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a b s t r a c t

In this paper, we study extended linear regression approaches for quantum state tomography based on
regularization techniques. For unknown quantum states represented by density matrices, performing
measurements under certain basis yields random outcomes, from which a classical linear regression
model can be established. First of all, for complete or over-complete measurement bases, we show
that the empirical data can be utilized for the construction of a weighted least squares estimate (LSE)
for quantum tomography. Taking into consideration the trace-one condition, a constrained weighted
LSE can be explicitly computed, being the optimal unbiased estimation among all linear estimators.
Next, for general measurement bases, we show that ℓ2-regularization with proper regularization gain
provides even a lower mean-square error under a cost in bias. The optimal regularization parameter
is defined in terms of a risk characterization for any finite sample size and a resulting implementable
estimator is proposed. Finally, a concise and unified formula is established for the regularization
parameter with complete measurement basis under an equivalent regression model, which proves
that the proposed implementable tuning estimator is asymptotically optimal as the number of copies
grows to infinity. Additionally, several numerical examples are provided to validate the established
results.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Since Feynman pointed out the possibility of using quantum
resources to carry out computation in the early 1980s, significant
progresses have been made in both the theoretical understanding
and the real-world implementations for computing and com-
munication mechanisms based on quantum states (Nielsen &
Chuang, 2001). Underpinning such efforts lies in the development
of quantum tomography (Artiles, Gill, & Guta, 2005; James, Kwiat,
Munro, & White, 2001; Senko et al., 2014; Wootters & Fields,
1989), where reliable quantum state estimation (Bisio, Chiribella,
D’Ariano, Facchini, & Perinotti, 2009; Blume-Kohout, 2010; Teo,
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Zhu, Englert, Rehacek, & Hradil, 2011) and system identifica-
tion methods (Bonnabel, Mirrahimi, & Rouchon, 2009; Leghtas,
Turinici, Rabitz, & Rouchon, 2012; Wang et al., 2018, 2019; Xue,
Zhang, & Petersen, 2019) provide basic assurance for the validity
of quantum systems that we intend to work on. The fundamen-
tal quantum measurement postulate indicates that any form of
quantum information probe would have an inherent probabilis-
tic nature. The exponentially growing complexity of quantum
systems along with the increasing scale further adds to the chal-
lenging reality: only partial information can be made available
via measurements for uncertain quantum systems; processing the
measurement data faces enormously high computation barrier for
large-scale quantum systems.

One primary task of quantum tomography is to determine an
unknown quantum state from a number of identical copies (Bisio
et al., 2009; Blume-Kohout, 2010; Teo et al., 2011). Performing
measurement on those copies along certain observables, i.e., mea-
surement bases, yields independent realizations of some hidden
random variable whose statistics encode the quantum state and
the observable. Therefore, utilizing the outcomes of the mea-
surements we can build estimations of the unknown quantum
state since the observables are known (which can be selected and
designed). Apparently the choice of the estimation method is not
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unique since the estimation error metrics can be characterized by
different metrics, and the resulting computational feasibility also
raises constraint on the potentially viable estimation approaches.
Therefore, there is often a tradeoff between estimation quality
and computational efficiency (Smolin, Gambetta, & Smith, 2012).

Linear regression, as a universal estimator (Ljung, 1999), be-
comes a natural and important quantum state tomography
approach due to its simplicity and practicability. A thorough
comparison was made in Qi et al. (2013) between linear regres-
sion method and maximum likelihood estimation for quantum
state tomography under complete or over-complete measure-
ment bases. Linear regression was also applied to quantum to-
mography with incomplete measurement bases for low-rank or
sparse quantum states (Alquier, Butucea, Hebiri, & Meziani, 2013;
Cai, Kim, Wang, Yuan, & Zhou, 2016; Gross, 2011; Gross, Liu,
Flammia, & S. Becker, 2010). In particular, in Gross et al. (2010),
quantum state reconstruction was considered in view of the in-
sights from compressed sensing. In Cai et al. (2016), the minimax
optimal rates for the quantum state tomography were established
when assuming that the quantum state is approximately sparse
under the Pauli basis. Recently, linear regression method was also
generalized to the adaptive measurement case where selection of
the measurement basis depends on the previous measurement
outcomes (Qi, Hou, Wang, Dong, Zhong, Li, et al., 2017).

In this paper, we study the role of regularization for linear
regression-based quantum state tomography. In recent years,
the power of regularization has been well noted in the litera-
ture of optimization, machine learning, and system identification,
e.g., Chiuso (2016), Goodfellow, Bengio, and Courville (2016) and
Shalev-Shwartz (2012) for the purpose of avoiding overfitting in
empirical learning. Noting any quantum state can be represented
as a trace-one positive Hermitian density matrix, which is of low
rank if it is a combination of a small number of pure states, we
establish the following results.

• For complete or over-complete measurement basis, the em-
pirical data can be utilized for constructing of a weighted
least squares estimate (LSE) for quantum tomography.
The weighted LSE provides reduced mean-square error
compared to standard LSE. Taking into consideration the
trace-one condition, the constrained weighted LSE can be
explicitly computed, which is the optimal unbiased estima-
tion that is affine in the measurement data.

• For any (complete, over-complete, or under-complete) mea-
surement basis, a closed form solution is established for
tomography with ℓ2-regularized weighted linear regression.
It is shown that with proper regularization parameter, this
regularized regression always provides even a lower mean-
square error subject to, of course, a price of additional bias.

• The optimal regularization parameter is characterized in
terms of a risk characterization for any finite sample size.
An explicit formula is established for the regularization
parameter under an equivalent regression model, which
proves that the proposed implementable tuning estimator
is asymptotically optimal for complete bases as the number
of copies grows to infinity for the risk metric.

Numerical examples are provided for the validation of the estab-
lished theoretical results, which confirms the potential usefulness
of the proposed linear regression methods in quantum state
tomography.

The remainder of the paper is organized as follows. In
Section 2, we present the standard linear regression model for
quantum state tomography, and review some preliminary knowl-
edge on the underlying rationale. In Section 3, we present the
quantum tomography methods based on LSE, weighted LSE, con-
strained weighted LSE, and constrained regularized weighted

LSE, respectively, whose performances in terms of mean-square
error are thoroughly investigated. Section 4 further presents
the asymptotically optimal regularization gain under an equiv-
alent model. Numerical examples are presented in Section 5, and
finally, some concluding remarks are given in Section 6.

2. Problem definition and preliminaries

2.1. Linear regression for quantum state tomography

Let H be a Hilbert space with dimension d that characterizes
the state space of a quantum system. Denote the space of linear
Hermitian operators over H by L(H). Suppose that

{
Bi
}d2
i=1 is an

orthonormal basis of L(H) with Tr(B†
i Bj) = δij and B†

i = Bi,
where Tr(·) means the trace of a square matrix, (·)† represents the
Hermitian conjugate of a complex matrix, and δij is the Kronecker
function. A quantum state ρ as a density operator overH can then
be expressed by

ρ =

d2∑
i=1

θiBi (1)

where θi = Tr(ρBi) ∈ R is the coordinate of ρ under the

given basis
{
Bi
}d2
i=1. Let there be a positive operator-valued mea-

surement (POVM) over the space H, denoted by {Mm}
M
m=1 with∑M

m=1 M
†
mMm = I, where I is the identity operator and M is

the number of measurement outcomes. Then Em
△
= M†

mMm can
be expressed as a linear combination of the orthogonal basis of{
Bi
}d2
i=1:

Em =

d2∑
i=1

βmiBi

for each 1 ≤ m ≤ M , where βmi = Tr(EmBi). When the
quantum state ρ is being measured under the POVM {Mm}

M
m=1,

the probability of observing outcome m is pm = Tr(Emρ) = β⊤

mθ,
where βm = [βm1, . . . , βmd2 ]

⊤ and θ = [θ1, . . . , θd2 ]
⊤. Denoting

p = [p1, . . . , pM ]
⊤

∈ RM , A = [β1, . . . ,βM ]
⊤

∈ RM×d2 , we have
the following fundamental quantum measurement description in
the form of a linear algebraic equation:

p = Aθ.

The tomography of an unknown quantum state ρ is therefore
equivalent to identifying the vector θ, where A is known and p is
estimated by experimental realizations of measuring ρ from the
POVM {Mm}

M
m=1. The POVM can be in general represented under

Pauli matrices, see e.g, Cai et al. (2016) and Wang (2013).
A standard quantum state tomography process is as follows:

(i) Prepare N = nM identical copies of an uncertain quantum
state ρ; (ii) Perform measurement along each Mm within the
POVM {Mm}

M
m=1 independently for n copies; (iii) For each 1 ≤ m ≤

M , record the number of times that the measurement operator
Mm is observed among those n experiments, denoted by #m, from
the n experiments. Then,

p̂m =
#m
n

(2)

is a natural estimator of the probability pm, leading to

p̂m = β⊤

mθ + em, (3)

where em = p̂m − pm is the estimation error. The distribution
of em depends on the number of copies n, as it is the sum of n
identical and independently distributed (i.i.d.) Bernoulli random
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variables with mean pm. This naturally yields the following linear
regression problem:

y = Aθ + e (4)

with y = [̂p1, . . . , p̂M ]
⊤ and e = [e1, . . . , eM ]

⊤.

2.2. The noise distribution

Define i.i.d. random variables b(m)
l for 1 ≤ l ≤ n, which takes

value 1 with probability pm and 0 with probability 1 − pm. Then
there holds

em = p̂m − pm =

∑n
l=1 b

(m)
l

n
− pm =

n∑
l=1

b(m)
l − pm

n
. (5)

Note that (b(m)
l − pm)/n takes value (1 − pm)/n with probability

pm and −pm/n with probability 1 − pm. It follows that

E(em) = 0 (6a)

V(em) = E(em)2 = (pm − p2m)/n. (6b)

As a result, the distribution of em is as follows:

P

(
em =

(
1 − pm

n

)k (
−

pm
n

)n−k
)

=

(
n
k

)
pkm(1 − pm)n−k. (7)

As n tends to infinity, each em will converge to a Gaussian random
variable with mean 0 and variance (pm − p2m)/n.

