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Synchronisation of a class of networked passive systems with switching topology
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This article considers the output synchronisation of a class of networked agents. Each agent is a passive system.
Local information, used by each agent to adjust its movement, forms a network with switching adjacent
topology. First, we consider the asymptotic stability of switched non-linear time-varying systems with delayed
measurement feedback by using multiple Lyapunov function. A Barbalat-like lemma is obtained. Then the result
is applied to the output synchronisation of a class of networked passive systems with switching topology.
A verifiable sufficient condition is presented.
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1. Introduction

Recently, the problem of synchronisation of networked
dynamic agents has attracted increasing attentions
from control community (Olfati-Staber 2004; Ren and
Beard 2005; Hong, Hu, and Gao 2006). This is partly
due to the broad synchronisation phenomena in
biological, chemical, physical and social systems
(Lü and Chen 2005; Chopra and Spong 2005; Yueh
and Cheng 2006; Sun, Tian, Fu, and Qian 2007). Local
and global adaptive synchronisation criteria for
uncertain complex dynamical networks are proposed
in Zhou, Lu, and Lü (2006). Li, Zhang, and Zhang
(2006) investigate the global synchronisation of a class
of complex networks with time-varying delays. It was
shown that the synchronisation of delayed complex
networks can be determined by their topologies.
Consensus problems are discussed for networks of
dynamic agents with fixed and switching topologies
in Olfati-Staber (2004). Olfati-Staber (2007) provides
a theoretical framework for analysis of consensus
algorithms for multi-agent networked systems with an
emphasis on the role of directed information flow,
robustness to changes in network topology due to link
failures, time-delay and performance guarantees.

Passivity is an important concept of system theory
and has been widely used as a fundamental tool in the
development of linear and non-linear feedback designs
by Byrnes, Isidori, and Willems (1991). Recently,
Chopra and Spong (2005) give a result for output
synchronisation of dynamic agents, which are assumed
to be non-linear passive systems and be affine in the
control, with fixed regular graph structure. It is

a motivation for this work. This article is a follow-up

of Chopra and Spong (2005). We consider the case

when the agents are moving and extend the main result

in Chopra and Spong (2005) to the dynamic agents

with switching topology.
Consider a non-linear affine system:

_xi ¼ fiðxiÞ þ giðxiÞui,

yi ¼ hiðxiÞ, i ¼ 1, . . . ,N,

(
ð1Þ

where xi2R
n represent agents, fi(.)2R

n, gi(.)2R
n�m,

ui2R
m, hi(.)2R

m and smooth mappings, and fi(0)¼ 0,

hi(0)¼ 0. We assume that a unique solution of (1) exists

for all time. In the following, we cite some basic

definitions from Chopra and Spong (2005) for the

problem description.

Definition 1.1: System (1) is said to be output

synchronised if

kyi � yjk ! 0 as t!1, 8 i, j ¼ 1, . . . ,N: ð2Þ

Definition 1.2: System (1) is said to be passive
with (ui, yi) as the input–output pair if there exists a

C1 storage function Si(xi)� 0, Si(0)¼ 0, such that for

all t� 0,

SiðxiðtÞÞ � Siðxið0ÞÞ �

Z t

0

uTi ðsÞyiðsÞds: ð3Þ

In this article we consider the output synchronisa-
tion of system (1) under the assumption that the system

is passive with respect to each sub-system (ui, yi).
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The synchronisation is based on the decentralised

control constructed on the local information received

by each agent, which forms a time-varying adjacent

topology.

It is well known that such a time-varying

topology leads to a switched system Jadbabaie, Lin,

and Morse (2003). Meanwhile, when the switches

and delay exist, the key technique used in Jadbabaie

et al. (2003) fails to be applicable. To overcome this

difficulty, we developed a new tool called the

Barbalat-like lemma. It is applicable for switched

non-linear time-varying systems with certain time

delay.
The article is organised as follows. Section 2

develops a generalised Barbalat lemma for switched

non-linear time-varying systems with delayed mea-

surement feedback by using multiple Lyapunov

function. The result obtained is applied to the

problem of synchronisation of the system (1) in x 3.

