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a b s t r a c t

This paper aims to provide a systemic analysis to social opinion dynamics subject to individual biases.
As a generalization of the classical DeGroot social interactions, defined by linearly coupled dynamics of
peer opinions that evolve over time, biases add to state-dependent edge weights and therefore lead to
highly nonlinear network dynamics. Previous studies have dealt with convergence and stability analysis
of such systems for a few specific initial node opinions and network structures, and here we focus on
how individual biases affect social equilibria and their stabilities. Two categories of equilibria, namely
the boundary and interior equilibria, are defined. For a few fundamental network structures, some
important interior network equilibria are presented explicitly for a wide range of system parameters,
which are shown to be locally unstable in general. Particularly, the interval centroid is proven to be
unstable regardless of the bias level and the network topologies. Next, we prove that when the initial
network opinions are polarized towards one side of the state space, node biases will drive the opinion
evolution to the corresponding interval boundaries. Such polarization attraction effect continues to
hold under even directed and switching network structures. Finally, a number of numerical examples
are provided to validate our study and advance the understanding of the nonlinearity inherited within
the biased opinion evolution.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Understanding how opinions of the members in our society
evolve during their interactions that take place online or in daily
lives is becoming increasingly important in many aspects ranging
from political decisions to marketing strategies (Easley & Klein-
berg, 2010; Friedkin, Proskurnikov, Tempo, & Parsegov, 2016;
Jackson, 2010; Scott, 2017). In various cases, social opinions can
be represented by real numbers, and by individuals averaging
those numbers with neighbors the classical DeGroot’s model was
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established (DeGroot, 1974). When the social network structure
admits sufficient connectivity, it was shown that DeGroot type of
social interactions often leads to convergence to a common opin-
ion, namely agreement or consensus, across the entire society,
e.g., Jadbabaie, Lin, and Morse (2003), Moreau (2005), Semonsen,
Griffin, Squicciarini, and Rajtmajer (2018) and Tsitsiklis, Bert-
sekas, and Athans (1986). The significance of social agreement
can be made clear through the notion of naive learning in the
sense that a social agreement, even not at the perfect average,
implies asymptotic learning of a hidden variable with sufficiently
flat interconnections, when nodes’ opinions are independently
sampled in the first place, e.g. Golub and Jackson (2010).

In practical social networks, however, DeGroot social inter-
actions are arguably rare since it is difficult to observe social
agreement, e.g., Bindel, Kleinberg, and Oren (2015), DeMarzo,
Vayanos, and Zwiebel (2003), Friedkin et al. (2016) and Lawrence,
Sides, and Farrell (2010). As a result, a number of generalized
models were proposed to capture different psychological effects
behind social interactions. Peers might put weight on their initial
opinions throughout the entire social interactions as memory
effects (Friedkin & Johnsen, 1990); nodes might only interact
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with peers that hold opinions within a given range compared to
their own opinions (Hegselmann & Krause, 2002; Li, Scaglione,
Swami, & Zhao, 2013); a portion of nodes may be stubborn who
never revise their initial beliefs (Acemoglu, Como, Fagnani, &
Ozdaglar, 2013; Yildiz, Ozdaglar, Acemoglu, Saberi, & Scaglione,
2013); nodes might adjust the weights timely with the changes of
their opinions (Bhawalkar, Gollapudi, & Munagala, 2013); nodes
may tend to be repulsive towards enemies by carrying out neg-
ative interactions (Altafini, 2012, 2013; Shi, Johansson, & Jo-
hansson, 2013; Shi, Proutiere, Johansson, Baras, & Johansson,
2016). It turned out, beyond asymptotic stability, social dynamics
can exhibit complex behaviors such as clustering and oscillation
(Altafini, 2013; Blondel, Hendrickx, & Tsitsiklis, 2009; Shi et al.,
2016), being consistent with studies from social and political sci-
ence (Mas, Flache, & Helbing, 2010; McCarty, Poole, & Rosenthal,
2016). In fact, nonlinear bifurcations can arise from collective
dynamics of interconnected agents as a way of gaining survival
advantage (Leonard, 2014).

In the real world, individuals’ examination of new information
and rationale of decision making are often biased. Studies from
social psychology show that people are more likely to accept
confirming evidence as viewpoints given by someone similar
to themselves (Lord, Ross, & Lepper, 1979). In Centola (2011),
it was shown that people are more willing to accept health
behaviors being put in a group of homophilous members. A con-
vincing model for this biased opinion assimilation was proposed
in Dandekar, Goel, and Lee (2013) as a natural interpretation of
confirmation bias:

(i) Nodes hold real-valued opinions, and receive linear com-
binations of neighboring nodes in a social network as evi-
dence;

(ii) Each individual node uses its current opinion to gener-
ate a nonlinear confidence weight towards the evidence it
receives, depending on how biased this node is.

Then nodes update their states as a weighted sum of their current
states and the evidence from neighbors.

However, due to the nonlinear mechanism of this biased opin-
ion dynamics, analytical understandings of the behaviors of such
social systems become extremely difficult. Note that, any serious
attempt of modeling confirmation bias relies on making the con-
fidence level towards external evidence depending on the node’s
current state and the evidence. Therefore, such nonlinearity is
inherently aligning with such effort. In Dandekar et al. (2013),
asymptotic behaviors of the biased opinion evolution were only
established for special initial values and for some very special
network structure, i.e, the two-island network model as well. Ad-
vancing such results will provide insight to this interesting social
opinion dynamic model, but also shed light on perspectives of
treating complex network dynamics with state-dependent edge
weights.

In this paper, we attempt to provide a systemic analysis to a
social opinion dynamical model with bias assimilation. Particu-
larly, we focus on how individual biases affect social equilibria
and their stabilities. First of all, we investigate the bias-induced
equilibria of the collective nonlinear network dynamics. For fun-
damental network structures such as complete, star, and cycle
graphs, the equilibria are presented explicitly for a wide range
of system parameters. The given equilibria are also shown to be
locally unstable in general. Particularly, the interval centroid is
shown to be always unstable regardless the choice of bias level
and network topologies. These results add to new understandings
of the stability analysis in Dandekar et al. (2013), going beyond
specific initial node opinions despite the high nonlinearity of
the network dynamics. Next, we prove that when the initial
network opinions are polarized towards one side of the state

interval, such polarization will be persisted and amplified by node
biases during the opinion evolution in the sense that all node
states will converge to the corresponding interval boundaries.
Such polarization attraction is shown to exist under even directed
and switching network structures. Moreover, we provide several
numerical examples to do some intuitive analyses.