2.3. Simultaneous measurements

In the tomography process described above, each Mm is sepa-
rately measured, i.e., a binary outcome is recorded for any copy of
ρ, where 1 represents Mm, and 0 represents I−Mm. An alternative
quantum tomography process can be described based on n copies
of ρ, where we perform measurement by the POVM {Mm}

M
m=1

collectively. To be precise, the outcome associated with each copy
of the quantum state now takes value in {1, . . . ,M}, and then
the number of times that the outcome m is observed among
those n experiments, denoted by #′m, is recorded from the n
experiments for each 1 ≤ m ≤ M . For low dimensional quan-
tum systems, e.g., two photon entanglements, such simultaneous
measurements are often possible, e.g., Ahnert and Payne (2006).
Consequently,

p̄m =
#′m
n

(8)

is still an estimator of the probability pm, leading to

p̄m = β⊤

mθ + ēm, m = 1, . . . ,M. (9)

The estimation error ēm as a random variable has the same
distribution of em. However, the ēm are no longer independent
since now

∑n
m=1 p̄m = 1 is a sure event. Except for this minor dif-

ference, this new formulation of quantum tomography procedure
remains the same.

3. Regularized linear regressions

In this section, we present a few estimators as quantum to-
mography solutions for the linear regression (4), and investigate
their performances in terms of the mean-square error. The lin-
ear regression (4) has the following special features from the
underlying quantum tomography procedure:

(i) Heteroscedasticity: the errors em, 1 ≤ m ≤ M have
different variances;

(ii) Trace unity: Tr(ρ) = 1 implies that
∑d2

i=1 θiTr(Bi) = 1;
(iii) The density operator ρ is often of low rank, e.g., Gross et al.

(2010).

In the following, we embed these features successively and derive
the corresponding estimators.

3.1. Standard least squares

For the estimation problem (4), the least squares (LS) so-
lution (Qi et al., 2013; Rao, Toutenburg, Shalabh, & Heumann,
2008)

θ̂
LS

= argmin
θ

(y − Aθ)⊤(y − Aθ)

= (A⊤A)−1A⊤y (10)

is a common choice provided that A has full column rank. The
estimate θ̂

LS
admits the following properties:

• θ̂
LS

is unbiased, namely, E
(̂
θ
LS)

= θ;
• The mean squared error (MSE) matrix of θ̂

LS
is

MSE
(̂
θ
LS) △

= E(̂θ
LS

− θ)(̂θ
LS

− θ)⊤

= (A⊤A)−1A⊤PA(A⊤A)−1 (11)

where P = diag
(
[p1 − p21, . . . , pM − p2M ]

)
/n.

Note that the standard LS estimator neglects the fact that the em
have different variances, although all of them are zero mean. As
a result, the above covariance is not optimal. Furthermore, the
condition that A be full column rank means the POVM {Mm}

M
m=1

is informationally complete, i.e., any two density operators are
distinguishable under the POVM given sufficiently large number
of copies. This is not practical for large-scale quantum systems.
Meanwhile, the standard LS estimator does not consider the unit
trace constraint and often low rank of the quantum state ρ.

3.2. Weighted regression

Noticing V(em) = (pm − p2m)/n, we can instead use the
following weighted least squares (WLS) estimate

θ̂
WLS

= argmin
θ

(y − Aθ)⊤W(y − Aθ)

= (A⊤WA)−1A⊤Wy (12)

with W = P−1
= ndiag

(
[1/(p1 −p21), . . . , 1/(pM −p2M )]

)
adjusting

the difference in variances for the noises em. This weighted least
square θ̂

WLS
continues to be unbiased since E

(̂
θ
WLS)

= θ is easily
verifiable and its MSE is

MSE
(̂
θ
WLS)

= (A⊤WA)−1. (13)

Suppose rank(A) = d2 and let θ̂ be any linear unbiased estimate
for θ. Then we have

MSE(̂θ) ≥ MSE(̂θ
WLS

).

This means it is the best estimator of θ among all unbiased linear
estimators in the sense that it achieves the minimal covariance.

In practice, the matrix W in (12) is unknown and a feasible
solution is to use the estimate

θ̂
AWLS

= (A⊤ŴA)−1A⊤Ŵy, (14)

where W in (12) is replaced by its consistent estimate

Ŵ = n · diag
(
[1/(̂p1 − p̂21), . . . , 1/(̂pM − p̂2M )]

)
(15)
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with p̂m, 1 ≤ m ≤ M given by (2). In the following, it is shown
that the estimate (14) is accurate enough and asymptotically
coincides with (12).

For a random sequence ξn, we define ξn = Op(an) by that
{ξn/an} is bounded in probability, i.e., ∀ϵ > 0, ∃L > 0 such that
P(|ξn/an| > L) < ϵ, ∀n. Then there holds for large n that

θ̂
AWLS

− θ̂
WLS

= (A⊤ŴA)−1A⊤Ŵe − (A⊤WA)−1A⊤We
=
(
(A⊤ŴA)−1

− (A⊤WA)−1)A⊤Ŵe
+ (A⊤WA)−1A⊤

(
Ŵ − W

)
e

= Op(1/
√
n)(A⊤WA)−1A⊤W

(
1 + Op(1/

√
n)
)
e

+ (A⊤WA)−1A⊤Op
(
1/

√
n
)
We

= Op(1/
√
n)(A⊤WA)−1A⊤We (16)

in terms of

em = Op(1/
√
n), 1 ≤ m ≤ M

and further

Ŵ = W
(
1 + Op(1/

√
n)
)

Ŵ − W = Op
(
1/

√
n
)
W.

This means the difference between θ̂
AWLS

and θ̂
WLS

is asymp-
totically ignorable in comparison with the estimation error of
the weighted LSE θ̂

WLS
. Actually, the approximation (15) and

resulting conclusions (16) also hold for the following introduced
estimators.

3.3. Constrained weighted regression

The standard or weighted least squares solutions might lead
to estimates that are not legitimate quantum states. In fact, the
quantum state has an essential requirement

Tr(ρ) = 1. (17)

This becomes for the model (1) that

θ⊤Tr(B) = 1 (18)

where Tr(B) is defined by

Tr(B)
△
= [Tr(B1), . . . , Tr(Bd2 )]

⊤. (19)

This inspires us to define the constrained least squares (CLS)
estimate

θ̂
CLS

= argmin
θ⊤Tr(B)=1

(y − Aθ)⊤(y − Aθ). (20)

For the estimate (20), we have the following proposition to char-
acterize its property.

Proposition 1. Suppose rank(A) = d2. The CLS estimate θ̂
CLS

has
the following closed-form solution

θ̂
CLS

= θ̂
LS

−
CTr(B)

Tr(B)⊤CTr(B)

(
Tr(B)⊤̂θ

LS
− 1

)
(21)

where θ̂
LS

is the least squares estimate given by (10) and C =

(A⊤A)−1, and its MSE matrix is

MSE
(̂
θ
CLS) △

= E(̂θ
CLS

− θ)(̂θ
CLS

− θ)⊤ = FA⊤W−1AF

where F = C −
CTr(B)Tr(B)⊤C
Tr(B)⊤CTr(B) .

To make the notation simple, we will abuse the symbols F and
C a little for different cases in the following.

To reduce the MSE of the estimate (20), we can similarly in-
troduce the constrained weighted least squares (CWLS) estimate

θ̂
CWLS

= argmin
θ⊤Tr(B)=1

(y − Aθ)⊤W(y − Aθ). (22)

Theorem 1. Suppose rank(A) = d2 and pm ∈ (0, 1) for m =

1, . . . ,M. The estimate θ̂
CWLS

can be explicitly written as

θ̂
CWLS

= θ̂
WLS

−
CTr(B)

Tr(B)⊤CTr(B)

(
Tr(B)⊤̂θ

WLS
− 1

)
where θ̂

WLS
is the WLS estimate (12) and C = (A⊤WA)−1. The

resulting MSE

MSE(̂θ
CWLS

) = E(̂θ
CWLS

− θ)(̂θ
CWLS

− θ)⊤ = F (23)

where F = C −
CTr(B)Tr(B)⊤C
Tr(B)⊤CTr(B) , and θ̂

CWLS
is optimal in the sense that

MSE(̂θ) ≥ MSE(̂θ
CWLS

)

where θ̂ is any unbiased estimate for θ that is affine in y and satisfies
the constraint θ⊤Tr(B) = 1.

3.4. Regularized weighted regression

Further, we introduce the following weighted regression with
ℓ2-regularization:

minimize
θ

(y − Aθ)⊤W(y − Aθ) + γ ∥θ∥2 (24a)

subject to θ⊤Tr(B) = 1. (24b)

where γ ≥ 0 is a regularization parameter and ∥ · ∥ represents
the 2-norm of a vector. The motivation for introducing (24) may
arise from the following two aspects:

(i) When the POVM {Mm}
M
m=1 is under-determinate, the matrix

A in (4) might not have full column rank. As a result, the
θ̂
LS
, θ̂

CLS
, and θ̂

CWLS
will all fail to produce a unique esti-

mate to the quantum state. The additional ℓ2-regularization
term in the prediction error function will resolve this non-
uniqueness challenge.

