expressions are also extended to mix-valued logical functions. 
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Before ending this section, some notations are presented as follows: 

1. R 

n : the n -dimensional Euclidean space. 
2. M m×n : the set of m ×n real matrices. 
3. Col ( M ) ( Row (M) ): the set of columns (rows) of M . Col i ( M ) ( Row i (M) ): the i th column

(row) of M . 
4. D := { 0, 1 } . 
5. δn 

i : the i th column of the identity matrix I n . 
6. �n := 

{
δi 

n | i = 1 , . . . , n 

}
; � := �2 . 

7. 1 � := ( 1 , 1 , . . . , 1 ︸ ︷︷ ︸ 
� 

) T . 

8. 1 p×q := ( 1 p , 1 p , . . . , 1 p ︸ ︷︷ ︸ 
q 

) . 

9. A matrix L ∈ M m×n is called a logical matrix if Col ( L ) ⊂�m 

. We denote by L m×n the
set of m ×n logical matrices. 

10. If L ∈ L n×r , by definition it can be expressed as L = [ δi 1 
n , δ

i 2 
n , . . . , δ

i r 
n ] . For the sake of

compactness, it is briefly denoted by L = δn [ i 1 , i 2 , . . . , i r ] . 
11. S k : the k -th order symmetric group, consisting of all permutations of k objects. 

The rest of this paper is organized as follows: Section 2 introduces the algebraic form
f multi-valued logical functions. Certain related properties are investigated. In Section 3 we
onsider ASC of multi-valued logic. Using symmetric group isomorphism and equivalent set
f generators for nonsingular and singular unary operators respectively, a compact ASC is
btained. Moreover, the conjunctive and disjunctive normal forms for multi-valued logical
unctions are also obtained. Finally, the normal forms are also extended to mix-valued logic
n Section 4 . Section 5 is a brief conclusion. 

. Algebraic form of multi-valued logic 

We first recall STP, which is the fundamental tool for deriving the algebraic form of logical
unctions. 

efinition 2.1 [1] . Let A ∈ M m×n , B ∈ M p×q , and the least common multiple lcm (n, p) = t .
hen the STP of A and B is defined as 

 � B := 

(
A � I t/n 

)(
B � I t/p 

)
, (1)

here � is Kronecker product. 

Note that STP is a generalization of classical matrix product. That is, when n = p STP
egenerates to classical matrix product. Throughout this paper the default matrix product is
TP, and in most cases the symbol � is omitted. 

efinition 2.2. A k -valued logical variable χ takes its values in 

 k := 

{
1 , 

k − 2 

k − 1 

, 
k − 3 

k − 1 

, . . . , 
1 

k − 1 

, 0 

}
, k ≥ 3 . (2)

We identify each logical value ( αi ) with a vector ( a i ) as 

i := 

k − i 

k − 1 

⇔ a i = δi 
k , i = 1 , 2, . . . , k. (3)
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Denote by �k the set of unary operators on D k . Let σ ∈ �k . Then there exists a unique
βσ = [ αi 1 , . . . , αi k ] , such that 

σ (αi ) = αi j , 1 ≤ j ≤ k. 

Moreover, if χ is expressed in vector form as x ∈ �k , then σ ∈ �k has matrix form 

M σ = δk [ i 1 , i 2 , . . . , i k ] . 

Now if χ ∈ D k , σ ∈ �k , and assume 

ξ = σ (χ ) . 

Then in vector form we have 

y = M σ x, 

where x and y are vector forms of χ and ξ respectively. 
We give a simple example to describe this. 

Example 2.3. Consider a 3-valued logic. Then 

α1 = 1 ⇔ a 1 = δ1 
3 , 

α2 = 0. 5 ⇔ a 2 = δ2 
3 , 

α3 = 0 ⇔ a 3 = δ3 
3 . 

Let σ ∈ �3 , be defined as follow: 

σ (1) = 0, σ (0. 5) = 1 , σ (0) = 1 . 

Then 

σ (α1 ) = α3 , σ (α2 ) = α1 , σ (α3 ) = α1 . 