Synchronisation is achieved under certain additional

conditions. An illustrative example is included.

Section 4 is the conclusion.

2. Barbalat-like lemma

Consider a switched non-linear time-varying system

with delayed measurement feedback:

_x ¼ f�ðtÞðxðtÞ, hðxðt� �ÞÞ, tÞ, x 2 R
n, ð4Þ

where the switching law �(t) : [0,1)!� is a

right-continuous piecewise constant mapping,

�¼ {1, . . . ,N} for some integer N� 2, time delay

�40 is a constant parameter, and fi, i¼ 1, . . . ,N, and

h are smooth mappings.
It is obvious that the system (4) is the closed-loop

of a switched non-linear time-varying system

_x ¼ f�ðtÞðxðtÞ, u, tÞ

y ¼ hðxðt� �ÞÞ,

(

with delayed measurement feedback

u ¼ hðxðt� �ÞÞ:

To make the problem well posed, we assume that

u(t)¼ 0, t5�. That is,

Assumption 1

hðxðt� �ÞÞ ¼ 0, t5 �: ð5Þ

Under assumption A1,we denote the solution of

system (4) with initial condition x(0)¼ x0 and switch-

ing � by x(t)¼ ’�(x0, t).

For switched system (4), a switching sequence is to

specify when and to which mode the system should

switch. A switching sequence is a countable ordered

pair of active modes and ending dwell as

ði0, t0Þ, ði1, t1Þ, . . . , ðis, tsÞ, � � �
� �

, ð6Þ

where 0¼ t05t15� � �5ts5� � �51, lims!1 ts¼1 and

ij2�. The undergoing switching sequence can be

uniquely determined by switching function �(t),
satisfying

�ðtÞ ¼ ik, for t 2 ½ tk�1, tkÞ, ik 2 �, k ¼ 1, 2, . . . :

In this article, we assume that admissible switches

have a positive dwell-time T40. That is,

Assumption 2

minfðtjþ1 � tjÞ j j ¼ 0, 1, . . .g � T4 0: ð7Þ

The purpose of this section is to develop a Barbalat-

like lemma for system (4). First, we state the original

lemma.

Lemma 2.1: (Barbalat) (Slotine and Li 2006) Let V(t)

be a differentiable function, and limt!1 V(t)5þ1.

If _VðtÞ is uniformly continuous, then

lim
t!1

_VðtÞ ¼ 0:

Definition 2.2: A scalar time-varying function

V(x, t) is positive definite if V(0, t)¼ 0 and there

exists a time-invariant positive definite function V0(x)

such that

Vðx, tÞ � V0ðxÞ, 8 t � 0, x 2 R
n: ð8Þ

Similarly, we can define negative definiteness,

positive (or negative) semi-definiteness as follows.

A function V(x, t) is negative definite if �V(x, t)

is positive definite; V(x, t) is positive semi-definite if

V(x, t)� 0, 8x2R
n and 8t� 0; V(x, t) is negative semi-

definite if �V(x, t) is positive semi-definite.

Recall the non-linear time-varying switched system

(4) with delayed measurement feedback, we would like

to provide a Barbalat-like lemma to it.