(ii) In practice, the quantum state ρ is often a combination of
some finite number of pure states. As a result, a significant
prior knowledge on ρ would be that it is of low rank. Since
the rank minimization optimization problem with convex
constraints is NP-hard (Recht, Fazel, & Parrilo, 2010), the
nuclear norm is a common alternative as an approximation
of the rank constraint for matrices in various matrix opti-
mization problems. Note that ρ†ρ has the same rank as that
of ρ. As a result, ρ†ρ is still of low rank and its nuclear
norm is

∥ρ†ρ∥⋆
△
=

d∑
i=1

σi(ρ†ρ) = Tr(ρ†ρ)

= Tr

⎡⎣⎛⎝ d2∑
i=1

θiBi

⎞⎠†⎛⎝ d2∑
j=1

θjBj

⎞⎠⎤⎦
=

d2∑
i=1

|θi|
2

= ∥θ∥2

where {σi(ρ†ρ), 1 ≤ i ≤ d} are the singular values of ρ†ρ.
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The two aspects are certainly connected in practice, where recon-
struction of unknown low-rank quantum state is desired with a
small number of measurement basis.

Remark 1. For the positive semidefinite quantum state ρ, penal-
izing the nuclear norm ρ (see, e.g., Gross et al. (2010)) is not quite
well-defined because

∥ρ∥⋆
△
=

d∑
i=1

σi(ρ) =

d∑
i=1

√
λi(ρ†ρ)

=

d∑
i=1

λi(ρ) = Tr(ρ) = 1, (25)

where {σi(ρ), 1 ≤ i ≤ d} and {λi(ρ), 1 ≤ i ≤ d} are the singular
values and eigenvalues of ρ, respectively. Note that (24) is es-
sentially the regularized optimization approach adopted in Gross
et al. (2010) for the numerical study of quantum state reconstruc-
tion problems.

Remark 2. The optimization problem (24) can be equivalently
represented as

minimize
θ

(y − Aθ)⊤W(y − Aθ) (26a)

subject to θ⊤Tr(B) = 1, ∥θ∥2
≤ c (26b)

where c > 0 corresponds to γ . In (26b), it is clear that the ℓ2
norm of the θ serves as a constraint from the two aspects of
motivations for such regularization.

For convenience and consistence of the results displayed in
the paper, here we first introduce the regularized weighted least
squares (RWLS) estimate

θ̂
RWLS △

= argmin
θ

(y − Aθ)⊤W(y − Aθ) + γ ∥θ∥2 (27a)

= (A⊤WA + γ I)−1A⊤Wy, (27b)

where the constraint θ⊤Tr(B) = 1 is neglected.
The problem (24) also has a closed-from solution, which is

stated in the following theorem.

Theorem 2. The optimal weighted regularized quantum state
estimate, denoted θ̂

CRWLS
, as the solution to (24) is given by

θ̂
CRWLS

= θ̂
RWLS

− CTr(B)
Tr(B)⊤̂θ

RWLS
− 1

Tr(B)⊤CTr(B)
(28)

where C = (A⊤WA + γ I)−1. The resulting MSE matrix of θ̂
CRWLS

is

MSE(̂θ
CRWLS

)
△
= E(̂θ

CRWLS
− θ)(̂θ

CRWLS
− θ)⊤

= F − γ F (I − γ θθ⊤)F (29)

where F = C −
CTr(B)Tr(B)⊤C
Tr(B)⊤CTr(B) .

It is worth noting that Theorem 2 does not depend on the
rank of A. The next theorem shows that the CRWLS estimate
θ̂
CRWLS

yields immediate improvement in terms of the MSE if the
regularization parameter γ is well chosen.

Theorem 3. There holds

MSE(̂θ
CRWLS

) < MSE(̂θ
CWLS

)

if 0 < γ < 2/
(
∥θ∥2

−
1

∥Tr(B)∥2
)
.

Remark 3. There holds from the Cauchy–Schwarz inequality that

∥θ∥2
∥Tr(B)∥2

≥ |θ⊤Tr(B)|
2

= 1

for all quantum states ρ. Moreover, when strict equality takes
place, there is λ ∈ R such that θi = λTr(Bi) for all i = 1, . . . , d2.
As a result,

Tr(ρBi) = θi = λTr(Bi), i = 1, . . . , d2

which implies ρ = λI, and hence λ must be 1/d. Therefore, we
have just established that

∥θ∥2 >
1

∥Tr(B)∥2

for all ρ as quantum states except for ρ = I/d.

Theorem 3 shows that regularization that considers the low
rank property of the quantum state ρ can further improve the
estimate for the parameter vector θ if we can choose a proper γ .

Remark 4. Theorem 1 indicates θ̂
CWLS

has the smallest MSE
among all the unbiased estimate of θ affine with y while
Theorem 3 shows that θ̂

CRWLS
has a smaller MSE than θ̂

CWLS
even

if θ̂
CRWLS

is also affine with y. The reason is that regularization
introduces a small bias but decreases the variance more such that
the total MSE is smaller.

The estimate θ̂
CRWLS

is a function of the regularization param-
eter γ , the selection of which needs to be determined carefully
to achieve a desired performance. The essence of tuning γ is
to choose a proper model complexity for the estimate θ̂

CRWLS

given the data. Here we provide a method of tuning γ by the
measurements based on the risk definition of the estimate θ̂

CRWLS
.

Also, we will prove that the tuning method is asymptotically
optimal in the risk sense. For convenience of derivation, let us
rewrite the estimate θ̂

CRWLS
as the affine form with respective to

the output y

θ̂
CRWLS

= Hy + f (30)

with

H = CA⊤W − CTr(B)
Tr(B)⊤CA⊤W
Tr(B)⊤CTr(B)

f =
CTr(B)

Tr(B)⊤CTr(B)
C = (A⊤WA + γ I)−1.

Let us introduce the risk for the estimate θ̂
CRWLS

defined by Rao
et al. (2008):

R(̂θ
CRWLS

)
△
= E

(
Aθ − Âθ

CRWLS)⊤W(Aθ − Âθ
CRWLS)

= γ 2θ⊤FA⊤WAFθ + Tr
(
FA⊤WAFA⊤WA

)
(31)

which is a reference measure to characterize how well the es-
timate (28) can be achieved, namely, gives a lower bound of
the estimate (28) in the risk sense (31). Thus the regularization
parameter γ tuned by the risk (31)

γ̂R (̂θ
CRWLS

)
△
= argmin

γ≥0
R(̂θ

CRWLS
) (32)

is a theoretically optimal value for the regularization gain γ for
any given data in the risk sense. The cost function (31) of (32)
requires the access to the true parameter θ, which is usually
unavailable for a system to be identified.

In practice, we use an unbiased estimate for (31) as the cost
function of an implementable tuning estimator in terms of data
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to estimate γ , which is given by

γ̂u (̂θ
CRWLS

)
△
= argmin

γ≥0
(y − Âθ

CRWLS
)⊤W(y − Âθ

CRWLS
)

+ 2Tr
(
AH
)
. (33)

It can be verified that the expectation of the cost function (33)
over the estimation error e is exactly the risk (31).

The properties of γ̂R (̂θ
CRWLS

) and γ̂u (̂θ
CRWLS

) will be given in the
next section under an alternative regression model.

4. An equivalent regression model

Up to now our discussions on the quantum state tomography
problem have been around the linear model with an equality
constraint:

y = Aθ + e (34a)

subject to θ⊤Tr(B) = 1. (34b)

In this section, we first present a way of transforming the con-
strained linear regression model into an unconstrained version.
Then, under the new but equivalent model we establish some
important asymptotic properties of the regularized regression
solutions as the number of copies n grows.

4.1. Eliminating equality constraint

Let us first construct an orthogonal matrix Q of size d2 × d2 as
follows: The first row of Q is Tr(B)⊤/∥Tr(B)∥ and the remaining
rows are chosen such that Q is orthogonal. It follows from (34)
that

y = Dβ + e (35)

where

D △
= AQ⊤

= [d,K] (36a)

β
△
= Qθ = [β1,α

⊤
]
⊤. (36b)

The constraint (34b) on θ is forced by the fact that the first
element β1 of β is 1/∥Tr(B)∥. As a result, the problem (34) is
equivalent to the unconstrained linear model

z = y −
1

∥Tr(B)∥
d = Kα + e. (37)

Clearly, by (36b)

∥α∥
2

= ∥θ∥2
−

1
∥Tr(B)∥2 . (38)

Thus, regularization (low rank property) on ρ†ρ can also be
embedded into α.

For the model (37), we can produce the corresponding LS,
WLS, RWLS estimates. Here, we consider the RWLS estimate for
(37) since other estimates (LS, WLS) are special cases by setting
γ = 0 and/or W = I. The RWLS estimate for (37) is defined as

α̂RWLS
= argmin

α
(z − Kα)⊤W(z − Kα) + γ ∥α∥

2 (39a)

= Uz (39b)

where

U △
= VK⊤W, V △

= (K⊤WK + γ I)−1. (40)

Intuitively, for an estimate α̂ of (37), the vector defined by

θ̂(̂α)
△
= Q⊤

[
1

∥Tr(B)∥

α̂

]
(41)

should be the corresponding estimate for (34) and independent
of the choice of Q. However, this is not obvious. Now, we intend
to show that the hypothesis above is true.

Proposition 2. For any regularization parameter γ ≥ 0, there
holds

θ̂(̂αRWLS) = θ̂
CRWLS

. (42)

Moreover,

MSE
(̂
αRWLS(γ )

) △
= E(̂αRWLS

− α)(̂αRWLS
− α)⊤

= γ 2Vαα⊤V + VK⊤WKV.

Remark 5. When γ = 0, the estimate α̂RWLS is reduced to the
WLS estimate of (37). Meanwhile, we have

MSE
(̂
αRWLS(γ )

)
< MSE

(̂
αRWLS(0)

)
(43)

for 0 < γ < 2/α⊤α, an equivalent statement as Theorem 3.