Hence, 

M σ = δ3 [3 , 1 , 1] . 

Now define a product on �k as the composition of two operators. That is, let σ , μ∈ �k .
Then their product is defined by 

σ ◦ μ(χ ) := σ (μ(χ )) , χ ∈ D k . 

It is obvious that ( �k , ◦) is a monoid (i.e., a semi-group with identity). (We refer to [10] for
group (semi-group, monoid), homomorphism (isomorphism)). 

Note that each σ ∈ �k has matrix form M σ ∈ L k . Let × be the classical matrix product.
Then the following result is obvious. 

Proposition 2.4. The mapping π : �k → L k , defined by σ �→ M σ , is a monoid isomorphism. 

Proof. Let σ , μ∈ �k . A straightforward computation shows that 

M σ◦μ = M σ × M μ. 

That is, π is a homomorphism. It is also easy to check that π is one-to-one and onto. So π

is an isomorphism. �
Note that this proposition allows us to investigate ( �k , ◦) through (L k , ×) . Since the latter

has matrices as its elements, to investigate L k is more convenient. 
Some unary operators are of particular importance. 
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efinition 2.5. 

(i) Constant Operator: 
σ ∈ �k is called a constant operator, if 

σ (χ ) = αi , ∀ χ ∈ D k . (4)

Equivalently, 

M σ = δk [ i, . . . , i ︸ ︷︷ ︸ 
k 

] . (5)

The set of constant operators is denoted by Const . 
(ii) Negation: 

¬ 

(k) χ = 1 − χ, χ ∈ D k . (6)

(iii) Dirac Operator ( � i k ): 

� i k (χ ) = 

{
1 , if χ = αi 

0, if χ � = αi . 
(7)

(iv) Dual Dirac Operator ( � i k ): 

� i k (χ ) := ¬ � i k = 

{
0, if χ = αi 

1 , if χ � = αi . 
(8)

Next, we consider some binary operators. 

efinition 2.6. Let ξ, η ∈ D k be two k -valued variables. Then 

(i) Conjunction: 

ξ ∧ 

(k) η = min { ξ, η} . (9)

(ii) Disjunction: 

ξ ∨ 

(k) η = max { ξ, η} . (10)

emark 2.7. The structure matrices of some operators on k -valued logic are shown as follows.
hey can be easily verified. 

(i) ¬( k ) is a unary operator. Its structure matrix is 

M 

(k) 
n = δk [ k, k − 1 , . . . , 1] . (11)

(ii) Conjunction ∧ 

( k ) is a binary operator, its structure matrix is 

M 

(k) 
c = δk [ M 1 , M 2 , . . . , M k ] , (12)

where 

M i = [ i, . . . , i ︸ ︷︷ ︸ , i + 1 , i + 2, . . . , k] , i = 1 , . . . , k. 
i 
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(iii) Disjunction ∨ 

( k ) is a binary operator, its structure matrix is 

M 

(k) 

d = δk [ N 1 , N 2 , . . . , N k ] , (13) 

where 

N i = [1 , 2, . . . , i, i, . . . , i ︸ ︷︷ ︸ 
k−i 

] , i = 1 , . . . , k. 

All commonly used binary operators for 2-valued logic can be extended to k -valued logic
by using ¬( k ) , ∧ 

( k ) , and ∨ 

( k ) . For instance, it is well known that in the 2-valued case the
conditional operator ( → ) and the biconditional operator ( ↔ ) can be expressed as 

ξ → η = ¬ ξ ∨ η, (14a) 

ξ ↔ η = (ξ → η) ∧ (η → ξ ) . (14b) 

Using (14) , we can define → 

( k ) and ↔ 

( k ) as follows: 

Definition 2.8. In the k -valued logic, we define 

(i) ξ → 

(k) η := ¬ 

(k) ξ ∨ 

(k) η; (15) 

(ii) ξ ↔ 

(k) η := (ξ → 

(k) η) ∧ 

(k) (η → 

(k) ξ ) . (16) 

We use the following example to show how to derive the structure matrix of a multi-valued
logical function. 