Theorem 2.3: For the system (4), suppose the switch-

ing law satisfies (6), (7) and there exist Vi (x, t), i2�,

which are differentiable, lower bounded and radially

unbounded, such that

(i) _Við’�ðtÞðtÞ, tÞ is negative semi-definite, 8i2�,
(ii) _Við’�ðtÞðtÞ, tÞ is uniformly continuous in time,

8i2�, 8 x2R
n,
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(iii) For every pair of switching times ti5tj such that

�(ti)¼ �(tj)¼ p, for each x02R
n and every

solution ’�(t)(t) :¼ ’�(t)(x0, t),

Vpð’�ðtÞðtjÞ, tjÞ � Vpð’�ðtÞðtiÞ, tiÞ, ð9Þ

then we have

_V�ðtÞð’�ðtÞðtÞ, tÞ ! 0, t!1:

Proof: Assume that _Við’�ðtÞðtÞ, tÞ does not approach

zero as t!1. Then there exists "040, and an infinite

sequence ftkjkg
1
k¼1 ðt

k
jk
!1, as k!1, and �ðtkjk Þ ¼ jkÞ,

such that

_Vjk

�
’
�
�
tkjk

��tkjk�, tkjk
�����
���� � "0: ð10Þ

Since j�j51, there exists at least one special jk,

denoted by j*, which appears an infinite number of

times. We, therefore, can find a sub-sequence ftkj� g
1
k¼1

ðtkj� ! 1, as k!1), �ðtkj� Þ ¼ j� and

j _Vj� ð’�ðtk
j�
Þðt

k
j� Þ, t

k
j� Þj � "0.

Because Lfi
Vi(x, t) is uniformly continuous in time,

8i2�, there exists a 05�5T such that for any t0 and

t00 satisfying jt0 � t00j5�, we have

_Við’�ðt0Þðt
0Þ, t0Þ � _Við’�ðt00Þðt

00Þ, t00Þ
�� �� � "0

2
, 8 i 2 �:

ð11Þ

Suppose

�ðtÞ ¼ j�, for t 2 ½tjk�1 , tjk Þ, and tkj� 2 ½tjk�1 , tjk Þ: ð12Þ

Because of (10) and (11), if jt� tkj� j5 � and t2 [tjk�1, tjk),

then

j _Vj� ð’�ðtj� Þðtj� Þ, tj� Þj4
"0
2
: ð13Þ

Note that �5T5jtjk� tjk�1j, so either

tkj� , t
k
j� þ

�

2

h i
� tjk�1 , tjk
	 �

,

or

tkj� �
�

2
, tkj�

h i
� tjk�1 , tjk
	 �

:

Without loss of generality, we assume that ½tkj� , t
k
j� þ

�
2	

� ½tjk�1 , tjkÞ: ThenZ tk
j�
þ
�
2

tk
j�

_Vj� ð’�ð�Þð�Þ, �Þd�

�����
�����

¼

Z tk
j�
þ
�
2

tk
j�

_Vj� ð’�ð�Þð�Þ, �Þ
�� ��d� � "0

2
�
�

2
: ð14Þ

Using the fact that Vj*(x, t) is lower bounded,

the condition (iii), combined with the condition (i),

ensures that the function Vj* is non-increasing on the

union of the intervals where subsystem j* is active, Vj*

then approaches to a finite limiting value Vj*(1), then

we have

X1
k¼1

Z tk
j�
þ
�
2

tk
j�

_Vj� ð’�ð�Þð�Þ, �Þd�

�����
�����

¼
X1
k¼1

Z tk
j�
þ
�
2

tk
j�

_Vj� ð’�ð�Þð�Þ, �Þ
�� ��d� � Vj� ð0Þ � Vj� ð1Þ:

ð15Þ

Taking (14) into consideration, (15) is a

contradiction. So

_V�ðtÞð’�ðtÞðtÞ, tÞ ! 0: h

Now we are ready to study the synchronisation

problem.

3. Synchronisation of agents with balanced graph

structure

To begin with, we describe the information flow

among agents by using concepts from graph theory.
Consider a system of N agents V ¼ {1, . . . ,N}

described by (1). Let G¼ (V, E,A) be a directed graph

of order N with the set of agents V ¼ {1, . . . ,N}, a set

of edges E 
V �V and an adjacency matrix A¼ [aij]

with 0 and 1 adjacency elements aij. An edge of G is

denoted by eij¼ (i, j), it means that the agent j is

transmitting its output to the agent i. The adjacent

elements associated with the edges of the graph are of

the value 1, i.e. eij2E, aij¼ 1, otherwise aij¼ 0.