4.2. Asymptotically optimal regularization gain

For the estimate (39), it also needs to well tune the regulariza-
tion parameter γ . The risk for the estimate α̂RWLS can be similarly
defined as

R(̂αRWLS)
△
= E

(
Kα − Kα̂RWLS)⊤W(Kα − Kα̂RWLS)

= γ 2α⊤VK⊤WKVα + Tr
(
VK⊤WKVK⊤WK

)
(44)

and the resulting theoretically optimal regularization parameter
is

γ̂R (̂αRWLS)
△
= argmin

γ≥0
R(̂αRWLS(γ )). (45)

Let us construct an unbiased estimate

Cu(γ )
△
= (z − Kα̂RWLS)⊤W(z − Kα̂RWLS) + 2Tr

(
KU
)

(46)

for (44) and it can straightforwardly check its expectation with
respect to e is R(̂αRWLS) up to a constant. Consequently, a practical
regularization gain selection can be

γ̂u (̂αRWLS)
△
= argmin

γ≥0
Cu(γ ) (47)

which gives a way to estimate γ directly by the data.
The following proposition illustrates that the tuning estima-

tors (32) and (33) as well as (45) and (47) developed for the
constrained model (34) and its unconstrained counterpart (37),
respectively, are identical.

Proposition 3. There hold

γ̂R (̂αRWLS) = γ̂R (̂θ
CRWLS

) (48a)

γ̂u (̂αRWLS) = γ̂u (̂θ
CRWLS

). (48b)

Denote

Σ
△
= K⊤diag

(
[1/(p1 − p21), . . . , 1/(pM − p2M )]

)
K (49a)

Υ
△
= A⊤diag

(
[1/(p1 − p21), . . . , 1/(pM − p2M )]

)
A. (49b)

We can establish the asymptotically optimal selection of the reg-
ularization parameter γ explicitly for the regularized regression
estimate of the quantum state in the risk senses (31) and (44).

Theorem 4. Suppose rank(A) = d2. As the number of copies
n −→ ∞, the limits take place

γ̂R (̂αRWLS) −→ γ ⋆ deterministically (50a)
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γ̂u (̂αRWLS) −→ γ ⋆ almost surely (50b)

where

γ ⋆ =
Tr
(
Σ−1

)
α⊤Σ−1α

=

Tr
(
Υ −1

)
−

Tr(B)⊤Υ−2Tr(B)
Tr(B)⊤Υ−1Tr(B)

θ⊤Υ −1θ −
θ⊤Υ−1Tr(B)Tr(B)⊤Υ−1θ

Tr(B)⊤Υ−1Tr(B)

is the asymptotically optimal selection of γ for the estimate (28) of
the quantum state in the risk senses (31) and (44). Moreover, there
hold as n −→ ∞

n
(
γ̂R (̂αRWLS) − γ ⋆

)
−→

3γ ⋆
(
γ ⋆α⊤Σ−2α − Tr

(
Σ−2

))
α⊤Σ−1α

(51)

deterministically and

√
n
(
γ̂u (̂αRWLS) − γ ⋆

)
−→ N

(
0,

(2γ ⋆)2α⊤Σ−3α(
α⊤Σ−1α

)2
)

(52)

in distribution.

Remark 6. Theorem 4 shows that the implementable esti-
mators γ̂u (̂θ

CRWLS
) and γ̂u (̂αRWLS) converge to the asymptotically

optimal γ ⋆ as the theoretically optimal estimators γ̂R (̂θ
CRWLS

)
and γ̂R (̂αRWLS) for any finite n do. On the other hand, γ̂u (̂θ

CRWLS
)

and γ̂u (̂αRWLS) have a slower rate of convergence than that of
γ̂R (̂θ

CRWLS
) and γ̂R (̂αRWLS).

5. Numerical examples

In Theorems 1–3, we have established the expressions and the
resulting MSEs for θ̂

CWLS
and θ̂

CRWLS
. Compared to the standard

least squares solution θ̂
LS

and weighted least squares solution
θ̂
WLS

, θ̂
CWLS

further makes use of the trace unity of the quantum
state, while θ̂

CRWLS
overcomes under-determinant measurement

bases, provides reduction of MSE by tolerating estimation bias,
and utilizes potential low-rank property of the quantum state.
Theorem 4 further establishes that the practical computation
of the regularization gain γ̂u (̂θ

CRWLS
) is indeed asymptotically

optimal. Meantime, the price for establishing θ̂
CRWLS

(with asymp-
totically optimal γ̂u (̂θ

CRWLS
)) is higher computation cost. In the

following, we illustrate the connection and distinction of these
estimators with a few concrete numerical examples.

All the numerical experiments are performed over Matlab
2014b for Mac OS X 10.14 with a 3.5 GHz Intel Core i5 CPU and
an 8 GB RAM.

5.1. Overdeterminate measurement basis

Example 1. We consider the following quantum Werner state
tomography for a two-qubit system (i.e., d = 4) as studied in Qi
et al. (2013):

ρq = q|Ψ −
⟩⟨Ψ −

| +
1 − q
4

I

where |Ψ −
⟩ = (|01⟩ − |10⟩)/

√
2 and q ∈ [0, 1] is a parameter

characterizing different states. Particularly, ρq changes from a
completely mixed state (q = 0) to a pure state (q = 1) when
q varies from 0 to 1. Take an orthonormal basis

{
Bi
}16
i=1 as

Bi =
1

√
2
σj ⊗

1
√
2
σk, i = 4j + k + 1

for j, k = 0, 1, 2, 3, where

σ0 = I2, σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
are the Pauli matrices. Let

|ϕ1⟩ =
1

√
6
[1, 1]⊤, |ϕ2⟩ =

1
√
6
[1,−1]⊤, |ϕ3⟩ =

1
√
6
[1, i]⊤,

|ϕ4⟩ =
1

√
6
[1,−i]⊤, |ϕ5⟩ =

1
√
3
[1, 0]⊤, |ϕ6⟩ =

1
√
3
[0, 1]⊤.

Then

Em = |ϕj⟩⟨ϕj| ⊗ |ϕk⟩⟨ϕk|, m = 6(j − 1) + k,

for j, k = 1, 2, . . . , 6 form our measurement basis
{
Mm
}36
m=1 with

M†
m = |ϕj⟩ ⊗ |ϕk⟩. We can verify that the measurement set{
Mm
}36
m=1 is overcomplete and the matrix A = [β1, . . . , β36]

⊤
∈

R36×16 has full column rank.
We first sample the parameter q in the interval [0, 1] with

the length 0.02 to generate 51 different quantum states ρq, and
then for each ρq perform the tomography procedure with n =

110, 1100, 11 000 copies, respectively, to show the performance
of the proposed estimators for the quantum states as the number
of copies increases. The measurement process is simulated by
i.i.d. multinormal random variable λ taking values in the set
{1, . . . , 36} with the probability P(λ = m) = pm = Tr(Emρq), 1 ≤

m ≤ 36 and by which the required copies for measurements
are generated. Then the estimates p̂m are calculated by (2) from
the measurement outcomes and hence the proposed estimators
can be obtained by using p̂m, 1 ≤ m ≤ 36 and A. Note that
some of the p̂m might be or very close to zero, and whenever
that happens we set p̂m = 10−8 in the weight matrix W for
the sake of computation. In order to show the robustness of the
proposed estimators against the errors, 1000 round experiments
are executed.

Let us denote the standard, weighted, and constrained
weighted estimates θ̂

LS
(k), θ̂

WLS
(k), θ̂

CWLS
(k), and θ̂

CRWLS
(k) (with

γ = 1/
(
∥θ∥2

−
1

∥Tr(B)∥2
)
) according to (10), (12), (22), and (28)

respectively, for the kth round, where W is replaced by its esti-
mate (15). Note that the θ̂

LS
(k) corresponds to the linear regres-

sion estimator proposed in Qi et al. (2013). In the following, we
introduce two measures to evaluate the performance of the esti-
mators. The first one is the experimental MSE MSEexp computed
by averaging the squared errors from each round of experiments.
The second one is the corresponding theoretical MSE given by
(11), (13), (23), and (29), where the true W instead of its esti-
mate is used. The two measures of the estimators for different
quantum states ρq with different copies are plotted in Figs. 1–3,
respectively.

From these figures one can see that the experimental MSEs are
approaching the theoretical MSEs and both of them decrease to
zero as the number n of copies grows large for all four estimates,
LS, WLS, CWLS, and CRWLS. In particular, the CRWLS estimator
has the highest tomography accuracy among all the estimators
for large numbers of copies (n = 1100, 11 100) as a confirmation
of Theorem 3. For small n = 110, the WLS, CWLS, and CRWLS
are apparently producing worse experimental MSE compared to
the LS. The reason might be that the estimate Ŵ given by (15)
constructed from the {̂pm, 1 ≤ m ≤ M} was not accurate enough
for approximating the true W. For relatively larger n = 11 000,
the WLS, CWLS, and CRWLS all provide significant improvements
compared to the LS. It is worth noting that even with small
number of copies, the CRWLS may lead to drastically reduced
error for small q, where ρq tends to be closer to a completely
mixed state.
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Fig. 1. MSEs for estimating Werner states with n = 110 copies.

Fig. 2. MSEs for estimating Werner states with n = 1100 copies.

Fig. 3. MSEs for estimating Werner states with n = 11 000 copies.

5.2. Small sample-size and optimal regularizer

As seen from Example 1, when the number of copies n is
small, the weighted estimates θ̂

WLS
, θ̂

CWLS
, and θ̂

CRWLS
involving

Fig. 4. CRLS vs. LS estimates for Werner states with n = 110 copies.

the matrix Ŵ (15) may lead to lower accuracy compared to θ̂
LS
.

In the following example, we show that in this case forcing W = I
in θ̂

CRWLS
(k) to obtain a constrained regularized LS estimate (CRLS)

would resolve the issue by developing the tuning methods similar
to (32) and (33).