We need some tools [1] : 

(i) Power-reducing Matrix: 

P R k := diag (δ1 
k , δ

2 
k , . . . , δ

k 
k ) , k = 2, 3 , . . . . (17) 

Then we have the following result: 

Proposition 2.9. Assume x ∈ �k , then 

x 2 = P R k x. (18) 

(ii) Vector-Vector Swap: Define the [ m , n ] swap matrix as 

W [ m,n] := [ I n � δ1 
m 

, I n � δ2 
m 

, . . . , I n � δm 

m 

] . (19) 

Then we have the following: 

Proposition 2.10. Assume x ∈ R 

m , y ∈ R 

n , then 

W [ m,n] x y = yx . (20) 

(iii) Vector-Matrix Swap: 

Proposition 2.11. Assume x ∈ R 

t , then for any matrix A , we have 

xA = (I t � A ) x. (21) 
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xample 2.12. Consider the 3-valued logic, and assume ξ, η ∈ D 3 , and x , y are the vector
orms of ξ and η respectively. Then in vector form we have 

(i) 

x → 

(3) y = M 

(3) 
i xy = M 

(3) 

d M 

(3) 
n xy 

= δ3 [1 , 1 , 1 , 1 , 2, 2, 1 , 2, 3] δ3 [3 , 2, 1] xy 

= δ3 [1 , 2, 3 , 1 , 2, 2, 1 , 1 , 1] xy. 

Hence 

M 

(3) 
i = δ3 [1 , 2, 3 , 1 , 2, 2, 1 , 1 , 1] . (22)

(ii) 

x ↔ 

(3) y = M 

(3) 
e xy 

= M 

(3) 
c (M 

(3) 

d M 

(3) 
n xy) M 

(3) 

d M 

(3) 
n yx) 

= M 

(3) 
c M 

(3) 

d M 

(3) 
n (I 9 � M 

(3) 

d M 

(3) 
n ) xy 2 x 

= M 

(3) 
c M 

(3) 

d M 

(3) 
n (I 9 � M 

(3) 

d M 

(3) 
n ) x P R 3 yx 

= M 

(3) 
c M 

(3) 

d M 

(3) 
n (I 9 � M 

(3) 

d M 

(3) 
n )(I 3 � P R 3 ) x W [3 , 3] x y 

= M 

(3) 
c M 

(3) 

d M 

(3) 
n (I 9 � M 

(3) 

d M 

(3) 
n )(I 3 � P R 3 )(I 3 � W [3 , 3] ) P R 3 xy 

Hence, 

M 

(3) 
e = M 

(3) 
c M 

(3) 

d M 

(3) 
n (I 9 � M 

(3) 

d M 

(3) 
n )(I 3 � P R 3 )(I 3 � W [3 , 3] ) P R 3 

= δ3 [1 , 2, 3 , 2, 2, 2, 3 , 2, 1] . (23)

. Normal form and ASC 

Assume F : D 

n 
k → D k is an n -variable k -valued logical function. Assume its algebraic form

s 

 (x 1 , . . . , x n ) := M F � 

n 
i=1 x i , (24)

here M F ∈ L k ×k n is the structure matrix of F . Then we split M F into k n−1 blocks as 

 F := [ M 1 , M 2 , . . . , M k n−1 ] , (25)

here M j ∈ L k×k , j = 1 , . . . , k n−1 . 
Then we define a set of unary operators as 

j ∈ �k , j = 1 , . . . , k n−1 , (26)

hich have M j as their structure matrices respectively. 
Similarly to the Boolean case, we have the following result. 

heorem 3.1. Every k-valued logical function has its disjunctive normal form and its con-
unctive normal form. 

roof. We give a constructive proof for them. Assume a k -valued logical function
 (χ1 , . . . , χk ) : D 

n 
k → D k is given. Moreover, assume that the structure matrix of F is 

 = [ N , N , . . . , N ] , 
F 1 2 k 
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where N i ∈ L k ×k n−1 , i = 1 , . . . , k. Similar to Boolean case, it is easy to prove that 

F (χ1 , χ2 , . . . , χk ) = 

[
� 1 k (χ1 ) ∧ F 1 (χ2 , . . . , χk ) 

]
∨ 

[
� 2 k (χ1 ) ∧ F 2 (χ2 , . . . , χk ) 

]
∨ . . . 