The remainder of the paper is organized as follows. Section 2
defines the specific model and raises problems of interests we
will analyze. Section 3 investigates the new equilibria that arise
from the nonlinear network dynamics for both their positions
and stabilities. Section 4 moves on to discuss the polarization
attraction effect including the generalizations to directed and
switching network structures. Furthermore, Section 5 provides
some numerical examples to better illustrate our model and
results. Finally some concluding remarks are given in Section 6.

Notation. For a vector X = (x1, . . . , xn)⊤ ∈ Rn, let ∥X∥ =√∑n
i=1 x

2
i . For any x ∈ R, ⌊x⌋ represents the largest integer that

is no larger than x, and ⌈x⌉ represents the smallest integer that is
no smaller than x.

2. Problem formulation

2.1. The model

To account for social opinion dynamics, consider a social net-
work with n individuals (nodes) indexed in the set V = {1, . . . , n}.
The structure of the social network is represented by an undi-
rected graph G = (V, E), where each edge {i, j} ∈ E is an
unordered pair of two different nodes in the set V. The graph G
is assumed to be connected without loss of generality. Each i ∈ V
holds an opinion xi(t) ∈ R at slotted time t = 0, 1, 2, . . .. Node i
interacts with the neighbors in the set Ni :=

{
j ∈ V : {i, j} ∈ E

}
.

The influence strength between two neighboring nodes i and j
is represented by wij > 0 and then di :=

∑
j∈Ni

wij is the total
weight of influence applied to node i. Note that with connectivity,
Ni is non-empty for any i and thus di > 0, i ∈ V. The node i’s
self-confidence is represented by wii > 0. Let

si(t) :=

∑
j∈Ni

wijxj(t)

be the weighted external evidence received by node i at time
t . Let bi be a positive number associated with node i as a bias
parameter. The evolution of the xi(t), i ∈ V is described by
Dandekar et al. (2013):

xi(t + 1)

=
wiixi(t) + xbii (t)si(t)

wii + xbii (t)si(t) +
(
1 − xi(t)

)bi(di − si(t)
) . (1)

This model describes the opinion dynamics with a well-known
phenomenon in social psychology named biased assimilation. For
any node i, the weighted external evidence si(t) can be regarded
as the weighted sum of all neighbors support for extreme opinion
1; correspondingly, di − si(t) represents the weighted sum of all
neighbors support for extreme opinion 0. Node i then weights
si(t) by a factor xbii (t) and weights di−si(t) by a factor

(
1−xi(t)

)bi .
It can be easily shown that all xi(t) will always be within the
interval [0, 1] if they all start from this interval at t = 0. Thus,
the larger bi is, the smaller xbii (t) is. As a result, node i will put
a lower confidence towards the external evidence si(t). This is to
say, bi indicates the bias level of node i, and (1) is a description
of biased opinion evolution.
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2.2. Problems of interest

As an intriguing generalization to the DeGroot model, the
complex network dynamics (1) is highly nonlinear. For nonlinear
systems in general we are interested in the following aspects:

(i) Are there any equilibria? If yes, then how many?
(ii) Are the equilibria, if exist, locally stable or unstable?
(iii) What is the asymptotic behavior of the node states in terms

of convergence to equilibria, limit cycles or chaotic attrac-
tors?

Unfortunately, a complete answer to these questions is rather
challenging, despite of their significance in interpreting novel
social behaviors. In fact, the original work in Dandekar et al.
(2013) which introduces this model is only capable of establishing
a few convergence conditions with quite special initial values
or network structures. Moreover, we would like to note that
advancing the tools for analyzing (1) may also give insight to the
treatment of complex network dynamics with state-dependent
edge coefficients, a key feature of the nonlinearity in (1).

3. The induced equilibria

In this section, we investigate the bias-induced equilibria of
the system (1). Clearly, the total number of degrees of freedom is
too high to facilitate a meaningful analysis given the bias levels
bi and the node weights wij. To ease the presentation, we impose
the following assumption throughout the remaining part of this
section.

Assumption 1. The following conditions hold for system (1):

(i) There is a b > 0 such that bi = b for all i ∈ V;
(ii) wij = 1 for all {i, j} ∈ E;
(iii) wii = w ≥ 0 for all i ∈ V.

Let E be the set of equilibria of (1) and Ebdy = {X ∈

[0, 1]n\(0, 1)n : X ∈ E} be the set of boundary equilibria. It is
clear that every point in {0, 1}n is a boundary equilibrium. we
introduce Eint = {X ∈ (0, 1)n : X ∈ E} as the set of interior equi-
libria, which is certainly of more interest. Furthermore, denote
X(t) =

(
x1(t), x2(t), . . . , xn(t)

)⊤. Recall the following definition
(Khalil, 2002).

Definition 1. The equilibrium X = (x1, x2, . . . , xn−1, xn)⊤ of
system (1) is called locally stable if for every ε > 0 there exists
a δ = δ(ε) > 0 such that ∥X(t) − X∥ < ε for all t ≥ 0
whenever ∥X(0)−X∥ < δ. Otherwise, the equilibrium is called to
be unstable.

3.1. Equilibria distribution

For any equilibrium X, there holds that for all i ∈ V

xi

=
wiixi + xbi

(∑
j∈Ni

wijxj
)

wii + xbi
(∑

j∈Ni
wijxj

)
+

(
1 − xi

)b(di − (
∑

j∈Ni
wijxj)

) ,

which is equivalent to

pi(x1, . . . , xn) : = xbi

(
xi − 1

)(∑
j∈Ni

wijxj
)

+ xi
(
1 − xi

)b(
di −

(∑
j∈Ni

wijxj
))

= 0, i ∈ V. (2)

Here each pi(x1, . . . , xn) is a polynomial function.

Fig. 1. The ratio of stable equilibria in the set Ek
ver .

Remark 1. It is obvious that (2) is a system of polynomial
equations, which is difficult to solve even numerically from a
computational point of view. The Buchberger’s algorithm in Cox,
Little, and O’shea (2007) provides a form of exact solvers to find
the recursive ideal generated by the n polynomials in (2) over the
polynomial ring.

The 2n equilibria in the set {0, 1}n are also quite interesting
as they are vertex equilibria in the opinion space. Their stabil-
ities would reflect stubborn and extreme social formations. To
illustrate this, we provide the following example.