Example 2. Consider exactly the same quantum state and
tomography setup as in Example 1. Let W = I in θ̂

CRWLS
so that

we define

θ̂
CRLS

= θ̂
CRWLS⏐⏐W=I

as the CRLS estimate. For the estimate θ̂
CRLS

, the regularization
gain γ is selected by the counterparts of (32) and (33) used for
θ̂
CRWLS

as follows

γ̂R (̂θ
CRLS

)
△
= argmin

γ≥0
R(̂θ

CRLS
) (53)

R(̂θ
CRLS

)
△
= E

(
Aθ − Âθ

CRLS)⊤(Aθ − Âθ
CRLS)

= γ 2θ⊤FA⊤AFθ + Tr
(
AFA⊤PAFA⊤

)
γ̂u (̂θ

CRLS
)

△
= argmin

γ≥0
∥y − Âθ

CRLS
∥
2
+ 2Tr

(
AHP

)
(54)

where H is exactly that given in (30) except for replacing W
by I and P is defined in (11), under which for any ρq we carry
out the tomography procedure for 1000 rounds based on n =

110, 1100 copies, respectively. The resulting experimental MSEs
MSEexp (̂θ

CRLS
, γ̂R (̂θ

CRLS
)) and MSEexp (̂θ

CRLS
, γ̂u (̂θ

CRLS
)) are then

computed as that in Example 1 and plotted in Figs. 4–5, respec-
tively, in comparison to the experimental and theoretical MSEs of
standard LS estimate θ̂

LS
.

As seen from the numerical results, with n = 110, the reg-
ularizer for θ̂

CRLS
significantly improves the estimation accuracy

compared to θ̂
LS

under both γ̂R and γ̂u. While with n = 1100,
for relatively large q, the advantage of θ̂

CRLS
is no longer obvious

compared to θ̂
LS

while in this case, the use of the weight W
becomes essential for further improving the performance. For
illustrating the computational cost of calculating θ̂

LS
and θ̂

CRLS

with the γ selection (54), the averaged running time for the cases
q = 0.1, 0.4, 0.6, 0.9 and n = 110, 1100 is displayed in Table 1.
Clearly, the improvement in estimation error from LS to CRLS is
at the cost of lower computation efficiency.
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Fig. 5. CRLS vs. LS estimates for Werner states with n = 1100 copies.

Table 1
The averaged time for calculating θ̂

LS
and θ̂

CRLS
.

Time (s) q = 0.1 0.4 0.6 0.9

n = 110
θ̂
LS

3.97E−5 3.95E−5 3.94E−5 3.90E−5
θ̂
CRLS

with γ̂u 0.0189 0.0162 0.0139 0.0121

n = 1100
θ̂
LS

4.12E−5 4.10E−5 4.22E−5 4.14E−5
θ̂
CRLS

with γ̂u 0.0172 0.0130 0.0141 0.0146

5.3. Under-determinate measurement basis

Example 3. We consider a 6-qubit quantum state. We use the
6-qubit Pauli matrices to form our basis {Bj, j = 1, . . . , d2} with

d = 26
= 64. Let u =

[ √
3
2

1
2

−
1
2 i

√
3
2 i

]
be a 2 × 2 unitary matrix. Let

|ψ1⟩ = [0, . . . , 0,

42-th
√
p , 0, . . . , 0,

8-th  √
1 − p, 0, . . . , 0]⊤,

|ψ2⟩ = [0, . . . , 0,

59-th
1 , 0, . . . , 0]⊤,

|ψ3⟩ = [0, . . . , 0,

30-th
1 , 0, . . . , 0]⊤,

be three pure states. Then ρp =
(
u⊗6

)† ( 13 |ψ1⟩⟨ψ1|+
1
3 |ψ2⟩⟨ψ2|+

1
3 |ψ3⟩⟨ψ3|)u⊗6 is a rank-3 density matrix for a 6-qubit system
for all p ∈ [0, 1]. Note that ρp is low-rank but not sparse due
to the existence of u. We index the set of 6-fold tensor product
of Pauli matrices

{
σl1 ⊗ . . . ⊗ σl6 : (l1, . . . , l6) ∈ {1, 2, 3}6

}
by

{Pj, j = 1, . . . , 36
}. The Pj’s are of full rank and have eigenvalues

±1. Denote by Qj± the projection onto the eigenspaces of Pj
with respect to ±1 respectively. We randomly choose and then
fix {Qj1+, . . . ,Qj200+} from {Qj+, j = 1, . . . , 36

}. Then M+ △
=

{Mk =
√
Qjk+/200, k = 1, . . . , 200} forms an under-complete

measurement basis, and the resulting A = [β1, . . . , β200]
⊤

∈

R200×4096 becomes under-determinate.
We use n = 1100, 11 000, 110 000 copies for each ρp and

perform independent measurements over each copy along any
element in the basis M+. The parameter p is sampled at p =

Fig. 6. MSEs for estimating the six-qubit state ρp by CRWLS with n = 1100
copies.

Fig. 7. MSEs for estimating the six-qubit state ρp by CRWLS with n = 11 000
copies.

0, 0.1, . . . , 1, and for each ρp, we carry out the tomography proce-

dure and perform the θ̂
CRWLS

estimator with γ = 1, 10, 100, 1000.
Likewise, we test the θ̂

CRWLS
estimator for 1000 independent

rounds, whose experimental and theoretical MSEs MSEexp,MSE
with respect to the parametrized states ρp are plotted with n =

1100, 11 000, 110 000 in Figs. 6–8, respectively. From these plots
we see that the MSE is fundamentally lower bounded by the M+

instead of heavily relying on the number of copies n. Moreover,
the MSE and the risk are not quite sensitive with respect to
the regularization gain γ . It is expected that these estimation
results can be improved by utilizing the regularizer selection
(33), but would require significantly higher computation cost.
The computation time is approximately 0.6 s for all cases with
different p, γ and n for the quantum state tomography procedure.

6. Conclusions

We have studied a series of linear regression methods for
quantum state tomography based on regularization. With com-
plete or over-complete measurement bases, the empirical data
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Fig. 8. MSEs for estimating the six-qubit state ρp by CRWLS with n = 110 000
copies.

was shown to be useful for the construction of a weighted LSE
from the measurement outcomes of an unknown quantum state.
It was proven that the trace-constrained weighted LSE is the opti-
mal unbiased estimation among all linear estimators. For general
measurement bases, either complete or incomplete, we showed
that ℓ2-regularization with proper regularization parameter could
yield even lower mean-square error under a penalty in bias. An
explicit formula was established for the regularization param-
eter under an equivalent regression model, which shows that
the proposed implementable tuning estimator is asymptotically
optimal as the number of copies grows to infinity in the risk
metric. An interesting future direction lies in regularization-based
approach for Hamiltonian identification of quantum dynamical
systems.

Appendix A

The proofs of Proposition 1 and Theorem 1 are standard and
can be found in the books (Amemiya, 1985; Theil, 1971). So, they
are omitted for saving space.

A.1. Proof of Theorem 2

The constrained optimization problem (24) is transformed to
an unconstrained one by introducing Lagrange multiplier λ and
the resulting Lagrange function of (24) is

L(θ, λ) = (y − Aθ)⊤W(y − Aθ) + γ ∥θ∥2

+ λ(θ⊤Tr(B) − 1).

Thus the optimal solution (̂θ
CRWLS

, λ∗) of the problem (24) satis-
fies the first optimality condition

− 2A⊤W(y − Âθ
CRWLS

) + 2γ θ̂
CRWLS

+ λ∗Tr(B) = 0 (A.1a)

Tr(B)⊤̂θ
CRWLS

= 1. (A.1b)

It follows from (A.1a) that

θ̂
CRWLS

= θ̂
RWLS

− λ∗CTr(B)/2. (A.2)

Furthermore, by using (A.1b), we have

Tr(B)⊤̂θ
CRWLS

= Tr(B)⊤ (̂θ
RWLS

− λ∗CTr(B)/2) = 1,

which yields

λ∗
=

2(Tr(B)⊤̂θ
RWLS

− 1)
Tr(B)⊤CTr(B)

. (A.3)

Substituting (A.3) into (A.2) obtains

θ̂
CRWLS

= θ̂
RWLS

− CTr(B)
Tr(B)⊤̂θ

RWLS
− 1

Tr(B)⊤CTr(B)
.

Next, we compute the MSE matrix of θ̂
CRWLS

. By the constraint
Tr(B)⊤θ = 1, we have

θ̂
CRWLS

− θ

= θ̂
RWLS

− θ −
CTr(B)

Tr(B)⊤CTr(B)

(
Tr(B)⊤ (̂θ

RWLS
− θ)

)
= C(−γ θ + A⊤We) −

CTr(B)
Tr(B)⊤CTr(B)

(
Tr(B)⊤

C(−γ θ + A⊤We)
)

= −γ Fθ + FA⊤We.

The matrix F has the following properties:

F⊤
= F , FTr(B) = 0, FC−1F = F . (A.4)

As a result, the MSE matrix of θ̂
CRWLS

is

E(̂θ
CRWLS

− θ)(̂θ
CRWLS

− θ)⊤

= γ 2Fθθ⊤F + FA⊤WAF

= γ 2Fθθ⊤F + F (C−1
− γ I)F

= FC−1F − γ F (I − γ θθ⊤)F

= F − γ F (I − γ θθ⊤)F .

This completes the proof.

A.2. Proof of Theorem 3

The proof requires the equivalent model (35) as well as result-
ing notations and conclusion in Section 4. Denote the orthogonal
matrix appearing in (36) by

Q =

[
Tr(B)⊤
∥Tr(B)∥

Q̃

]
. (A.5)

Thus by (36) and (42) we have

θ̂
CRWLS

− θ =

[
Tr(B)

∥Tr(B)∥
, Q̃⊤

][ 1
∥Tr(B)∥

α̂RWLS

]

−

[
Tr(B)

∥Tr(B)∥
, Q̃⊤

][ 1
∥Tr(B)∥

α

]
= Q̃⊤

(̂
αRWLS

− α
)
. (A.6)

When 0 < γ < 2/
(
∥θ∥2

−
1

∥Tr(B)∥2
)
, there holds

MSE(̂θ
CRWLS

)
△
= E(̂θ

CRWLS
− θ)(̂θ

CRWLS
− θ)⊤

= Q̃⊤E
((̂

αRWLS
− α

)(̂
αRWLS

− α
))⊤Q̃

= Q̃⊤MSE
(̂
αRWLS(γ )

)
Q̃

< Q̃⊤MSE
(̂
αRWLS(0)

)
Q̃

= Q̃⊤E
((̂

αRWLS(0) − α
)(̂

αRWLS(0) − α
))⊤Q̃
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= E(̂θ
CRWLS

(0) − θ)(̂θ
CRWLS

(0) − θ)⊤

= MSE
(̂
θ
CWLS)

(A.7)

where the inequality is obtained by (43) in Section 4 and θ̂
CRWLS

(0)
is exactly θ̂

CWLS
.