∨ 

[
� k k (χ1 ) ∧ F k (χ2 , . . . , χk ) 

]
, 

(27) 

where F i has N i as its structure matrix, i = 1 , . . . , k. 
By applying this procedure to each F i and their sub-functions and using Eq. (26) at the

last step, we have 

• Disjunctive normal form: 

F (χ1 , . . . , χn ) = 

∨ k 
i 1 =1 

∨ k 
i 2 =1 . . . 

∨ k 
i n−1 =1 

[ 
� i 1 k (χ1 ) ∧ 

� i 2 k (χ2 ) 
∧ 

. . . 
∧ 

� i n−1 

k ( x n−1 ) 
∧ 

φi 1 ,i 2 , ... ,i k ( χn ) 
] 
. 

(28) 

where φi 1 ,i 2 , ... ,i n−1 = φ j with 

j = (i 1 − 1) k n−2 + (i 2 − 1) k n−3 + . . . + (i n−2 − 1) k + i n−1 . 

• Conjunctive normal form: 

Assume ¬ F (χ1 , . . . , χn ) has disjunctive normal form as Eq. (28) . Then using De Morgan
formula, we can have 

F (χ1 , . . . , χn ) = 

∧ k 
i 1 =1 

∧ k 
i 2 =1 . . . 

∧ k 
i n−1 =1 [ 

� i 1 k (χ1 ) 
∨ 

� i 2 k (χ2 ) 
∨ 

. . . 
∨ 

� i n−1 

k ( χn−1 ) 
∨ 

φk +1 −i 1 ,k +1 −i 2 , ... ,k +1 −i k ( χn ) 
] 
. 

(29) 

Note that in Eqs. (28) and (29) , ∨ , ∧ , and ¬ are brief forms for ∨ 

( k ) , ∧ 

( k ) , and ¬( k ) 

respectively. �

Corollary 3.2. For k-valued logic 

A 

k 
cd := {∧ 

(k) , ∨ 

(k) , �k } (30) 

is an ASC. 

Since | �k | = k k , it is an important and challenging task to find a condensed ASC. In the
following we consider how to reduce the size of this ASC. 

Define 

�n 
k := { σ ∈ �k | det (M σ ) � = 0} , 

�s 
k := { σ ∈ �k | det (M σ ) = 0} . 

Then 

�k = �n 
k ∪ �s 

k . 
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Denote by 

 

n 
k := { M σ | σ ∈ �n 

k } , 
 

s 
k := { M σ | σ ∈ �s 

k } . 
e define a mapping π : �k → M k as 

: σ �→ M σ . 

y restricting it on �n 
k and �s 

k we have π : �n 
k → M 

n 
k and π : �s 

k → M 

s 
k respectively. 

Then the following relations are obvious. 

roposition 3.3. 

(i) π : �n 
k → M 

n 
k is a group isomorphism. 

(ii) π : �s 
k → M 

s 
k is a semigroup isomorphism. 

Because of these isomorphisms, instead of �n 
k and �s 

k , we can investigate M 

n 
k and M 

s
k 

espectively. 
It is well known that { (1 , t ) | t = 2, . . . , k} is a set of generators of S k [10] . Then M 

n 
k has

 set of generators 

 

n 
k := { π(σt ) | σt = (1 , t ) , t = 2, . . . , n} . 
Note that 

∣∣�n 
k 

∣∣ = k! and 

∣∣G 

n 
k 

∣∣ = k − 1 . Hence, the number of this part of elements in the
SC has been reduced from k ! to k − 1 . 
Through G 

n 
k we can easily obtain a basis for M 

n 
k . We give an example to explain this. 

xample 3.4. In �n 
3 , we have a basis {(1, 2), (1, 3)}. The corresponding basis of M 

n 
3 is

 M (1,2) , M (1,3) }, where 

 (1 , 2) = δ3 [2, 1 , 3] , M (1 , 3) = δ3 [3 , 2, 1] . 

