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Abstract: A class of formulas for converting linear matrix mappings into conventional linear mappings are presented. Using them,
an easily computable numerical method for complete parameterized solutions of the Sylvester matrix equation AX −EXF = BY and
its dual equation XA − FXE = Y C are provided. It is also shown that the results obtained can be used easily for observer design.
The method proposed in this paper is universally applicable to linear matrix equations.
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1 Introduction

Sylvester matrix equation has many applications in con-
trol theory. Particularly, when a singular control system is
considered, it is widely used for designing controls, such as
pole placement, tracking, design of Luenberger observers,
etc. Due to its importance in practice, it has attracted
much attention[1−6].

The Sylvester matrix equation considered in this paper
is of the following form:

AX − EXF = BY (1)

where A, E ∈ Rn×n, B ∈ Rn×r, and F ∈ Rp×p, with
unknowns X ∈ Rn×p and Y ∈ Rr×p. We use Rm×n for the
set of m × n matrices. Sylvester matrix equation (1) and
its dual equation play an important role in linear system
analysis and control design. Please refer to [7–9] and the
references therein for details.

A basic assumption for the solution of (1) is called R-
controllable. (E, A, B) is called R-controllable if

rank
[
sE −A B

]
= n, ∀ s ∈ C, rank(B) = r. (2)

The following lemma was proved in [8].
Lemma 1. If E, A, and B satisfy R-controllable condi-

tion (2), then (1) has rp degree-of-freedom. In other words,
(1) has rp linearly independent solutions.

Recently, in [9], a complete general parametric expression
for the solution (X, Y ) is obtained under the assumption
that (E, A, B) is R-controllable.

This paper shows that when the linear matrix equation
is expressed as a convenient linear equation, the parame-
terized solutions can be obtained easily. To begin with, we
give some notations and results, which are from [10].

Let A = (aij) ∈ Rm×n. Its column stacking form is
expressed as

cs(A) = (a11, a21, · · · , am1, · · · , a1n, a2n, · · · , amn)T . (3)
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Its row stacking form is

rs(A) = (a11, a12, · · · , a1n, · · · , am1, am2, · · · , amn)T . (4)

Let x = (xi) ∈ Rmn. Then,
1)

cs−1(x, m) =




x1 xm+1 · · · x(n−1)m+1

x2 xm+2 · · · x(n−1)m+2

...
...

. . .
...

xm x2m · · · xnm




. (5)

2)

rs−1(x, n) =




x1 x2 · · · xn

xn+1 xn+2 · · · x2n

...
...

. . .
...

x(m−1)n+1 x(m−1)n+2 · · · xmn




. (6)

Next, we convert a linear matrix mapping into a con-
ventional linear mapping. Define a mapping ρ : Rn×p →
Rm×p, determined by X 7→ AX, where X ∈ Rn×p and
A ∈ Rm×n. We use column stacking form first. Denote
x = cs(X) ∈ Rnp, y = cs(AX) ∈ Rmp, and consider the
matrix mapping ρ as a linear mapping ρ : Rnp → Rmp,
with its matrix form Mc

ρ :

y = cs(AX) = Mc
ρx. (7)

For various linear matrix mappings, we can construct
their respective matrix form. The followings are some typ-
ical ones.

Theorem 1. Assume A ∈ Rm×n, B ∈ Rp×q, C ∈
Rm×p, D ∈ Rn×q, and X ∈ Rn×p,

1) If ρ : X 7→ AX, then

Mc
ρ = Ip ⊗A. (8)

2) If ρ : X 7→ XB, then

Mc
ρ = BT ⊗ In. (9)
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3) If ρ : X 7→ CXT, then

Mc
ρ = (In ⊗ C)W[p,n]. (10)

4) If ρ : X 7→ XTD, then

Mc
ρ = (DT ⊗ Ip)W[p,n]. (11)

5) If ρ : X 7→ AXB + CXTD, then

Mc
ρ = (BT ⊗A) + (DT ⊗ C)W[p,n]. (12)

Here, ⊗ is the Kronecker product, and W[m,n] is a swap
matrix (refer to [10] or [11] for the definition).