Example 1. Consider a cycle graph with 10 nodes. Let w = 1
and b = 3 in (1). The 210 vertex equilibria are denoted by
Ever :=

{
(x1 . . . x10)⊤ : xi ∈ {0, 1}

}
. The stability of each

equilibrium in the set Ever is tested by randomization, where
around each equilibrium a total of 100 initial values are selected
randomly. The algorithm is run for 104 steps and if the distance
between the resulting outcome and the equilibrium is always
within three times of the initial distance for the 100 initial val-
ues, the equilibrium is considered as stable. Denote by Ek

ver :={
(x1 . . . x10)⊤ : xi ∈ {0, 1},

∑10
i=1 xi = k

}
for k = 0, 1, . . . , 10.

The subset of stable equilibria of Ek
ver is denoted by Ek

ver. Define
p(k) :=

⏐⏐Ek
ver

⏐⏐/⏐⏐Ek
ver

⏐⏐ as the ratio of stable equilibria in the set Ek
ver.

The plot of p(k) is shown in Fig. 1. From the computation result,
when k = 1 or 9, no vertex equilibria is stable.

The numerical result illustrates that for most k’s, both stable
and unstable equilibria exist in the set Ek

ver. Moreover, p(k) is
symmetric with respect to k = 5, which seems natural in view
of the construction of the set Ek

ver and the symmetry of a cycle
graph.

3.2. Main results

Note that G is a complete graph if {i, j} ∈ E for all i, j ∈ V and
i ̸= j; a star graph if E =

{
{1, i} : i = 2, . . . , n.

}
; and a cycle

graph if E =
{
{1, 2}, {2, 3}, . . . , {n − 1, n}, {n, 1}

}
. For notational

simplicity, we use node nm + k to represent node k ∈ V for all
m ∈ Z.

It can be easily seen that the opinion space centroid (1/2, 1/2,
. . . , 1/2)⊤ is always an unstable interior equilibrium, as is de-
scribed in the following proposition.

Proposition 1. Let Assumption 1 hold. Then X = (1/2, 1/2, . . . ,
1/2)⊤ is always an unstable equilibrium of system (1).

Proof. See the Appendix for the proof of this proposition and
those for the remaining theorems in this section.
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This proposition tells us that the centroid equilibrium is unsta-
ble under general conditions regardless of how the social network
is structured. A social interpretation to Proposition 1 is that, it is
almost impossible for everyone in a society to remain neutral for
a long time.

When the underlying network structure is a complete graph,
we have the following results.

Theorem 1. Let G be a complete graph with n ≥ 3 subject
to Assumption 1. If b ≤ 1 or b = 2, then the set of interior
equilibria contains only the singleton (1/2, . . . , 1/2)⊤, i.e., Eint ={
(1/2, 1/2, . . . , 1/2)⊤

}
. Moreover, the equilibrium (1/2, . . . , 1/2)⊤

is unstable.

For star and cycle graphs, a variety of new interior equilibria
arise from the nonlinear network dynamics, as presented in the
following two results.

Theorem 2. Let G be a star graph subject to Assumption 1. Then
the following statements hold.

(i) Eint =
{
(1/2, x2, x3, . . . , xn)⊤ :

∑n
i=2 xi = (n − 1)/2, xi ∈

(0, 1) for all i ∈ V\{1}
}
if b = 1;

(ii) Eint =
{
(1 − x2, x2, . . . , x2)⊤ : x2 ∈ (0, 1)

}
if b = 2;

(iii) Eint =
{
(1/2, 1/2, . . . , 1/2)⊤

}
if b ̸= 1, 2.

Moreover, any equilibrium X ∈ Eint is unstable.

Theorem 3. Let G be a cycle graph subject to Assumption 1. Then
the following statements hold.

(i) If b = 1 and n ≡ 1, 2 or 3(mod 4), Eint = {(1/2, 1/2, . . . ,
1/2)⊤};

(ii) If b = 1 and n ≡ 0(mod 4), Eint =
{
(a1, a2, 1 − a1, 1 −

a2, a1, . . . , 1 − a1, 1 − a2)⊤ : a1, a2 ∈ (0, 1)
}
;

(iii) If b = 2 and n ≡ 1(mod 2), Eint =
{
(1/2, 1/2, . . . , 1/2)⊤

}
;

(iv) If b = 2 and n ≡ 0(mod 2), Eint =
{
(a, 1 − a, a, 1 −

a, . . . , a, 1 − a)⊤ : a ∈ (0, 1)
}
.

Moreover, any equilibrium X ∈ Eint is unstable for b = 1 or b = 2.

It is extremely difficult to generalize these results to networks
with less common structures. The reason comes from the fact
that the ideal generated by the polynomial in (2) depends on
the network structure in a highly nontrivial manner. While as we
explained above, solving such systems of polynomial equations
is equivalent to solving such equations on the generated ideals of
the polynomials (Cox et al., 2007). Nonetheless, Proposition 1 and
Theorems 1–3 show that intriguing equilibria can indeed arise
for the system (1). We conjecture that a majority of the interior
equilibria should be unstable.

These results imply that without external factors, the opinions
of a group are likely to be extreme. Therefore, some interven-
tions might be necessary if one wants to observe neutral public
opinions.

4. Polarization attraction

In this section, we establish the polarization effect of the
system (1) when individual opinions are collectively polarized
towards one side of the opinion space.

4.1. Exponential polarization

We present the following result.

Theorem 4. Let bi > 0 for all i ∈ V.

(i) Suppose xi(0) ∈ [0, 1/2) for all i ∈ V. Then limt→∞ xi(t) = 0
for all i ∈ V with

xi(t) ≤

(
1 −

α

2

)t
max
j∈V

xj(0),

where α = mink∈V
dk

wkk+dk

[(
1 − maxj∈V xj(0)

)bk
−(

maxj∈V xj(0)
)bk]

∈ (0, 1].

(ii) Suppose xi(0) ∈ (1/2, 1] for all i ∈ V. Then limt→∞ xi(t) = 1
for all i ∈ V with⏐⏐xi(t) − 1

⏐⏐ ≤

(
1 −

β

2

)t ⏐⏐min
j∈V

xj(0) − 1
⏐⏐,

where β = mink∈V
dk

wkk+dk

[(
minj∈V xj(0)

)bk
−

(
1 −

minj∈V xj(0)
)bk]

∈ (0, 1].

Proof. We consider statement (i) at first and divide its proof into
two steps.

Step 1. Let y(t) = maxi∈V
{
xi(t)

}
. In this step, we prove that

y(t) is decreasing. We define

f i1(t) = wii + xbii (t)si(t) +
(
1 − xi(t)

)bi(di − si(t)
)
,

f i2(t) = wii
(
xi(t) − y(t)

)
,

f i3(t) = xbii (t)si(t)
(
1 − y(t)

)
−

(
1 − xi(t)

)bi(di − si(t)
)
y(t),

f i4(t) = y(t)
(
1 − y(t)

)[
xbii (t) −

(
1 − xi(t)

)bi].
For the f ij (t), j = 1, 2, 3, 4, the following facts can be established.