Next, we consider �s 
k . We first define an equivalence on �s 

k as follows: 

efinition 3.5. 

(i) Two unary operators σ1 , σ2 ∈ �s 
k are said to be equivalent, and this is denoted by

σ 1 ∼σ 2 , if there exist μ1 , μ2 ∈ �n 
k , such that 

σ1 ◦ μ1 = μ2 ◦ σ2 . (31)

(ii) Two matrices M 1 , M 2 ∈ M 

s 
k are said to be equivalent, and this is denoted by M 1 ∼M 2 ,

if there exist P 1 , P 2 ∈ M 

n 
k , such that 

M 1 P 1 = P 2 M 2 . (32)

The following proposition is obvious. 

roposition 3.6. Assume σ, μ ∈ �s 
k . Then 

∼ μ ⇔ M σ ∼ M μ. 

Since �n 
k can be generated by G 

n 
k , if two operators in �s 

k are equivalent, then one can be
enerated from the other one (under the left and right actions of �n 

k ). Then we only need to
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choose one representative operator from each equivalence class as an element of the generator 
set, denoted by G 

s 
k . 

According to Proposition 3.6 , we need only to consider the equivalence class on M 

s 
k . Two

rows are said to be equivalent (denoted by ∼ ), if they have same numbers of “1”. For
example, (1, 1, 0, 0) ∼ (0, 1, 0, 1). 

Let M 1 , M 2 ∈ M 

s 
k . M 1 and M 2 are said to be equivalent, denoted by M 1 ∼M 2 , if they have

one-one corresponding equivalent rows. For example, we have 

M 1 = 

⎡ 

⎣ 

1 1 0 

0 0 1 

0 0 0 

⎤ 

⎦ ∼ M 2 = 

⎡ 

⎣ 

0 1 0 

0 0 0 

1 0 1 

⎤ 

⎦ , (33) 

because 

Row 1 (M 1 ) ∼ Row 3 (M 2 ) , 

Row 2 (M 1 ) ∼ Row 1 (M 2 ) , 

Row 3 (M 1 ) ∼ Row 2 (M 2 ) . 

Consider “1” as a dove, “row” as a cage, the number of equivalence classes, denoted by
n ( k ), is equivalent to the following classical dove-cage problem: put k doves into k − 1 cages.
This is because σ ∈ �s 

k , which means M σ is singular. In addition, M σ is a logical matrix,
so at least there is one zero row. Note that the cages are not labeled, because all the rows
are not distinguished. (To see this, we recall (33) , where three doves have been put into two
cases: in M 1 , two doves are put into cage 1 and one dove is put into cage 2; in M 2 , two
doves are put into cage 3 and one dove is put into cage 1. These two cases are considered
as the same. That is, we consider cages 1, 2, 3 are indistinguishable.) 

Then we can choose a representative from each equivalence class to form a set of gener-
ators, denoted by G 

s 
k . Hence, we have 

∣∣G 

s 
k 

∣∣ = n(k) . 
The representative is chosen as follows: Denote the number of doves in row i by a i , we

require 

a 1 ≥ a 2 ≥ · · · ≥ a k−1 ≥ a k = 0. (34) 

Then each equivalence class has a unique representative M , such that Row i (M) has the number
of 1 equal to a i . We call this class as (a 1 , a 2 , . . . , a k ) class. 

Denote by S ( m , s ) the set of decreasing nonnegative integer sequences, where the starting
element is less than or equal to s , and the total sum is m . That is, 

S(m, s) = 

{ 

(a 1 ≥ a 2 ≥ . . . ≥ a m 

) | a 1 ≤ s, 
m ∑ 

i=1 

a i = m 

} 

. 