Next, we use row stacking form. That is, for ρ : X 7→
AX, we denote x = rs(X), y = rs(AX) and express the
matrix form of ρ by Mr

ρ ,

y = rs(AX) = Mr
ρ x. (13)

Similar to Theorem 1, we have the following results.
Theorem 2. Assume that A ∈ Rm×n, B ∈ Rp×q, C ∈

Rm×p, D ∈ Rn×q, and X ∈ Rn×p.
1) If ρ : X 7→ AX, then

Mr
ρ = A⊗ Ip. (14)

2) If ρ : X 7→ XB, then

Mr
ρ = In ⊗BT. (15)

3) If ρ : X 7→ CXT, then

Mr
ρ = (C ⊗ In)W[n,p]. (16)

4) If ρ : X 7→ XTD, then

Mr
ρ = (Ip ⊗DT)W[n,p]. (17)

5) If ρ : X 7→ AXB + CXTD, then

Mr
ρ = (A⊗BT) + (C ⊗DT)W[n,p]. (18)

2 Parameterized solutions

Using Theorem 1, we can convert (1) into a system of
linear equations

[
Ip ⊗A− FT ⊗ E −Ip ⊗B

] [
x

y

]
= 0 (19)

where x = cs(X) and y = cs(Y ).
Assume that U is a nonsingular matrix such that

U−1FU = J

where J is the Jordan canonical form of F . We define X̃ =
XU and Ỹ = Y U . Then, (1) can be expressed equivalently
as

AX̃ − EX̃J = BỸ . (20)

Correspondingly, (19) becomes

[
Ip ⊗A− JT ⊗ E −Ip ⊗B

] [
x̃

ỹ

]
= 0 (21)

where x̃ = cs(X̃) and ỹ = cs(Ỹ ). Now, (21) has a block
lower triangular form:




A−λ1E −B 0 · · · 0

∗ A−λ2E −B · · · 0
...

∗ ∗ · · · A−λpE −B




[
x̃

ỹ

]

= 0
(22)

where λi, i = 1, · · · , p are eigenvalues of F . Equations
(21)–(22) and the following proposition have been proved
in [12].

Proposition 1. Equation (1) has solutions of (mini-
mum) degree-of-freedom rp, if and only if

rank(λE −A B) = n, ∀λ ∈ σ(F ). (23)

Obviously, Lemma 1 is a special case of Proposition 1,
because (2) ensures (23). Hereinafter, we assume that (23)
holds.

Then, from (19), we have rp linearly independent solu-
tions [

x1

y1

]
,

[
x2

y2

]
, · · · ,

[
xrp

yrp

]
. (24)

Then, the set of rp linearly independent solutions of (1) are

{
Xi = cs−1(xi, n),

Y i = cs−1(yi, r),
i = 1, 2, · · · , rp. (25)

It follows that the parameterized solution is





X =
rp∑

i=1

µics
−1(xi, n)

Y =
rp∑

i=1

µics
−1(yi, r)

(26)

where µ = (µ1, · · · , µrp)T are parameters. µ 6= 0 corre-
sponds to non-zero solution.

Remark 1. It is obvious that the set of solutions has
rp degree-of-freedom, if and only if the coefficient matrix of
(19) has full row rank. That is,

rank
(
Ip ⊗A− FT ⊗ E −Ip ⊗B

)
= pn. (27)

This fact is important in finding independent solutions. An
easy way to find the solutions is to choose arbitrary rp rows,
equivalently, an rp× (r + n)p matrix Φ, such that

Ψ =

[
Ip ⊗A− FT ⊗ E −Ip ⊗B

Φ

]
(28)

is non-singular. Then, the last rp columns of Ψ−1 form
(24), the set of rp linearly independent solutions of (19).