(a) From si(t) =
∑

j∈Ni
wijxj(t) ≤

∑
j∈Ni

wijy(t) = diy(t) and
xi(t) ≤ y(t) < 1/2, there holds that f i1(t) > 0.

(b) The definition of y(t) implies that f i2(t) ≤ 0.
(c) If 0 ≤ si(t) ≤ diy(t), there holds that f i3(t) ≤ dif i4(t).
(d) If bi > 0 and y(t) < 1/2 hold, we obtain that xi(t) ≤ y(t) <

1/2 and f i4(t) ≤ 0.

From system (1), for all i ∈ V and y(t) < 1/2, we obtain that

xi(t + 1) − y(t) =
f i2(t) + f i3(t)

f i1(t)
≤

f i2(t) + dif i4(t)
f i1(t)

≤ 0, (3)

where the first inequality holds with (a), (c) and the second one
holds with (b), (d). Therefore we have proved that if y(t) < 1/2,
there hold
xi(t + 1) ≤ y(t), ∀i ∈ V,

y(t + 1) = max
i∈V

{
xi(t + 1)

}
≤ y(t) < 1/2.

Hence, when y(0) < 1/2, we conclude that
{
y(t)

}
is monotoni-

cally decreasing and therefore y(t) < 1/2 for all t ≥ 0.
Step 2. We will prove that

{
y(t)

}
converges to zero and estab-

lish a bound of the convergence rate. From (3), we know

y(t) − xi(t + 1) ≥ −
1

wii + di

(
f i2(t) + f i3(t)

)
≥ −

di
wii + di

f i4(t),

where the first inequality holds due to the facts that xbii (t) ≤ 1
and

(
1 − xi(t)

)bi
≤ 1, while the second inequality holds in view

of the fact that f i2(t) ≤ 0 for all i ∈ V and t ≥ 0.
Because xi(t) ≤ y(t) ≤ y(0) < 1/2, there hold(

1 − xi(t)
)bi

− xbii (t) ≥
(
1 − y(0)

)bi
− ybi (0) > 0,
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and

−f i4(t) = −y(t)
(
1 − y(t)

)[
xbii (t) −

(
1 − xi(t)

)bi]
≥

[(
1 − y(0)

)bi
− ybi (0)

]
y(t)

(
1 − y(t)

)
.

This therefore gives us

xi(t + 1) ≤ y(t) −
di

wii + di

[(
1 − y(0)

)bi
− ybi (0)

]
× y(t)

(
1 − y(t)

)
. (4)

Introduce α = mink∈V
dk

wkk+dk

[(
1 − y(0)

)bk
− ybk (0)

]
. Obviously

0 < α ≤ 1. Because y(t + 1) = maxi∈V
{
xi(t + 1)

}
and (4) holds

for all i ∈ V, we obtain

y(t + 1) ≤ y(t) − αy(t)
(
1 − y(t)

)
≤ (1 − α)y(t) +

α

2
y(t) =

(
1 −

α

2

)
y(t).

Therefore, for all i ∈ V,

xi(t) ≤ y(t) ≤

(
1 −

α

2

)t

y(0) =

(
1 −

α

2

)t

max
j∈V

xj(0).

This proves (i). The statement (ii) follows from a similar argu-
ment, whose details are omitted. Now we have completed the
proof. □

Note that Theorem 4 demonstrates the fundamental difference
between the DeGroot type of social interactions and the non-
linear opinion dynamics (1). Particularly, DeGroot model defines
contraction mappings in the opinion space (Blondel, Hendrickx,
Olshevsky, & Tsitsiklis, 2005; Cao, Morse, & Anderson, 2008;
Tsitsiklis, 1984), where the metric maxi∈V xi(t) − mini∈V xi(t) is
monotonically decreasing for any network structure. With a fixed
interaction structure, convergence of DeGroot model can be ex-
plained by spectrum of the state transition matrix from standard
linear systems theory (Xiao & Boyd, 2004), however, the con-
traction nature of the DeGroot dynamics is certainly beyond that
which holds true even under random node interactions (Jack-
son, 2010; Shi, Anderson, & Johansson, 2015) or nonlinear edge
weights (Bauso, Giarre, & Pesenti, 2006; Lin, Francis, & Maggiore,
2007; Moreau, 2005). The proof of Theorem 4 illustrates that
maxi∈V xi(t) is no longer contracting along (1). Instead, when
maxi∈V xi(t) < 1/2, the entire network dynamics will be pushed
to the boundary of the opinion space. From Theorem 4 and
the definition of stability, we naturally obtain that boundary
equilibrium (0, 0, . . . , 0)⊤ and (1, 1, . . . , 1)⊤ are stable.

Furthermore, Theorem 4 can be adjusted to include directed
networks as well if we redefine the neighbor Ni. More analogous
details can be found in the following subsection.

The results in Theorem 4 can well explain some realistic
social phenomena. If there are a group of people who all have
negative views (<0.5) to some objects, and each of them is
influenced by others, then all of them will finally reach the
extreme negative attitude (0) after sufficient communications.
The similar phenomenon appears when they all have positive
views (>0.5). These phenomena can usually be found in interest
groups, boards of companies and political parties. As we men-
tioned before, people are likely to arrive extreme opinions with
biased assimilation.

4.2. Directed and switching graph

We now generalize Theorem 4 to networks with directed and
switching structures. To this end, let G(t) =

(
V, E(t)

)
be a time-

varying directed graph where at time t , the edge set E(t) consists
of some directed arcs as ordered pairs from the set V. Node i’s

self-confidence at time t is wii(t), and the arc (j, i) ∈ E(t) holds
a weight wij(t). The neighbor set of node i at time t is in turn
defined as Ni(t) :=

{
j : (j, i) ∈ E(t)

}
. Let si(t) :=

∑
j∈Ni(t)

wij(t)xj(t)
and di(t) :=

∑
j∈Ni(t)

wij(t). In the rest of this section, we suppose
that the graph G(t) can be either connected or disconnected, that
is di(t) ≥ 0 for all t ∈ N. The network dynamics becomes

xi(t + 1)

=
wii(t)xi(t) + xbii (t)si(t)

wii(t) + xbii (t)si(t) +
(
1 − xi(t)

)bi(di(t) − si(t)
) , i ∈ V. (5)

We impose the following assumption.