Moreover, we assume aii¼ 0. The set of neighbours

of agent i is denoted by Ni¼ {j2Vj(i, j)2E}.
The in-degree and out-degree of agent i are,

respectively, defined as follows:

deginðiÞ ¼
Xn
j¼1

aji, degoutðiÞ ¼
Xn
j¼1

aij: ð16Þ

Here, degout(i)¼ jNij.

Definition 3.1 (Balanced Graphs (Olfati-Staber

2004)): An agent i of a direct graph G¼ (V, E,A) is

said to be balanced if its in-degree and out-degree are

equal. A graph G¼ (V, E,A) is said to be balanced if all

of its agents are balanced, i.e.

Xn
j¼1

aji ¼
Xn
j¼1

aij, 8 i: ð17Þ
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Note that any undirected graph is balanced. An
example of directed balanced graph is shown in
Figure 1.

Definition 3.2 (Godsil and Royle 2001): For
a directed graph G¼ (V, E,A), a weak path is
a sequence k0, . . . , kr of distinct agents such that for
i¼ 1, . . . , r either (ki�1, ki) or (ki, ki�1) in E. A directed
graph is weakly connected if and only if two agents can
be joined by a weak path.

In the following, we develop control strategies for
synchronisation of the passive agents which are
networked with switched weak connected topology.
First, we introduce a key result.

Theorem 3.3 (Lozano, Brogliato, Egeland, and
Maschke 2000): Consider the non-linear system (1).
The following statements are equivalent.

(1) There exists a C1 storage function Si (xi)� 0,
Si (0)¼ 0 and a function Qi(xi)� 0 such that for
all t� 0:

SiðxiðtÞÞ � Siðxið0ÞÞ ¼

Z t

0

uTi yiðsÞds�

Z t

0

QiðxiðsÞÞds:

ð18Þ

(2) There exists a C1 scalar function Si (xi)� 0,
Si(0)¼ 0, such that

LfiSiðxiÞ ¼ �QiðxiÞ; ð19Þ

LgiSiðxiÞ ¼ hTi ðxiÞ, ð20Þ

where LfiSiðxiÞ ¼
@ST

i

@xi
fiðxiÞ and LgiSiðxiÞ ¼

@ST
i

@xi
giðxiÞ:

(3) The system is passive.

The system is strictly passive if Qi(xi)40,
passive if Qi(xi)� 0 and lossless if Qi(xi)¼ 0.

The agent dynamics of system (1) is assumed to be
passive with positive definite storage functions
S1(x1),S2(x2), . . . ,SN(xN), respectively. As there are

time delays in the network, the agents receive a delayed

information of the outputs of other agents. Let the

agents be coupled together by a control constructed by

using local information

ui ¼

P
j2NiðtÞ

Kð yjðt� �Þ � yiðtÞÞ, t � �

0, t5 �, i ¼ 1, . . . ,N,

(
ð21Þ

where K is a positive constant, Ni(t) is the set of mi(t)

agents which are transmitting their outputs to the ith

agent at time t (thus the cardinality of each set Ni(t),

i¼ 1, . . . ,N is mi(t)), and � is the constant time-delay in

the network.
Since we are interested in long-term behaviour of

the system, we do not need to worry about the period

t5�. We will ignore this time period in later discussion.