Denote the number of such sequences by 

N (m, s) = 

| S(m, s) | . 
Now we consider n ( k ). Assume k doves are put into k − 1 cases with the numbers of doves

in decreasing order (such as in (34) ). Then a 1 ≥2. a 1 cannot be one, because in this case
k − 1 cages can have at most k − 1 doves. 
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Note that if a 1 = i, then the number of possible (representative) matrices is N (k −
 , min { i , k − i } ) . Hence we have 

(k) = 

k ∑ 

i=2 

N (k − i , min { i , k − i } ) . (35)

To calculate N ( m , s ), we set t = 

[
n 
s 

]
, where [ a ] is the integral part of a . Hence, t means at

ost we can have how many nonzero elements for each sequence in S ( m , s ). Then a recursive
ormula can be obtained easily as 

 (n, s) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 , if min { n, s} = 1 

t ∑ 

j=0 
N (n − js, s − 1) , otherwise . 

(36)

xample 3.7. Assume m = 5 , s = 3 , we calculate N (5, 3). Since t = 

[
5 
3 

] = 1 , then we have 

 (5 , 3) = N (5 , 2) + N (2, 2) . 

imilarly, we have 

 (5 , 2) = N (5 , 1) + N (3 , 1) + N (1 , 1) = 3 ;
 (2, 2) = N (2, 1) + N (0, 1) = 2. 

hat is: N (5 , 3) = 5 . It is easy to verity that the corresponding sequences are 

 1 = { 1 , 1 , 1 , 1 , 1 , 0, . . . } 
 2 = { 2, 1 , 1 , 1 , 0, . . . } 
 3 = { 2, 2, 1 , 0 . . . } 
 4 = { 3 , 1 , 1 , 0, . . . } 
 5 = { 3 , 2, 0 . . . } . 

Using formula (35) –(36) , it is easy to calculate that 

(2) = 1 , n(3) = 2, n(4) = 4, n(5) = 6 , 

(6) = 10, n(7) = 14, n(8) = 21 , . . . 

Note that s(k) := 

∣∣�s 
k 

∣∣ = k k − k! , then we have 

(2) = 2, s(3) = 21 , s(4) = 232, s(5) = 3005 , 

(6) = 45936 , s(7) = 818503 , s(8) = 16736896 , . . . 

ne sees easily that the number of generators has been tremendously reduced. 
Using Const . as the equivalence class of constant mappings, then we do not need these

appings in an ASC because they can be replaced by constant numbers. So we have the
ollowing result: 

roposition 3.8. 

 k := 

{
G 

n 
k , G 

s 
k \ Const . , ∨ 

(k) , ∧ 

(k) 
}

(37)

s an adequate set of k-valued logic. 
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In fact, using De Morgan formula, ∨ 

( k ) can be expressed by ∧ 

( k ) and ¬( k ) and vice versa.
So we do not need to keep both of them. 

Example 3.9. Consider the 3-valued logic. 

(i) We have 

G 

n 
3 = { δ3 [2, 1 , 3] ; δ3 [3 , 2, 1] };

G 

s 
3 \ Const . = { δ3 [1 , 1 , 2] } 

(ii) We may construct an ASC as: 

{ δ3 [2, 1 , 3] , δ3 [3 , 2, 1] , δ3 [1 , 1 , 2] , ∧ 

(3) } . (38) 

(iii) Is (38) an ASC of smallest size? In fact, it is not. Similar to the 2-valued case, we may
replace ∧ 

(3) by 

↑ 

(3) (ξ , η) := ¬ 

(3) 
[∧ 

(3) (ξ , η) 
]
. 

Setting ξ = 1 , we have ¬(3) ( η), that is, the ¬(3) is obtained. 
We also have 

¬ ↑ 

(3) (ξ , η) = ∧ 

(3) (ξ , η) . 

It follows that 

{ δ3 [2, 1 , 3] , δ3 [1 , 1 , 2] , ↑ 

(3) } 
is also an adequate set. 