Assumption 2. The following conditions hold for the system (5):

(i) there exist wii ≥ 0, i ∈ V such that wii(t) ≤ wii for all t ≥ 0
and all i ∈ V;

(ii) there exists c > 0 such that di(t) ≥ c whenever di(t) > 0
for all i ∈ V;

(iii) there is T ∈ N+ such that
∑t+T−1

s=t di(s) > 0 for any t ≥ 0
and i ∈ V.

It is worth emphasizing that the two conditions (i) and (ii)
of Assumption 2 are just technical conditions which are consis-
tent with standard DeGroot consensus algorithms (Blondel et al.,
2005; Cao et al., 2008). On the other hand, the condition (iii) of
Assumption 2 serves as a connectivity assumption. However, such
connectivity is significantly weaker than the usual connectivity
assumptions for DeGroot consensus algorithm in the sense that
it only requires each node must be affected by some other node
during the series of bounded time intervals. Actually, when As-
sumption 2 holds, the polarization effects continue to exist under
this directed and time-varying node interactions, as shown in the
following result.

Proposition 2. Suppose Assumption 2 holds. Then the following
statements hold true.

(i) If xi(0) ∈ [0, 1/2) for all i ∈ V, then limt→∞ xi(t) = 0 for all
i ∈ V with

xi(t) ≤

(
1 −

α∗

2

)⌊t/T⌋

max
j∈V

xj(0),

where α∗ = mink∈V
c

wkk+c

[(
1 − maxj∈V xj(0)

)bk
−(

maxj∈V xj(0)
)bk]

∈ (0, 1].

(ii) If xi(0) ∈ (1/2, 1] for all i ∈ V, then limt→∞ xi(t) = 1 for all
i ∈ V with⏐⏐xi(t) − 1

⏐⏐ ≤

(
1 −

β∗

2

)⌊t/T⌋⏐⏐min
j∈V

xj(0) − 1
⏐⏐,

where β∗ = mink∈V
c

wkk+c

[(
minj∈V xj(0)

)bk
−

(
1 −

minj∈V xj(0)
)bk]

∈ (0, 1].

Proof. (i). We continue to use the definition y(t) = maxi∈V
{
xi(t)

}
.

Furthermore, we define

ỹ(m) = max
mT≤h≤(m+1)T−1

{
y(h)

}
= max

mT≤h≤(m+1)T−1,
i∈V

xi(h),

where m ∈ N. For all i ∈ V, if di(t) = si(t) = 0, there holds
xi(t + 1) = xi(t). When di(t) > 0 and y(t) < 1/2, xi(t + 1) ≤ y(t)
from (3). Therefore, from y(0) < 1/2, we conclude that y(t) is
monotonically decreasing and y(t) < 1/2 for all t ≥ 0. Then
ỹ(m) = y(mT ) holds and ỹ(m) is monotonically decreasing.
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We will prove that
{
ỹ(m)

}
converge to zero and establish the

convergence rate. Let t̃ ∈
[
mT , ∞

)
where m ∈ N such that

di(t̃) ≥ c > 0. We see

xi(t̃ + 1)

≤y(t̃) −
di(t̃)

wii + di(t̃)

[(
1 − y(0)

)bi
− ybi (0)

]
y(t̃)

(
1 − y(t̃)

)
.

Furthermore, when t ∈ [mT , ∞), in view of di(t)
wii+di(t)

[(
1−y(0)

)bi
−

ybi (0)
]

∈ (0, 1] and ỹ(m) ≥ y(t), there holds

y(t) −
di(t)

wii + di(t)

[(
1 − y(0)

)bi
− ybi (0)

]
y(t)

(
1 − y(t)

)
≤ ỹ(m) −

di(t)
wii + di(t)

[(
1 − y(0)

)bi
− ybi (0)

]
× ỹ(m)

(
1 − ỹ(m)

)
.

Therefore, we obtain

xi(t̃ + 1) ≤ỹ(m) −
c

wii + c

[(
1 − y(0)

)bi
− ybi (0)

]
× ỹ(m)

(
1 − ỹ(m)

)
. (6)

Because xi(t + 1) = xi(t) when di(t) = 0, we conclude that

ỹ(m + 1) = max
(m+1)T≤h≤(m+2)T−1,

i∈V

xi(h)

≤ max
mT+1≤h≤(m+2)T−1,

di(h)>0,i∈V

xi(h) (7)

for all i ∈ V.
Introduce α∗ = minm∈V

c
wmm+c

[(
1 − y(0)

)bm
− ybm (0)

]
. Ob-

viously there holds 0 < α∗ ≤ 1. Due to (6) and (7), we thus
have
ỹ(m + 1) ≤ ỹ(m) − α∗ỹ(m)

(
1 − ỹ(m)

)
≤ (1 − α∗)ỹ(m) +

α∗

2
ỹ(m) =

(
1 −

α∗

2

)
ỹ(m).

for all m ∈ N. Therefore, for all i ∈ V, ỹ(m) ≤ (1−
α∗

2 )mỹ(0). From
the definition of ỹ(m), we know

xi(t) ≤

(
1 −

α∗

2

)⌊t/T⌋

max
j∈V

xj(0).

(ii). The statement follows from the same analysis as in the proof
of (i). We thus have completed the proof. □

Proposition 2 weakens the conditions of Theorem 4 obviously.
In the first place, the mutual influences of two persons can be
different. Secondly, each person does not have to be affected by
others at every time but during bounded time intervals. Therefore
it can conform to more situations in reality and allow an extended
scope of applicability of the obtained results.

5. Numerical examples

In this section, we will provide three examples to not only
show the visual impressions of the results we proved before,
but also go deeper into the nonlinearity of our opinion dynamics
model with bias assimilation. First, we provide two sets of phase
portraits of system (1) taking over complete graph and star graph
with different bias parameter b.

Example 2. Suppose system (1) takes over a 3-node network,
in which wij = 1 for all {i, j} ∈ E and wii = 1, bi = b ≥ 0 for all
i ∈ V. Now we can represent the evolutions of the nodes’ opinions
by phase portraits. In Fig. 2, the phase portraits are displayed
for complete graph and star graph, respectively, under different

Fig. 2. Phase portraits when system (1) takes over complete graph (left) and
star graph (right) with b =

1
2 , 1 and 2 in Example 2.

values of b. It is evident that the node states tend to converge
to an interior equilibrium when b is small, and diverge to the
boundaries when b grows large. This result matches the social
phenomenon where biased assimilation is more likely to bring
out polarizations in Miller, Mchoskey, Bane, and Dowd (1993) and
Taber and Lodge (2006) well.