Example 3.4: A system of networked four agents at

time t is illustrated as in Figure 1.
Assume they have dynamics of (1), we construct the

control as in (21). It is easy to calculate that m1(t)¼ 1,

m2(t)¼ 2, m3(t)¼ 2, m4(t)¼ 1. Hence the controls are

u1ðtÞ ¼ Kð y2ðt� �Þ � y1Þ,

u2ðtÞ ¼ Kð y4ðt� �Þ � y2Þ þ Kð y3ðt� �Þ � y2Þ,

u3ðtÞ ¼ Kð y2ðt� �Þ � y3Þ þ Kð y1ðt� �Þ � y3Þ,

u4ðtÞ ¼ Kð y3ðt� �Þ � y4Þ, t � �:

ð22Þ

Now consider system (1). Note that the relationship

between neighbours (in other words, the interconnec-

tion topology) can change over time. We assume all

possible topologies of balanced weakly connected

graphs are G1,G2, . . . ,GM, where Gp
¼ (Vp, Ep,Ap),

p¼ 1, . . . ,M, the adjacency matrix Ap ¼ ½a
p
ij	 with 0

and 1 adjacency elements a
p
ij, we denote m

p
i ¼

Pn
j¼1 a

p
ij,

i¼ 1, . . . , n.

Assume that (1) is passive. According to

Theorem 3.3 there are Si(xi)� 0, Qi(xi)� 0 such that

(18) holds. Using them we define a switching signal

�(t) : [0,1)!W¼ {1, . . . ,M}, �(t) is a piecewise

constant function satisfying condition (7), �(t)¼ p

means that the topology is Gp at time t, then

miðtÞ ¼ m
p
i and NiðtÞ ¼ N

p
i . Define

Vpðx1ðtÞ, . . . , xNðtÞ, tÞ ¼
XN
i¼1

m
p
i K

Z t

t��

yTi yi d�

þ 2
XN
i¼1

SiðxiÞ þ 2
XN
i¼1

Z t

0

Qiðxið�ÞÞd�,

p2W ¼ f1, . . . ,Mg: ð23Þ

Figure 1. Networked four agents in Example 3.4.
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Note that here Vp is trajectory-depending. Then

2
PN

i¼1 SiðxiÞ is a time-invariant positive semi-definite

function. Since

Vpðx1ðtÞ, . . . , xNðtÞ, tÞ � 2
XN
i¼1

SiðxiÞ, ð24Þ

Vp(x1(t), . . . , xN(t), t) is a positive semi-definite candi-

date of Lyapunov function.
The following lemma comes from continuity:

Lemma 3.5: Assume f(x) :Rn
!R

s is a continuous

mapping,�2R
n is a bounded set, then f(�) is bounded.

The following is our main result, which provides

some sufficient condition to assure the output synchro-

nisation of passive dynamic systems with time delay.

Theorem 3.6: Assume the switching modes of the

system (1) are passive with radially unbounded storage

functions Si(xi)40, i¼ 1, . . . ,N, all possible topologies

of balanced weakly connected graph are G1,G2, . . . ,GM,

the solution of system i under switching law � and

from initial state x0i is denoted as xiðtÞ ¼ ’
i
�ðx

0
i , tÞ,

i¼ 1, . . . ,N, and the controls are chosen as in (21), the

Lyapunov functions are defined as in (23), then if for

every pair of switching times ti5tj with �(ti)¼ �(tj)¼ p,

Vp ’
1
�, . . . , ’N� , tj

� �
� Vp ’

1
�, . . . , ’N� , ti

� �
, ð25Þ

then the non-linear systems described by (1) can be

output synchronised by controls (21).

Proof: The derivative of (23) along trajectories of the

system is given as

_Vpðx1ðtÞ, . . . ,xNðtÞ, tÞ¼
XN
i¼1

m
p
i K yTi yi�yTi ðt� �Þyiðt� �Þ
� �

þ2
XN
i¼1

LfiSiþLgiSiui
� �

þ2
XN
i¼1

QiðxiðtÞÞ, p¼ 1, . . . ,M:

ð26Þ

Using Theorem 3.3, the derivative can be reduced to

_Vpðx1ðtÞ, . . . , xNðtÞ, tÞ

¼
XN
i¼1

m
p
i K yTi yi � yTi ðt� �Þyiðt� �Þ
� �

þ 2
XN
i¼1

ð yTi uiÞ
XN
i¼1

m
p
i K yTi yi � yTi ðt� �Þyiðt� �Þ
� �

þ 2
XN
i¼1

X
j2N

p
i

yTi K yjðt� �Þ � yi
� �

: ð27Þ

The term
PN

i¼1 m
p
i Kð y

T
i yi � yTi ðt� �Þyiðt� �ÞÞ can

be written as K
PN

i¼1

P
j2N

p
i
ð yTi yi � yTi ðt� �Þyiðt� �ÞÞ.