(iv) G 

s 
k is the set of equivalence classes, which may not be the smallest set of generators for

�s 
k , because some elements in G 

n 
k can be generated by others. For instance, consider 

the 4-valued logic. Let A = δ4 [1 , 1 , 2, 3] and B = δ4 [1 , 2, 2, 4] . A ∼B because both of
them are in s = (2, 1 , 1 , 0) class. But AB = δ4 [1 , 1 , 1 , 3] , which is in s = (3 , 1 , 0, 0)

class. Hence (3,1,0,0) class can be generated by (2,1,1,0) class. Hence (3,1,0,0) class is
not necessary to be involved into G 

s 
4 . 

Hence finding an ASC of smallest size is, in general, a challenging task. So we may
accept G k , defined by (35) , as a non-minimum but acceptable ASC for k -valued logic. 

4. Mix-valued logic 

Definition 4.1. Assume χi ∈ D k i , i = 1 , . . . , n, a mapping F : 
∏ n 

i=1 D k i → D k 0 , denoted by
F (χ1 , . . . , χn ) ∈ D k 0 , is called a mix-valued logical function. 

Proposition 4.2 [2] . Given a mix-valued logical function F : 
∏ n 

i=1 D k i → D k 0 , assume χi ∈
D k i has vector form x i ∈ �k i , i = 1 , . . . , n. Then, there exists a unique logical matrix M F ∈
L k 0 ×k ( k = 

∏ n 
i=1 k i ), such that 

F (x 1 , . . . , x n ) = M F � 

n 
i=1 x i , x i ∈ �k i . (39) 

Definition 4.3. Assume χ ∈ D p , ξ ∈ D q , where p � = q , we define { 

χ ∧ ξ = ξ ∧ χ = χ, if ξ = 1 

χ ∨ ξ = ξ ∨ χ = χ, if ξ = 0. 
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Splitting M F into t = k/k n equal blocks as 

 f = [ L 

1 , ... , 1 , . . . , L 

1 , ... ,k n−1 , . . . , L 

k 1 ,k 2 , ... ,k n−1 ] , 

e define a set of unary operators φi 1 ,i 2 , ... ,i n−1 : D k n → D k 0 with structure matrix L 

i 1 ,i 2 , ... ,i n−1 ,

 s = 1 , . . . , k s , s = 1 , . . . n − 1 . Then we have the following normal form. 

heorem 4.4. Assume F : 
∏ n 

i=1 D k i → D k 0 is an n-variable mix-valued logical function with
lgebraic form 

 (x 1 , . . . , x n ) := M F � 

n 
i=1 x i , (40)

here M F ∈ L k 0 ×k is the structure matrix of F. 
Then it has 

• Disjunctive normal form: 

F (χ1 , . . . , χn ) = 

∨ k 1 
i 1 =1 

∨ k 2 
i 2 =1 . . . 

∨ k n−1 
i n−1 =1 [ 

� i 1 k 1 
(χ1 ) 

∧ 

� i 2 k 2 
(χ2 ) 

∧ 

. . . 
∧ 

� i n−1 

k n−1 
( χn−1 ) 

∧ 

φi 1 , ... ,i k−1 ( χn ) 
] 
. 

(41)

• Conjunctive normal form: 
Assume ¬ F (χ1 , . . . , χn ) has disjunctive normal form as (41) . Then using De Morgan
formula, the conjunctive normal form of F (χ1 , . . . , χn ) can be obtained as 

F (χ1 , . . . , χn ) = 

∧ k 1 
i 1 =1 

∧ k 2 
i 2 =1 . . . 

∧ k n−1 
i n−1 =1 [ 

� i 1 k 1 
(χ1 ) 

∨ 

� i 2 k 2 
(χ2 ) 

∨ 

. . . 
∨ 

� i n−1 

k n−1 
( χn−1 ) 

∨ 

φk 0 +1 −i 1 , ... ,k 0 +1 −i k−1 ( χn ) 
] 
. 

(42)

. Conclusion 

In this paper, we first reviewed the algebraic form of k -valued logical functions. Then
he conjunctive and disjunctive normal forms for k -valued logic were firstly presented. The
ompleteness of k -valued logic was discussed via constructing ASC, which was then tremen-
ously compressed by constructing a proper set of generators. Finally, the normal forms are
lso extended to mix-valued logic. 
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