Next, we present an example illustrating equilibria stabilities.

Example 3. Consider a set of 12-node random geometric graphs
with r = r0, 2r0, . . . , 10r0 where r0 = 0.02. Then for each of
r , we take 10 000 samples, that is, 12 nodes are uniformly and
independently placed in [0, 1]2 and any two nodes are connected
by an edge if and only if their distance is smaller than r in
each sample. For each realization, let qr be the ratio of stable
ones among equilibria (1/2, 1/2, . . . , 1/2)⊤. The numerical mean
of qr based on the 10 000 samples for different r is shown in
Fig. 3. From the plot, it is clear that higher connectivity weakens
stability in our model.

Finally, we provide the following example to show the po-
larization phenomena in Theorem 4, where the entire network
dynamics will be pushed to the boundary of the opinion space if
maxi∈V xi(t) < 1/2.

Example 4. Let V = {1, 2, . . . , 50}, Ek = {{i, j}|i − j ≡

−k, . . . , k(mod 50), i ̸= j} and Gk = (V, Ek) for k = 1, 2, 3, 4, 5.
Besides, wii = 1, bi = 0.2 for all i ∈ V and wij = 1 for all
{i, j} ∈ Ek, k = 1, 2, 3, 4, 5. We use e(t) =

∑n
i=1 x

2
i (t) to denote

the deviation degree of (0, . . . , 0)⊤ at time t . For all k, suppose
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Fig. 3. Stability ratio of different r in Example 3.

Fig. 4. log(e(t)) of k = 1, 2, 3, 4, 5 and the converge rate bound when k = 5 in
Example 4.

xi(0) = i/150, i ∈ V. Thus e(0) = 1.908 for k = 1, . . . , 5. The
evolutions of log(e(t)) when system (1) takes over different Gk
are shown in Fig. 4. We also display the converge upper bound
established in Theorem 4 when k = 5. We see from the result
that when all the initial opinions are polarized (xi(0) ∈ [0, 1/2)
for all i ∈ V), such polarization will be amplified persistently and
opinions of all node converge to the corresponding boundaries.
Moreover, the convergence rate to such polarization is at least
faster than an exponential decay, as a validation to Theorem 4.
This numerical result is consistent with Theorem 4.

6. Conclusions

We have provided a systemic analysis to social opinion dy-
namics subject to individual biases, which generated state-
dependent edge weights and therefore highly nonlinear network
dynamics. For a few fundamental network structures, some im-
portant interior network equilibria were presented for a wide
range of system parameter in terms of their positions and sta-
bilities, where the interval centroid was proven to be unstable
regardless of the bias level and the network topologies. Fur-
thermore, it was shown that when the initial network opinions
are polarized towards one side of the state space, node biases
would drive the opinion evolution to the corresponding interval
boundaries under quite general network conditions. Future work
includes studies of the distribution and stability of equilibria
under more general network structures, especially those that are
resilient subject to network structure switches as such structure
change is common for real-world social networks.

Appendix A. Lemma

Before proving the statements in Section 3, we need the fol-
lowing lemma. We define the invariance potential function at
first.

Definition 2. Let Assumption 1 hold. The invariance potential
function of xi(t) ∈ (0, 1) is defined as

s∗
(
xi(t), b

)
=

(
1 − xi(t)

)b−1

xb−1
i (t) +

(
1 − xi(t)

)b−1 .

This function helps us to provide an expression of the neces-
sary and sufficient condition where one node’s opinion remains
unchanged. Now we present the following key technical lemma
indicating the role of the invariance potential function concretely.

Lemma 1. Suppose that xi(t) ∈ (0, 1), i ∈ V, then under
Assumption 1, the following statements hold:

(i) xi(t + 1) = xi(t) if and only if si(t)/di = s∗
(
xi(t), b

)
;

(ii) xi(t + 1) > xi(t) if si(t)/di > s∗
(
xi(t), b

)
;

(iii) xi(t + 1) < xi(t) if si(t)/di < s∗
(
xi(t), b

)
.

Proof. (i). Since xi(t) ∈ (0, 1), there hold
(
1−xi(t)

)
∈ (0, 1), xbi (t)

> 0 and
(
1 − xi(t)

)b
> 0. As a result,

xi(t) = xi(t + 1)

⇐⇒ xi(t) =
wxi(t) + xbi (t)si(t)

w + xbi (t)si(t) +
(
1 − xi(t)

)b(di − si(t)
)

⇐⇒

[
xbi (t)

(
1 − xi(t)

)
+ xi(t)

(
1 − xi(t)

)b]si(t)
= xi(t)

(
1 − xi(t)

)bdi
⇐⇒

si(t)
di

=

(
1 − xi(t)

)b−1

xb−1
i (t) +

(
1 − xi(t)

)b−1 = s∗
(
xi(t), b

)
.

This proves (i).
(ii). We calculate the partial derivative of xi(t + 1) in system

(1) and obtain that
∂xi(t + 1)

∂si(t)
> 0, (A.1)

when xi(t) ∈ (0, 1). Due to (i) and (A.1), we obtain when
si(t) > s∗

(
xi(t), b

)
di, xi(t + 1) > xi(t) holds.

(iii). the statement follows from the same analysis as in the
proof of (ii). The desired lemma thus holds. □

Lemma 1 provides us with an explicit condition which can
specify an equilibrium effectively. This is very important in the
following proofs.

Appendix B. Proof of Proposition 1

When xi(t) = 1/2 for all i = 1, 2, . . . , n, we know that
si(t) = di/2 for all i ∈ V. Thus,

xi(t + 1) =
w/2 + (1/2)bdi/2

w + (1/2)bdi/2 + (1/2)bdi/2
= 1/2

for all i ∈ V. Therefore, we have proved that X = (1/2, 1/2, . . . ,
1/2)⊤ is an equilibrium.