Plugging this into (27) yields

_Vpðx1ðtÞ, . . . , xNðtÞ, tÞ

¼ K
XN
i¼1

X
j2N

p
i

yTi yi � yTi ðt� �Þyiðt� �Þ
� �

þ 2
XN
i¼1

X
j2N

p
i

yTi Kð yjðt� �Þ � yiÞ

¼ K
XN
i¼1

X
j2Np

i

yTi yi � K
XN
i¼1

X
j2Np

i

yTi ðt� �Þyiðt� �Þ
� �

þ 2K
XN
i¼1

X
j2N

p
i

yTi yjðt� �Þ � 2K
XN
i¼1

X
j2N

p
i

yTi yi:

ð28Þ

Since the graph is a balanced one, we have

K
XN
i¼1

X
j2Np

i

yTi ðt� �Þyiðt� �Þ
� �

¼ K
XN
i¼1

X
j2N

p
i

yTj ðt� �Þyjðt� �Þ

 �

: ð29Þ

Hence

_Vpðx1ðtÞ, . . . , xNðtÞ, tÞ ¼ �K
XN
i¼1

X
j2N

p
i

ð yjðt� �Þ � yiÞ
T

� ð yjðt� �Þ � yiÞ: ð30Þ

It can be rewritten as

_Vpðx1ðtÞ, . . . , xNðtÞ, tÞ

¼ �K
XN
i¼1

X
j2Np

i

½yjðxjðt� �ÞÞ � yiðxiðtÞÞ	
T

� ½yjðxjðt� �ÞÞ � yiðxiðtÞÞ	,

hence _Vpðx1ðtÞ, . . . , xNðtÞ, tÞ � 0.
Then Vp, p¼ {1, . . . ,M} are bounded, because