A.3. Proof of Proposition 2 and Remark 5

It follows from Lemma B.1 that

Q̂θ
CRWLS

= QHy + Qf

=

[
0
U

](
z +

d
∥Tr(B)∥

)
+

1
∥Tr(B)∥

[
1

−Ud

]
=

[
1

∥Tr(B)∥

α̂RWLS

]
. (A.8)

Pre-multiplying Q⊤ on both sides of (A.8) proves (42).
By (39), we have

α̂RWLS
− α = VK⊤W

(
Kα + e

)
− α

=
(
VK⊤WK − I

)
α + VK⊤We

= −γVα + VK⊤We, (A.9)

which derives

MSE
(̂
αRWLS(γ )

) △
= E(̂αRWLS

− α)(̂αRWLS
− α)⊤

= γ 2Vαα⊤V + VK⊤WKV.

When 0 < γ < 2/α⊤α, we have γαα⊤
− 2I < 0 and further

γαα⊤
− γ (K⊤WK)−1

− 2I < 0

since γ (K⊤WK)−1 is always positive definite. Thus we obtain

MSE
(̂
αRWLS(γ )

)
− MSE

(̂
αRWLS(0)

)
= γ 2Vαα⊤V + VK⊤WKV −

(
K⊤WK

)−1

= V
(
γ 2αα⊤

+ K⊤WK − V−1(K⊤WK
)−1V−1)V

= γV
(
γαα⊤

− γ (K⊤WK)−1
− 2I

)
V

< 0

if 0 < γ < 2/α⊤α.

A.4. Proof of Proposition 3

By (A.8), we have

Aθ−Âθ
CRWLS

= AQ⊤

(
Qθ − Q̂θ

CRWLS
)

=
[
d,K

] ([ 1
∥Tr(B)∥

α

]
−

[
1

∥Tr(B)∥

α̂RWLS

])
= Kα − Kα̂RWLS

which means that R(̂θ
CRWLS

) = R(̂αRWLS). So, the assertion (48a)
holds.

Similarly, it gives

y−Âθ
CRWLS

= z +
d

∥Tr(B)∥
−
[
d,K

] [ 1
∥Tr(B)∥

α̂RWLS

]
= z − Kα̂RWLS. (A.10)

The first equation in Lemma B.1 derives

Tr
(
AH
)

= Tr
(
AQ⊤QH

)
= Tr

([
d,K

] [0
U

])
= Tr

(
KU
)
. (A.11)

Combining (A.10) with (A.11) proves (48b).

A.5. Proof of Theorem 4

We first prove the convergence (50). It follows from (A.9) that

E
(
Kα − Kα̂RWLS)⊤W(Kα − Kα̂RWLS)
=γ 2α⊤VK⊤WKVα + Tr

(
VK⊤WKVK⊤WK

)
the two terms of which are

γ 2α⊤VK⊤WKVα

= γ 2α⊤

(
I −

γ

n
S
)
Vα

=
γ 2

n
α⊤Sα −

γ 3

n2 α⊤S2α (A.12a)

VK⊤WKVK⊤WK =

(
I −

γ

n
S
)2

= I − 2
γ

n
S +

γ 2

n2 S
2 (A.12b)

where S is defined in (B.3). Define

CR(γ )
△
= n

(
R(̂αRWLS) − Tr(I)

)
. (A.13)

Thus

γ̂R (̂αRWLS) = argmin
γ≥0

CR(γ ). (A.14)

Substituting (A.12) into (A.13) yields

CR(γ ) = γ 2α⊤Sα −
γ 3

n
α⊤S2α

− 2γ Tr (S)+
γ 2

n
Tr
(
S2
)

−→ α⊤Σ−1αγ 2
− 2Tr

(
Σ−1)γ △

= C (γ ) (A.15)

as n −→ ∞. It is clear that

γ ⋆
△
= argmin

γ≥0
C (γ ) =

Tr
(
Σ−1

)
α⊤Σ−1α

which can also be expressed by θ and Υ in terms of Lemma B.3.
By Lemma B.4, the limit γ̂R (̂αRWLS) −→ γ ⋆ holds as n −→ ∞

since the convergence (A.15) is uniform over a compact subset of
[0,+∞) that includes γ ⋆.

For convenience of proving (52), denote

α̂WLS △
= XK⊤Wz, X △

= (K⊤WK)−1. (A.16)

It follows that

V = X − γVX, VX−1
= I − γV (A.17)

Kα̂RWLS
= KVK⊤Wz = K

(
X − γVX

)
K⊤Wz

= Kα̂WLS
− γKVα̂WLS. (A.18)
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We first consider the decomposition of the first term of the cost
function of (47)

(z − Kα̂RWLS)⊤W(z − Kα̂RWLS)

=
(
z − Kα̂WLS)⊤W(z − Kα̂WLS)
+ γ 2 (̂αWLS)⊤VK⊤WKVα̂WLS

+ 2γ (̂αWLS)⊤VK⊤W
(
z − Kα̂WLS). (A.19)

The second term of (A.19) is

γ 2 (̂αWLS)⊤VK⊤WKVα̂WLS

= γ 2 (̂αWLS)⊤
(
I − γV

)
Vα̂WLS

= γ 2 (̂αWLS)⊤V(̂αWLS) − γ 3 (̂αWLS)⊤V2α̂WLS

=
γ 2

n
(̂αWLS)⊤S(̂αWLS) −

γ 3

n2 (̂α
WLS)⊤S2α̂WLS. (A.20)

The third term of (A.19) is

2γ (̂αWLS)⊤VK⊤W
(
z − Kα̂WLS)

= 2γ (̂αWLS)⊤V
(
K⊤Wz − K⊤WKα̂WLS)

= 0. (A.21)

Further, we have

KU = VK⊤WK = I −
γ

n
S. (A.22)

Define

CU (γ )
△
= n

(
Cu(γ ) −

(
z − Kα̂WLS)⊤W(z − Kα̂WLS)

− 2Tr(I)
)
.

Thus

γ̂u (̂αRWLS) = argmin
γ≥0

CU (γ ) (A.23)

since
(
z−Kα̂WLS)⊤W(z−Kα̂WLS) is independent of γ . Substituting

(A.20)–(A.22) into (A.23) turns out

CU (γ ) = γ 2 (̂αWLS)⊤ŜαWLS
−
γ 3

n
(̂αWLS)⊤S2α̂WLS

− 2γ Tr (S)
−→ α⊤Σ−1αγ 2

− 2Tr
(
Σ−1)γ = C (γ ) (A.24)

as n −→ ∞ since α̂WLS
−→ α almost surely as n −→ ∞. It follows

from Lemma B.4 that the limit (52) is true since the conver-
gence (A.24) is uniform over a compact subset of [0,+∞) that
includes γ ⋆.

It remains to show the rates of convergence (51) and (52).
For this, we first calculate the first and second order deriva-

tives of CR(γ ) with respective to γ with the help of
Lemma B.2:

d CR(γ )
d γ

= 2γα⊤Sα −
γ 2

n
α⊤S2α

−
3γ 2

n
α⊤S2α +

2γ 3

n2 α⊤S3α

− 2Tr
(
S
)
+

2γ
n

Tr
(
S2
)

+
2γ
n

Tr
(
S2
)
−

2γ 2

n2 Tr
(
S3
)

d2 CR(γ )
d γ 2 = 2α⊤Sα + O

(
1
n

)
.

By using a Taylor expansion, we have

0 =
d CR(γ )
d γ

⏐⏐⏐
γ=γ̂R (̂αRWLS)

=
d CR(γ )
d γ

⏐⏐⏐
γ=γ ⋆

+
d2 CR(γ )
d γ 2

⏐⏐⏐
γ=γ

(
γ̂R (̂αRWLS) − γ ⋆

)
.

where γ is a real number between γ̂R (̂αRWLS) and γ ⋆, which
implies that

γ̂R (̂αRWLS) − γ ⋆ = −

(
d2 CR(γ )
d γ 2

⏐⏐⏐
γ=γ

)−1 d CR(γ )
d γ

⏐⏐⏐
γ=γ ⋆

.

As n −→ ∞, we have

n
d CR(γ )
d γ

⏐⏐⏐
γ=γ ⋆

= 2n
(
γ ⋆α⊤Sα − Tr

(
S
))

− 4(γ ⋆)2α⊤S2α + 4γ ⋆Tr
(
S2
)
+ O

(
1
n

)
= −2(γ ⋆)2α⊤SΣ−1α + 2γ ⋆Tr

(
SΣ−1)

− 4(γ ⋆)2α⊤S2α + 4γ ⋆Tr
(
S2
)
+ O

(
1
n

)
−→ −6(γ ⋆)2α⊤Σ−2α + 6γ ⋆Tr

(
Σ−2)

d2 CR(γ )
d γ 2

⏐⏐⏐
γ=γ

−→ 2α⊤Σ−1α

which yields

n
(
γ̂R (̂αRWLS) − γ ⋆

)
−→

3γ ⋆
(
γ ⋆α⊤Σ−2α − Tr

(
Σ−2

))
α⊤Σ−1α

. (A.27)

For proving (52), the procedure is similar. By Lemma B.2, the first
and second derivatives of CU (γ ) are

d CU (γ )
d γ

= 2γ (̂αWLS)⊤ŜαWLS
−
γ 2

n
(̂αWLS)⊤S2α̂WLS

−
3γ 2

n
(̂αWLS)⊤S2α̂WLS

+
2γ 3

n2 (̂αWLS)⊤S3α̂WLS

− 2Tr
(
S
)
+

2γ
n

Tr
(
S2
)

d2 CU (γ )
d γ 2 = 2(̂αWLS)⊤ŜαWLS

+ Op

(
1
n

)
.