Next, we show that X = (1/2, 1/2, . . . , 1/2)⊤ is unstable. Let
X(0) = (1/2 − θ, 1/2 − θ, . . . , 1/2 − θ )⊤ where θ ∈ (0, 1/2).
From Theorem 4, there holds limt→∞ X(t) = (0, 0, . . . , 0)⊤. It
is clear from this point (1/2, 1/2, . . . , 1/2)⊤ cannot be a stable
equilibrium. We have proved the desired result. □

Appendix C. Proof of Theorem 1

From the definitions of complete graph and Lemma 1, when
(x1, . . . , xn)⊤ is an equilibrium point, there hold∑n

k=1,k̸=i xk

n − 1
= s∗(xi, b) =

(1 − xi)b−1

xb−1
i + (1 − xi)b−1

(C.1)

and
n∑

k=1

xk =

n∑
k=1,k̸=i

xk + xi =
(n − 1)(1 − xi)b−1

xb−1
i + (1 − xi)b−1

+ xi
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for all i ∈ V. Let

gb(x) =
(n − 1)(1 − x)b−1

xb−1 + (1 − x)b−1 + x

for x ∈ (0, 1). This immediately gives us that
∑n

k=1 xk = gb(xi) for
all i ∈ V, and

d
dx

gb(x) = 1 −
(n − 1)(b − 1)(1 − x)b−2xb−2[

xb−1 + (1 − x)b−1
]2 .

When x ∈ (0, 1) and b ≤ 1, we conclude that d
dxgb(x) > 0

and thus gb(x) is monotonic. Consequently, in view of gb(xi) =∑n
k=1 xk = gb(xj), there holds that xi = xj for all i, j ∈ V when

X ∈ Eint. Hence, we can assume xi = x̃ for all i ∈ V. According to
(C.1) we know

x̃ =
(1 − x̃)b−1

x̃b−1 + (1 − x̃)b−1 ,

which implies x̃ = 1/2. We have now obtained that if b ≤

1, the only interior equilibrium is (1/2, 1/2, . . . , 1/2)⊤. When
x ∈ (0, 1) and b = 2, we have d

dxgb(x) < 0. The fact that
(1/2, 1/2, . . . , 1/2)⊤ is the unique equilibrium can be estab-
lished using a similar analysis. Finally, the instability can be
deduced from Proposition 1 directly. Now we have completed the
proof. □

Appendix D. Proof of Theorem 2

According to the definition of star graph and Lemma 1, when
(x1, . . . , xn)⊤ is an equilibrium point, we obtain

s∗(x1, b) =

∑n
i=2 xi

n − 1
and s∗(xi, b) = x1, i = 2, . . . , n.

(i). When b = 1, for all i ∈ V\{1}, there holds

xi =
wxi + xix1

w + xix1 + (1 − xi)(1 − x1)
. (D.1)

In view of xi ̸= 0 or 1 for i = 2, . . . , n, (D.1) immediately gives
us x1 = 1/2. Besides, we have

s∗(1/2, 1) =
1
2

=

∑n
i=2 xi

n − 1
. (D.2)

From (D.2) it is easy to verify when b = 1, Eint =
{
(1/2, x2, x3,

. . . , xn)⊤ :
∑n

i=2 xi = (n − 1)/2, xi ∈ (0, 1) for all i ∈ V\{1}
}
.

Next, we prove the instability of any equilibrium X ∈ Eint.
For any equilibrium X = (1/2, x2, x3, . . . , xn)⊤ where

∑n
i=2 xi =

(n − 1)/2 and xi ∈ (0, 1) for all i ∈ V \ {1}, let xi(0) ∈ [0, xi) for
all i ∈ V. Then we will prove that xi(t) is decreasing when for all
i ∈ V there holds that xi(t) ∈ [0, xi). We see

x1(t + 1) − x1(t)

=
x1(t)

(
1 − x1(t)

)(
2s1(t) − d1

)
w + x1(t)s1(t) +

(
1 − x1(t)

)(
d1 − s1(t)

) ≤ 0, (D.3)

where the inequality holds because 2s1(t) = 2
∑n

i=2 xi(t) <

2 ×
n−1
2 = d1. Similarly, for any i ∈ {2, 3, . . . , n}, we obtain

xi(t + 1) − xi(t)

=
xi(t)

(
1 − xi(t)

)(
2x1(t) − di

)
w + xi(t)x1(t) +

(
1 − xi(t)

)(
di − x1(t)

) ≤ 0. (D.4)

Notice that xi(0) ∈ [0, xi), i ∈ V, we thus know xi(t) ∈ [0, xi) is
decreasing for all i = 1, 2, . . . , n and t > 0.

Let z(t) = mini∈V
{
xi(t)

}
. Then we have that z(t) is decreasing.

From z(t) ≥ 0, there holds limt→∞ z(t) = z∗
≥ 0. Next we will

prove that z∗
= 0. We can conclude the following results easily

z∗
≤ xi(t) ≤ xi(0) < xi (D.5)

for all i ∈ V. Due to (D.3) and (D.5), we obtain⏐⏐x1(t + 1) − x1(t)
⏐⏐

≥
z∗

(
1 − x1(0)

)(
(n − 1) −

∑n
2 xi(0)

)
w +

1
2
n−1
2 + (1 − z∗)2(n − 1)

= c1

where c1 is a constant determined by w, z∗ and xi(0), i ∈ V. When
z∗ > 0, we have that c1 > 0 and then limt→∞ x1(t) = −∞ < 0
monotonically. This immediately gives us a contradiction. There-
fore, we know that z∗

= 0. It means that there exists j ∈ V such
that limt→∞ xj(t) = 0. From the monotonic decrease of xj(t), we
know that when ε =

1
2 mini∈V xi > 0, there exists N ∈ N such that

xj(t) < ε and
X(t) − X

 ≥
⏐⏐xj(t) − xj

⏐⏐ > 1
2 mini∈V xi = ε when

t > N . For any small enough δ > 0, let xi(0) = xi −
δ
n ∈ [0, xi)

and then
X(0) − X

 =
δ

√
n < δ. But limt→∞

X(t) − X
 > ε.

This immediately gives us that when b = 1 such equilibria are
unstable from the definition of instability.

(ii). When b ̸= 1, for all i ∈ V\{1}, there holds

xi =
wxi + xbi x1

w + xbi x1 + (1 − xi)b(1 − x1)
.

Because b ̸= 1 and xi ∈ (0, 1) for all i ∈ V, we conclude that
wxi + xb+1

i x1 + xi(1 − xi)b(1 − x1) = wxi + xbi x1, which implies

xi =
1

( x1
1−x1

)1/(b−1) + 1

for all i = 2, 3, . . . , n. Therefore, xi = x2 for all i ∈ V\{1}.
We now know that

x2 =
(n − 1)x2
(n − 1)

= s∗(x1, b) =
(1 − x1)b−1

(1 − x1)b−1 + xb−1
1

,

x1 = s∗(x2, b) =
(1 − x2)b−1

(1 − x2)b−1 + xb−1
2

.