Si(xi), i¼ 1, . . . ,N are radially unbounded. It follows

that xi, i¼ 1, . . . ,N are bounded. Then using

Lemma 3.5, yi¼ hi(xi), _yi, fi, gi, i¼ 1, . . . ,N are all

bounded. Suppose

k _xik5�1, i ¼ 1, . . . ,N ð31Þ

and

k _yik5�2, i ¼ 1, . . . ,N, ð32Þ

1330 Y. Zhu et al.



then for any t140, t240,

jyiðt1Þ � yiðt2Þj5�1�2jt1 � t2j, i ¼ 1, . . . ,N: ð33Þ

Hence, yi, i¼ 1, . . . ,N are uniformly continuous in

time.
Using Theorem 2.3, _V�ðtÞðx1ðtÞ, . . . , xNðtÞ, tÞ ! 0

as t!1.
Consider the set

Ep ¼ xi 2 R
n, i ¼ 1, . . . ,N _Vp � 0

��� �
: ð34Þ

Ep is characterised by all trajectories such that

n
yjðt� �Þ � yiðtÞ
� �T

yjðt� �Þ � yiðtÞ
� �

� 0, 8 j 2 N
p
i , 8 i 2 �

o
: ð35Þ

Since _V�ðx1ðtÞ,...,xNðtÞ,tÞðtÞ ! 0 as t!1, it implies

that the output of every ith agent asymptotically

converges to that of its neighbours. Balanced weakly

connectivity of the network then implies output

synchronisation of system (1). œ

Remark: If the topology of adjacent graph is fixed,

Chopra and Spong (2005) defined a Lyapunov

function

Vðx1ðtÞ, . . . , xNðtÞ, tÞ

¼ K
XN
i¼1

X
j2NiðtÞ

Z t

t��

yTj ðsÞyjðsÞdsþ 2ðS1 þ � � � þ SN Þ,

and

_Vðx1ðtÞ, . . . ,xNðtÞ, tÞ

¼ �K
XN
i¼1

X
j2NiðtÞ

ð yjðt� �Þ � yiÞ
T
ð yjðt� �Þ � yiÞ

� 2
Xn
i¼1

QiðxiðtÞÞ: ð36Þ

Then using Barbalat’s lemma, the same result of

Theorem 3.6 can be obtained. Now for varying

topology of adjacent graph, it is obvious that V is

not a continuous function, so it cannot be chosen as

a Lyapunov function. Moreover, _V, which exists a.e.,

cannot satisfy the requirement of Barbalat’s lemma

(Lemma 2.1) that _V is uniformly continuous. That is

why we need Theorem 2.3.

Example 3.7: Consider a multi-agent system with the

dynamics of the agents being given as

_xi ¼ ui, yi ¼ xi, i ¼ 1, 2, 3, 4: ð37Þ

The agents are passive with positive and radially

unbounded storage functions

SiðxiÞ ¼
1
2 x

T
i xi, i ¼ 1, 2, 3, 4: ð38Þ

Suppose the topologies are switched between

G1 (illustrated as in Figure 1) and G2 (illustrated as

in Figure 2). Using control (21), the closed-loop

dynamics are described as follows: under topology

G1, the modes’ dynamics are given as

_x1 ¼ Kðx2ðt� �Þ � x1Þ,

_x2 ¼ Kðx4ðt� �Þ � x2Þ þ Kðx3ðt� �Þ � x2Þ,

_x3 ¼ Kðx2ðt� �Þ � x3Þ þ Kðx1ðt� �Þ � x3Þ,

_x4 ¼ Kðx3ðt� �Þ � x4Þ:

ð39Þ

The Lyapunov function is given as

V1ðx1ðtÞ, . . . , x4ðtÞ, tÞ

¼ K

Z t

t��

xT1 x1 dsþ 2K

Z t

t��

xT2x2 ds

þ 2K

Z t

t��

xT3 x3 dsþ K

Z t

t��

xT4 x4 dsþ
X4
i¼1

xTi xi, ð40Þ

_V1ðx1ðtÞ, . . . , x4ðtÞ, tÞ ¼

� K½ðx2ðt� �Þ � x1ðtÞ	
T
½x2ðt� �Þ � x1ðtÞ	

� K½ðx4ðt� �Þ � x2ðtÞ	
T
½x4ðt� �Þ � x2ðtÞ	

� K½ðx3ðt� �Þ � x2ðtÞ	
T
½x3ðt� �Þ � x2ðtÞ	

� K½ðx2ðt� �Þ � x3ðtÞ	
T
½x2ðt� �Þ � x3ðtÞ	

� K½ðx1ðt� �Þ � x3ðtÞ	
T
½x1ðt� �Þ � x3ðtÞ	

� K½ðx3ðt� �Þ � x4ðtÞ	
T
½x3ðt� �Þ � x4ðtÞ	: ð41Þ

Under topology G2, the modes’ dynamics are

given as

_x1 ¼ Kðx3ðt� �Þ � x1Þ,

_x2 ¼ Kðx1ðt� �Þ � x2Þ,

_x3 ¼ Kðx4ðt� �Þ � x3Þ,

_x4 ¼ Kðx2ðt� �Þ � x4Þ:

ð42Þ

Figure 2. Networked four agents in Example 3.7.
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The Lyapunov function is given as