In the design of Luenberger observer, we have to solve
the dual equation of (1)[9]. Precisely, it is

XA− FXE = Y C (29)

where A, E ∈ Rn×n, C ∈ Rm×n, and F ∈ Rp×p, with
unknowns X ∈ Rp×n and Y ∈ Rp×m.
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Using Theorems 2, we can convert (29) into a system of
linear equations:

[
Ip ⊗AT − F ⊗ ET −Ip ⊗ CT

] [
x

y

]
= 0 (30)

where x = rs(X) and y = rs(Y ).
Define X̃ = U−1X and Ỹ = U−1Y . Similar argument to

Proposition 1 yields the following corollary:
Corollary 1. Equation (29) has solutions of (minimum)

degree-of-freedom rp, if and only if

rank

[
λE −A

C

]
= n, ∀λ ∈ σ(F ). (31)

Now, assume that (31) holds, and the linearly indepen-
dent solutions of (30) have the form of (24). Then, the set
of rp linearly independent solutions of (29) are

{
Xi = rs−1(xi, n),

Y i = rs−1(yi, m),
i = 1, 2, · · · , rp. (32)

The parameterized solution is





X =
rp∑

i=1

µirs
−1(xi, n)

Y =
rp∑

i=1

µirs
−1(yi, m).

(33)

3 The algorithm

According to the results in Section 2, an algorithm for
solving the Sylvester matrix equation (1) is constructed.

Step 1. Convert system (1) into the form of (19)

[
Ip ⊗A− FT ⊗ E −Ip ⊗B

] [
x

y

]
= 0.

Step 2. We have assumed that (23) holds. Then, choose
an rp× (r + n)p matrix Φ such that (28)

Ψ :=

[
Ip ⊗A− FT ⊗ E −Ip ⊗B

Φ

]

is nonsingular.
Step 3. Compute Ψ−1. Then, the last rp columns of

Ψ−1

[
x1

y1

]
,

[
x2

y2

]
, · · · ,

[
xrp

yrp

]

form the set of rp linearly independent solutions of (19).
Step 4. Compute





X =
rp∑

i=1

µics
−1(xi, n)

Y =
rp∑

i=1

µics
−1(yi, r)

that are the parameterized solutions of (1).

4 An illustrative example

As an application example, we consider the following sin-
gular linear system[9]

{
Eẋ = Ax + Bu, x ∈ Rn, u ∈ Rr

y = Cx, y ∈ Rm.
(34)

To ensure the uniqueness of the solution, we assume that
(E, A) is a normal pair (or system (34) is normal), that is,
there exists s ∈ C such that

det(sE −A) 6= 0. (35)

The system is called R-observable if

rank

[
sE −A

C

]
= n, ∀ s ∈ C. (36)

The Luenberger observer has the following form:

{
ż = Fz + Gy + Su, z ∈ Rp

ω = Mz + Ny, ω ∈ Rr.
(37)

The design purpose is to find parameter matrices F ∈ Rp×p,
G ∈ Rp×m, S ∈ Rp×r, M ∈ Rr×p, and N ∈ Rr×m, such
that for a certain K ∈ Rr×n, any initial x(0), z(0) and
arbitrary input u(t), we have

lim
t→∞

(Kx(t)− ω(t)) = 0. (38)

We refer to [9] or [13] for the following result.
Theorem 3. Assume system (34) is normal and R-

observable. Then, system (37) is a Kx observer, if and only
if there exist matrices F , T , G, S, M , and N , satisfying





S = TB

TA− FTE = GC

K = MTE + NC

Re[σ(F )] < 0, i.e., F is Hurwitz.

(39)

Next, we use the same example in [9] to show how con-
venient our approach is.