Applying the Taylor expansion obtains

γ̂u (̂αRWLS) − γ ⋆ = −

(
d2 CU (γ )
d γ 2

⏐⏐⏐
γ=γ

)−1 d CU (γ )
d γ

⏐⏐⏐
γ=γ ⋆

where γ is a real number between γ̂u (̂αRWLS) and γ ⋆. By a
straightforward calculation, we have
√
n
(̂
αWLS

− α
)

−→ N
(
0,Σ−1)

by further using the Delta method,
√
n
(
(̂αWLS)⊤ŜαWLS

− α⊤Σ−1α
)

=
√
n
(̂
αWLS

− α
)⊤ŜαWLS

+
√
nα⊤

(
S −Σ−1)̂αWLS

+ α⊤Σ−1√n
(̂
αWLS

− α
)

=
√
n
(̂
αWLS

− α
)⊤ŜαWLS

+ α⊤Σ−1√n
(̂
αWLS

− α
)
+ Op

(
1

√
n

)
−→ N

(
0, 4 α⊤Σ−3α

)
.
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It follows that
√
n
d CU (γ )
d γ

⏐⏐⏐
γ=γ ⋆

= 2γ ⋆ (̂αWLS)⊤ŜαWLS
− 2Tr

(
S
)
+ Op

(
1

√
n

)
= 2

√
nγ ⋆

(
(̂αWLS)⊤ŜαWLS

− α⊤Σ−1α
)

+ 2
√
n
(
Tr
(
Σ−1)

− 2Tr
(
S
))

+ Op

(
1

√
n

)
= 2γ ⋆

√
n
(
(̂αWLS)⊤ŜαWLS

− α⊤Σ−1α
)
+ Op

(
1

√
n

)
−→ N

(
0, 16(γ ⋆)2α⊤Σ−3α

)
.

As a result,

√
n
(
γ̂u (̂αRWLS) − γ ⋆

)
−→ N

(
0,

(2γ ⋆)2α⊤Σ−3α(
α⊤Σ−1α

)2
)
.

Appendix B

This appendix contains the technical lemmas used in the proof
in Appendix A.

Lemma B.1. We have

QH =

[
0
U

]
, Qf =

1
∥Tr(B)∥

[
1

−Ud

]
. (B.1)

Proof. For convenience of proof, we denote

C = (A⊤WA + γ I)−1

G = (D⊤WD + γ I)−1

as well as the column vector e1 of length d2 and matrix e−1 of
size d2 by d2 − 1 that make up the identity matrix[
e1, e−1

]
= I.

Thus the following identities hold.

G = QCQ⊤, D = AQ⊤
= [d,K] (B.2a)

e⊤

1 Q = Tr(B)⊤/∥Tr(B)∥, QTr(B) = ∥Tr(B)∥e1 (B.2b)

e⊤

−1Ge1/e
⊤

1 Ge1 = −(K⊤WK + γ I)−1K⊤Wd. (B.2c)

The identities (B.2a)–(B.2b) can be verified by a straightfor-
ward calculation.

Eq. (B.2c) is obtained by choosing the (2, 1)-block submatrix
of the identity

G−1G =

[
d⊤Wd + γ d⊤WK

K⊤Wd K⊤WK + γ I

]
×

[
e⊤

1 Ge1 e⊤

1 Ge−1

e⊤

−1Ge1 e⊤

−1Ge−1

]
= I.

By using (B.2a)–(B.2b), we have

QH = QCA⊤W − QCTr(B)
Tr(B)⊤CA⊤W
Tr(B)⊤CTr(B)

= QCQ⊤QA⊤W

− QCQ⊤QTr(B)
Tr(B)⊤Q⊤QCQ⊤QA⊤W
Tr(B)⊤Q⊤QCQ⊤QTr(B)

= GDW − Ge1e⊤

1 GDW/e
⊤

1 Ge1.

It is clear that

e⊤

1 QH = e⊤

1 GDW − e⊤

1 Ge1e
⊤

1 GDW/e
⊤

1 Ge1 = 0.

and further it follows from (B.2c) that

e⊤

−1QH = e⊤

−1GDW − e⊤

−1Ge1e
⊤

1 GDW/e
⊤

1 Ge1

=

(
e⊤

−1 −
e⊤

−1Ge1
e⊤

1 Ge1
e⊤

1

)
GDW

=

[
−

e⊤
−1Ge1
e⊤1 Ge1

, I

][
e⊤

1

e⊤

−1

]
GDW

=
[
(K⊤WK + γ I)−1K⊤Wd, I

]
GD⊤W

= (K⊤WK + γ I)−1
[
K⊤Wd, K⊤WK + γ I

]
GD⊤W

= (K⊤WK + γ I)−1e⊤

−1G
−1GD⊤W

= (K⊤WK + γ I)−1e⊤

−1D
⊤W

= (K⊤WK + γ I)−1K⊤W
= U.

Using (B.2a)–(B.2b) again, one yields

Qf =
QCTr(B)

Tr(B)⊤CTr(B)

=
QCQ⊤QTr(B)

Tr(B)⊤Q⊤QCQ⊤QTr(B)

=
Ge1

e⊤

1 Ge1∥Tr(B)∥
.

Thus by (B.2c) we have

e⊤

1 Qf =
e⊤

1 Ge1
e⊤

1 Ge1∥Tr(B)∥
= 1/∥Tr(B)∥

e⊤

−1Qf =
e⊤

−1Ge1
e⊤

1 Ge1∥Tr(B)∥
= −(K⊤WK + γ I)−1K⊤Wd/∥Tr(B)∥
= −Ud/∥Tr(B)∥.

This completes the proof. ■

Lemma B.2. Denote

S =

(
Σ +

γ

n
I
)−1

. (B.3)

We have

d g⊤Sg
d γ

= −
g⊤S2g

n
,

d g⊤S2g
d γ

= −
2g⊤S3g

n
(B.4)

dTr
(
S
)

d γ
= −

Tr
(
S2
)

n
,

dTr
(
S2
)

d γ
= −

2Tr
(
S3
)

n
. (B.5)

where g is any column vector.

The proof is carried out by making use of the matrix differen-
tiation formulas in Petersen and Pedersen (2012, Chapter 2) and
is omitted due to limited space.

Lemma B.3. We have

Tr
(
Σ−1)

= Υ −1
−

Tr(B)⊤Υ −2Tr(B)
Tr(B)⊤Υ −1Tr(B)

α⊤Σ−1α = θ⊤Υ −1θ −
θ⊤Υ −1Tr(B)Tr(B)⊤Υ −1θ

Tr(B)⊤Υ −1Tr(B)
.

Proof. By letting γ = 0 in Lemma B.1, we have

QH =

[
0

(K⊤WK)−1K⊤W

]
(B.6)
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where

H = CA⊤W − CTr(B)
Tr(B)⊤CA⊤W
Tr(B)⊤CTr(B)

C =
(
A⊤WA

)−1
.

It follows that

Q⊤

[
0 0
0 (K⊤WK)−1

]
Q = HW−1H⊤

=

(
I −

CTr(B)Tr(B)⊤

Tr(B)⊤CTr(B)

)
C
(
I −

Tr(B)Tr(B)⊤C
Tr(B)⊤CTr(B)

)
=

(
C −

CTr(B)Tr(B)⊤C
Tr(B)⊤CTr(B)

)
which derives that

Tr
(
Σ−1)

= nTr
(
(K⊤WK)−1)

= nTr
(
C
)
−

nTr(B)⊤C2Tr(B)
Tr(B)⊤CTr(B)

= Tr
(
Υ −1)

−
Tr(B)⊤Υ −2Tr(B)
Tr(B)⊤Υ −1Tr(B)

α⊤Σ−1α = nα⊤(K⊤WK)−1α

= nθ⊤Q⊤

[
0 0
0 (K⊤WK)−1

]
Qθ

= nθ⊤

(
C −

CTr(B)Tr(B)⊤C
Tr(B)⊤CTr(B)

)
θ

= θ⊤Υ −1θ −
θ⊤Υ −1Tr(B)Tr(B)⊤Υ −1θ

Tr(B)⊤Υ −1Tr(B)
This completes the proof. ■

Lemma B.4 (Ljung, 1999, Theorem 8.2). Assume that

(1) C (γ ) is a deterministic function that is continuous in γ ∈ Ω

and minimized at the point γ ⋆, where Ω is a compact subset
of R.

(2) A sequence of functions {Cn(γ )} converges to C (γ ) almost
surely and uniformly in Ω as n goes to ∞.

Then γ̂n = argminγ∈Ω Cn(γ ) converges to γ ⋆ almost surely, namely,

|̂γn − γ ⋆| −→ 0 as n −→ ∞.

References

Ahnert, S. E., & Payne, M. C. (2006). All possible bipartite positive-operator-
value measurements of two-photon polarization states. Physical Review A,
73, 022333.

Alquier, P., Butucea, C., Hebiri, M., & Meziani, K. (2013). Rank penalized
estimation of a quantum system. Physical Review A, 88, 032133.

Amemiya, T. (1985). Advanced econometrics. Harvard University Press.
Artiles, L. M., Gill, R. D., & Guta, M. I. (2005). An invitation to quantum tomog-

raphy. Journal of the Royal Statistical Society Series B Statistical Methodology,
67, 109–134.