V2ðx1ðtÞ, . . . , x4ðtÞ, tÞ

¼ K

Z t

t��

xT1x1 dsþ K

Z t

t��

xT2 x2 dsþ K

Z t

t��

xT3 x3 ds

þ K

Z t

t��

xT4 x4 dsþ
X4
i¼1

xTi xi, ð43Þ

_V2ðx1ðtÞ, . . . , xNðtÞ, tÞ ¼

� K½ðx3ðt� �Þ � x1ðtÞ	
T
½x3ðt� �Þ � x1ðtÞ	

� K½ðx1ðt� �Þ � x2ðtÞ	
T
½x1ðt� �Þ � x2ðtÞ	

� K½ðx4ðt� �Þ � x3ðtÞ	
T
½x4ðt� �Þ � x3ðtÞ	

� K½ðx2ðt� �Þ � x4ðtÞ	
T
½x2ðt� �Þ � x4ðtÞ	: ð44Þ

We choose the switching law as

�ðtÞ ¼

G1, t 2
	
ð2k� 2ÞT, ð2k� 1ÞT

�
,

G2, t 2
	
ð2k� 1ÞT, ð2kÞT

�
,

k ¼ 1, 2, . . . ,

8>><
>>: ð45Þ

where T is a sampling time. Choosing T¼ 5, the time-

delay �¼ 2s, and the initial conditions are

x01 ¼ 4, x02 ¼ 2, x03 ¼ �2, x
0
4 ¼ �4:
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Figure 3. Lyapunov function V1.
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Figure 4. Lyapunov function V2.
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Figure 5. The synchronisation of the system.
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The corresponding V1 is depicted in Figure 3 and

V2 is depicted in Figure 4, which shows the conditions

of Theorem 3.6 are satisfied, so the system is

synchronised.
Finally, Figure 5 gives the simulation for

the system, which shows the synchronisation of the

system.

4. Conclusion

Following the pioneer work in Chopra and Spong

(2005), in this article we considered the problem of

output synchronisation of a class of networked agents.

The dynamics of each agent is a passive system and

each agent can use its neighbourhood information to

adjust its movement. The local information then forms

a varying adjacent topology. We first investigated the

stability of time-varying non-linear system by using

multiple Lyapunov function. Some stability results

were obtained. Particularly, an extended Lyapunov-

like lemma was proved. Using this tool, certain

sufficient conditions for the output synchronisation

of the networked agents were obtained.

Acknowledgements

The authors are in debt to Prof. M. Spong for introducing his
pioneer work to us. This work was supported by NNSF
60674022, 60736022, 60221301 of China.

References

Byrnes, C., Isidori, A., and Willems, J. (1991), ‘Passivity,

Feedback Equivalence, and the Global Stabilization of

Minimum Phase Non-linear Systems’, IEEE Transactions

on Automatic Control, 36, 1228–1240.
Chopra, N., and Spong, M.W. (2005), ‘On Synchronization

of Networked Passive Systems with Time Delays and

Application to Bilateral Teleoperation’, Society of

Instrumentation and Control Engineering of Japan Annual
Conference, Okayama, Japan, August 8-10, 2005.

Godsil, C., and Royle, G. (2001), Algebraic Graph Theory,
NewYork: Spring-Verlag, pp. 29–30.

Hong, Y., Hu, J., and Gao, L. (2006), ‘Tracking Control for
Multi-agent Consensus with an Active Leader and

Variable Topology’, Automatica, 42, 1177–1182.
Jadbabaie, A., Lin, L., and Morse, A.S. (2003),
‘Coordination of Groups of Mobile Autonomous Agents

using Nearest Neighbour Rules’, IEEE Transactions on
Automatic Control, 48, 988–1001.

Li, P., Zhang, Y., and Zhang, L. (2006), ‘Global

Synchronization of a Class of Delayed Complex
Networks’, Chaos, Solution and Fractals, 30, 903–908.

Lozano, R., Brogliato, B., Egeland, O., and Maschke, B.
(2000), Dissipative Systems Analysis and Control: Theory

and Applications, London: Springer-Verlag.
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