Example 1. Consider system (34). Assume

E =




1 0 0

0 0 1

0 0 0


 , A =



−5 0 0

0 1 0

0 0 1


 ,

C =

[
1 0 0

0 1 0

]
, B =




1 0

0 1

0 0


 .

As in [9], we want to design a Luenberger observer to track
Kx, where

K =

[
0 1 0

1 0 −1

]
.

F can be any stable matrix. Now, following [9], we choose

F =

[
0 −2

1 −2

]
.
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Consider the second equation of (39) first. Using (30), a
straightforward computation shows that it can be written
as



−5 0 0 2 0 0 −1 0 0 0

0 1 0 0 0 0 0 −1 0 0

0 0 1 0 2 0 0 0 0 0

−1 0 0 −3 0 0 0 0 −1 0

0 0 0 0 1 0 0 0 0 −1

0 −1 0 0 2 1 0 0 0 0




[
t

g

]
= 0

(40)
where t = rs(T ) and g = rs(G). Similar to (28), we can
choose a Φ and construct the (n + r)p× (n + r)p matrix Ψ
as

Ψ =




−5 0 0 2 0 0 −1 0 0 0

0 1 0 0 0 0 0 −1 0 0

0 0 1 0 2 0 0 0 0 0

−1 0 0 −3 0 0 0 0 −1 0

0 0 0 0 1 0 0 0 0 −1

0 −1 0 0 2 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0




.

Then, the last four columns of Ψ−1 form the linearly inde-
pendent set of solutions of (40):

[
t1 t2 t3 t4

g1 g2 g3 g4

]
=




0 0 1 0

2 0 0 1

−2 0 0 0

0 1 0 0

1 0 0 0

0 0 0 1

0 2 −5 0

2 0 0 1

0 −3 −1 0

1 0 0 0




.

Then,

T1 =

[
0 2 −2

0 1 0

]
, T2 =

[
0 0 0

1 0 0

]
,

T3 =

[
1 0 0

0 0 0

]
, T4 =

[
0 1 0

0 0 1

]
,

G1 =

[
0 2

0 1

]
, G2 =

[
2 0

−3 0

]
,

G3 =

[
−5 0

−1 0

]
, G4 =

[
0 1

0 0

]
.

Using (33), the parameterized solutions are

T =

[
µ3 2µ1 + µ4 −2µ1

µ2 µ1 µ4

]

G =

[
2µ2 − 5µ3 2µ1 + µ4

−3µ2 − µ3 µ1

]
.

It follows that

S = TB =

[
µ3 2µ1 + µ4

µ2 µ1

]
.

Then, we solve the third equation of (39). Denoting α =
cs(M) and β = cs(N), we have

[
ETTT ⊗ I3 CT ⊗ I2

] [
α

β

]
= cs(K). (41)

Equation (41) can be rewritten as




0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0




[
α

β

]
=




0

1

1

0

0

−1




. (42)

Its general solution is

[
0 −1 α1 α2 0 1 1 0

]T

.

where α1, α2 ∈ R are parameters.
Using (5), we have

M =

[
0 α1

−1 α2

]
, N =

[
0 1

1 0

]
.

Letting µ1 = µ2 = µ3 = 0, µ4 = 1, and α1 = α2 = 0, we
have the particular solution given in [9]:

T =

[
0 1 0

0 0 1

]
, S =

[
0 1

0 0

]
, G =

[
0 1

0 0

]
,

M =

[
0 0

−1 0

]
, N =

[
0 1

1 0

]
.

5 Conclusion

Following the pioneering works[7, 9, 12, 14, 15] of Duan et
al., we considered the parameterized solutions of Sylvester
equation and its dual equation. An elegant dual relation has
been revealed. The formulas for parameterized numerical
solutions are obtained, and an algorithm is constructed.
The conditions and algorithms provided in this paper are
neat and simple. Moreover, the method proposed in this
paper is generally applicable to solving general linear matrix
equations.
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