Bisio, A., Chiribella, G., D’Ariano, G. M., Facchini, S., & Perinotti, P. (2009). Optimal
quantum tomography of states, measurements, and transformations. Physical
Review Letters, 102, 010404.

Blume-Kohout, R. (2010). Hedged maximum likelihood quantum state
estimation. Physical Review Letters, 105, 200504.

Bonnabel, S., Mirrahimi, M., & Rouchon, P. (2009). Observer-based hamiltonian
identification for quantum systems. Automatica, 45(5), 1144–1155.

Cai, T., Kim, D., Wang, Y., Yuan, M., & Zhou, H. H. (2016). Optimal large-scale
quantum state tomography with Pauli measurements. The Annals of Statistics,
44(2), 682–712.

Chiuso, A. (2016). Regularization and Bayesian learning in dynamical systems:
Past, present and future. Annual Reviews in Control, 41, 24–38.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. The MIT Press.
Gross, D. (2011). Recovering low-rank matrices from few coefficients in any

basis. IEEE Transactions on Information Theory, 57(3), 1548–1566.

Gross, D., Liu, Y.-K., Flammia, S., & S. Becker, J. E. (2010). Quantum state
tomography via compressed sensing. Physical Review Letters, 105, 150401.

James, D. F. V., Kwiat, P. G., Munro, W. J., & White, A. G. (2001). Measurement
of qubits. Physical Review A, 64, 052312.

Leghtas, Z., Turinici, G., Rabitz, H., & Rouchon, P. (2012). Hamiltonian iden-
tification through enhanced observability utilizing quantum control. IEEE
Transactions on Automatic Control, 57(10), 2679–2683.

Ljung, L. (1999). System identification: theory for the user. Upper Saddle River, NJ:
Prentice-Hall.

Nielsen, M. A., & Chuang, I. L. (2001). Quantum computation and quantum
information. Cambridge, England: Cambridge University Press.

Petersen, K. B., & Pedersen, M. S. (2012). The matrix cookbook. http://
matrixcookbook.com.

Qi, B., Hou, Z., Li, L., Dong, D., Xiang, G., & Guo, G. (2013). Quantum state
tomography via linear regression estimation. Scientific Reports, 3, 3496.

Qi, B., Hou, Z., Wang, Y., Dong, D., Zhong, H.-S., Li, L., et al. (2017). Adaptive
quantum state tomography via linear regression estimation: theory and
two-qubit experiment. npj Quantum Information, 3, 19.

Rao, C. R., Toutenburg, H., Shalabh, & Heumann, C. (2008). Linear models and
generalizations: least squares and alternatives. Berlin Heidelberg: Springer.

Recht, B., Fazel, M., & Parrilo, P. A. (2010). Guaranteed minimum-rank solutions
of linear matrix equations via nuclear norm minimization. SIAM Review,
52(3), 471–501.

Senko, C., Smith, J., Richerme, P., Lee, A., Campbell, W. C., & Monroe, C. (2014).
Coherent imaging spectroscopy of a quantum many-body spin system.
Science, 345, 430–433.

Shalev-Shwartz, S. (2012). Online learning and online convex optimization.
Foundations and Trends in Machine Learning, 4(2), 107–194.

Smolin, J. A., Gambetta, J. M., & Smith, G. (2012). Efficient method for computing
the maximum-likelihood quantum state from measurements with additive
Gaussian noise. Physical Review Letters, 108, 070502.

Teo, Y. S., Zhu, H., Englert, B. G., Rehacek, J., & Hradil, Z. (2011). Quantum-state
reconstruction by maximizing likelihood and entropy. Physical Review Letters,
107, 020404.

Theil, H. (1971). Principles of econometrics. John Wiley & Sons, Inc..
Wang, Y. (2013). Asymptotic equivalence of quantum state tomography and

noisy matrix completion. The Annals of Statistics, 41, 2462–2504.
Wang, Y., Dong, D., Qi, B., Zhang, J., Petersen, I. R., & Yonezawa, H. (2018).

A quantum hamiltonian identification algorithm: Computational complexity
and error analysis. IEEE Transactions on Automatic Control, 63(5), 1388–1403.

Wang, Y., Yin, Q., Dong, D., Qi, B., Petersen, I. R., Hou, Z., et al. (2019). Quantum
gate identification: Error analysis, numerical results and optical experiment.
Automatica, 101, 269–279.

Wootters, W. K., & Fields, B. D. (1989). Optimal state-determination by mutually
unbiased measurements. Annalen der Physik, 191, 363–381.

Xue, S., Zhang, J., & Petersen, I. R. (2019). Identification of non-Markovian en-
vironments for spin chains. IEEE Transactions on Control Systems Technology,
27(6), 2574–2580.

Biqiang Mu received the Bachelor of Engineering de-
gree in Material Formation and Control Engineering
from Sichuan University in 2008 and the Ph.D. de-
gree in Operations Research and Cybernetics from the
Academy of Mathematics and Systems Science, Chi-
nese Academy of Sciences in 2013. He is currently
an assistant professor at the Academy of Mathematics
and Systems Science, Chinese Academy of Sciences. His
research interests include system identification (data-
driven modeling and analysis), machine learning, and
their applications.

Hongsheng Qi received his Ph.D. degree in systems
theory from Academy of Mathematics and Systems Sci-
ence, Chinese Academy of Sciences in 2008. From July
2008 to May 2010, he was a postdoctoral fellow in the
Key Laboratory of Systems Control, Chinese Academy
of Sciences. He currently is an associate professor with
Academy of Mathematics and Systems Science, Chinese
Academy of Sciences. He was a recipient of ‘‘Automat-
ica’’ 2008–2010 Theory/Methodology Best Paper Prize
in 2011 and the second recipient of a second National
Natural Science Award of China in 2014. His research

interests include logical dynamic systems, game theory, quantum networks, etc.

http://refhub.elsevier.com/S0005-1098(20)30035-2/sb1
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb1
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb1
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb1
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb1
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb2
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb2
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb2
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb3
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb4
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb4
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb4
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb4
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb4
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb5
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb5
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb5
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb5
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb5
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb6
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb6
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb6
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb7
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb7
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb7
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb8
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb8
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb8
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb8
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb8
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb9
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb9
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb9
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb10
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb11
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb11
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb11
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb12
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb12
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb12
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb13
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb13
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb13
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb14
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb14
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb14
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb14
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb14
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb15
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb15
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb15
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb16
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb16
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb16
http://matrixcookbook.com
http://matrixcookbook.com
http://matrixcookbook.com
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb18
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb18
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb18
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb19
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb19
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb19
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb19
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb19
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb20
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb20
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb20
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb21
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb21
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb21
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb21
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb21
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb22
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb22
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb22
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb22
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb22
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb23
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb23
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb23
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb24
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb24
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb24
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb24
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb24
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb25
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb25
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb25
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb25
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb25
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb26
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb27
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb27
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb27
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb28
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb28
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb28
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb28
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb28
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb29
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb29
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb29
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb29
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb29
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb30
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb30
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb30
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb31
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb31
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb31
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb31
http://refhub.elsevier.com/S0005-1098(20)30035-2/sb31


B. Mu, H. Qi, I.R. Petersen et al. / Automatica 114 (2020) 108837 15

Ian R. Petersen was born in Victoria, Australia. He
received a Ph.D. in Electrical Engineering in 1984 from
the University of Rochester. From 1983 to 1985 he
was a Postdoctoral Fellow at the Australian National
University. From 1985 until 2016 he was with UNSW
Canberra where was most recently a Scientia Professor
and an Australian Research Council Laureate Fellow in
the School of Engineering and Information Technology.
He has previously been ARC Executive Director for
Mathematics Information and Communications, Acting
Deputy Vice-Chancellor Research for UNSW and an

Australian Federation Fellow. From 2017 he has been a Professor at the
Australian National University. He is currently the Director of the Research
School of Electrical, Energy and Materials Engineering at the Australian National
University. He has served as an Associate Editor for the IEEE Transactions on
Automatic Control, Systems and Control Letters, Automatica, IEEE Transactions
on Control Systems Technology and SIAM Journal on Control and Optimization.
Currently he is an Editor for Automatica. He is a fellow of IFAC, the IEEE and the
Australian Academy of Science. His main research interests are in robust control
theory, quantum control theory and stochastic control theory.

Guodong Shi received the B.Sc. degree in mathematics
and applied mathematics from the School of Math-
ematics, Shandong University, Jinan, China in 2005,
and the Ph.D. degree in systems theory from the
Academy of Mathematics and Systems Science, Chinese
Academy of Sciences, Beijing, China in 2010. From
2010 to 2014, he was a Postdoctoral Researcher at
the ACCESS Linnaeus Centre, KTH Royal Institute of
Technology, Stockholm, Sweden. From 2014 to 2018,
he was with the Research School of Engineering, The
Australian National University, Canberra, ACT, Australia,

as a Lecturer and then Senior Lecturer, and a Future Engineering Research
Leadership Fellow. Since 2019 he has been with the Australian Center for Field
Robotics, The University of Sydney, NSW 2006, Sydney, Australia as a Senior
Lecturer. His research interests include distributed control systems, quantum
networking and decisions, and social opinion dynamics.


	Quantum tomography by regularized linear regressions
	Introduction
	Problem definition and preliminaries
	Linear regression for quantum state tomography
	The noise distribution
	Simultaneous measurements

	Regularized linear regressions
	Standard least squares
	Weighted regression
	Constrained weighted regression
	Regularized weighted regression

	An equivalent regression model
	Eliminating equality constraint
	Asymptotically optimal regularization gain 

	Numerical examples
	Overdeterminate measurement basis
	Small sample-size and optimal regularizer
	Under-determinate measurement basis

	Conclusions
	Appendix A
	Proof of thm2
	Proof of thm5
	Proof of prop4 and rem4
	Proof of prop5
	Proof of thm6

	Appendix B
	References