Therefore, we obtain
x2

1 − x2
=

(1 − x1
x1

)b−1
,

x1
1 − x1

=

(1 − x2
x2

)b−1
. (D.6)

If b = 2, it must be the case that x1 + x2 = 1 where x1, x2 ∈

(0, 1) from (D.6). Now, we can verify for b = 2 Eint =
{
(1 −

x2, x2, . . . , x2)⊤ : x2 ∈ (0, 1)
}
.

Now, we prove the instability of any equilibrium X ∈ Eint
when b = 2. For the equilibrium X = (1 − a, a, . . . , a)⊤ where
a ∈ (0, 1), let x2(0) = · · · = xn(0) ∈ [0, a) and x1(0) ∈ [0, 1 − a).
We show that x2(t) is decreasing when for all i ∈ V there holds
that xi(t) ∈ [0, xi). We have

x2(t + 1) − x2(t)

=

x2(t)
(
1 − x2(t)

)[
x2(t)x1(t) −

(
1 − x2(t)

)(
1 − x1(t)

)]
w + x22(t)x1(t) +

(
1 − x2(t)

)2(1 − x1(t)
)

≤0,

where the inequality holds because 0 < x2(t) < a < 1 − x1(t)
and 0 < x1(t) < 1 − a < 1 − x2(t). Analogously, we have
that for all i ∈ V, xi(t) is decreasing when x2(0) = · · · =

xn(0) ∈ [0, a) and x1(0) ∈ [0, 1 − a). Then we can also prove that
limt→∞ mini∈V

{
xi(t)

}
= 0 and limt→∞

X(t)−X
 > 1

2 min{a, 1−

a} for any X(0) satisfying that x2(0) = · · · = xn(0) ∈ [0, a) and
x1(0) ∈ [0, 1 − a). We thus obtain that X is unstable similarly to
the case in (i).

(iii). From (D.6), there holds

x1
1 − x1

=

( x1
1 − x1

)(b−1)2

(D.7)
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when b ̸= 1. Recall that b > 0 and b ̸= 2, we obtain (b− 1)2 ̸= 1
and the solutions of Eq. (D.7) are given by x1

1−x1
be either 0 or

1. Due to x1 ∈ (0, 1), this immediately gives us that x1 = 1/2.
We can therefore readily conclude that x2 = · · · = xn = 1/2
from (D.6). Thus when b ̸= 1 or 2, the only interior equilib-
rium is (1/2, 1/2, . . . , 1/2)⊤. From Proposition 1, there holds that
(1/2, . . . , 1/2)⊤ is unstable.

We therefore have completed the proof. □

Appendix E. Proof of Theorem 3

In view of Lemma 1 and the definition of cycle graph, when
(x1, . . . , xn)⊤ is an equilibrium point, we have

xi−1 + xi+1

2
= s∗(xi, b) =

(1 − xi)b−1

(1 − xi)b−1 + xb−1
i

, (E.1)

for all i ∈ V.
(i). When b = 1 and n ≡ 1(mod 4), according to (E.1), we know

xi + xi+2 = 1 and xi+2 + xi+4 = 1, (E.2)

for all i ∈ V. Therefore, we obtain that xi = xi+4k for all i ∈ V
and k ∈ Z. Due to n ≡ 1(mod 4), let n = 4m + 1 where m ∈ N.
Then we have that xi = xi+4m = xi−1 for all i ∈ V. This gives
us that x1 = x2 = · · · = xn. From (E.2), xi = 1/2 holds for all
i ∈ V. The only equilibrium is (1/2, 1/2, . . . , 1/2)⊤ when b = 1
and n ≡ 1(mod 4). If n = 4m + 2 or n = 4m + 3, the results
can be obtained analogously. From Proposition 1, there holds that
(1/2, . . . , 1/2)⊤ is unstable.

(ii). When b = 1 and n ≡ 0(mod 4), let

xi = a1, i ≡ 0(mod 4); xi = a2, i ≡ 1(mod 4);
xi = a3, i ≡ 2(mod 4); xi = a4, i ≡ 3(mod 4)

where a1, a2, a3, a4 ∈ (0, 1) for all i ∈ V. Noting (E.2), there hold
a1 + a3 = 1 and a2 + a4 = 1. Now, we can verify when b = 1 and
n ≡ 0(mod 4) all interior equilibria are X = (a1, a2, 1 − a1, 1 −

a2, a1, . . . , 1 − a1, 1 − a2)⊤ where a1, a2 ∈ (0, 1).
Next, we prove that when b = 1 and n ≡ 0(mod 4), the

equilibrium X = (a1, a2, 1 − a1, 1 − a2, . . . , 1 − a2)⊤ where
a1, a2 ∈ (0, 1) is unstable. Suppose xi+4k(0) = xi(0) for all k ∈ N
and i = 1, 2, 3, 4. Besides, let x1(0) < a1, x2(0) < a2, x3(0) <

1 − a1, x4(0) < 1 − a2. We will prove that xi(t) is decreasing for
all i = 1, 2, 3 and 4. We first show that x1(t) is decreasing when
xi(t) ∈ [0, xi) for all i ∈ V. There holds

x1(t + 1) − x1(t)

=
2x1(t)

(
1 − x1(t)

)(
s1(t) − 1

)
w + x1(t)s1(t) +

(
1 − x1(t)

)(
2 − s1(t)

) ≤ 0,

where the inequality holds because s1(t) = x2(t) + xn(t) <

a2 + 1 − a2 < 1. Analogously, xi(t), i = 2, 3, 4 are decreasing
when xi(t) ∈ [0, xi) for all i ∈ V. Therefore, we obtain that xi(t)
is decreasing when xi(0) = xi+4k(0) ∈ [0, xi), i = 1, 2, 3, 4, k ∈

N. Then we can also prove that limt→∞ mini∈V
{
xi(t)

}
= 0 and

limt→∞

X(t) − X
 > 1

2 min{a1, a2, 1 − a1, 1 − a2} for any X(0)
satisfying that xi(0) = xi+4k(0) ∈ [0, xi), i = 1, 2, 3, 4, k ∈ N. We
thus obtain that X = (a1, a2, 1 − a1, 1 − a2, . . . , 1 − a2)⊤ where
a1, a2 ∈ (0, 1) is unstable similarly to the proof of Theorem 2.
Therefore, we prove that such equilibria are unstable.

(iii). We now discuss the interior equilibria when b = 2. Let
yi = xi + xi+1 for all i ∈ V. From (E.1) and b = 2, we obtain
xi−1+xi+1

2 = 1−xi, for all i ∈ V. Therefore, there holds yi+yi+1 = 2,
for all i ∈ V. Accordingly yi = yi+2k holds for all i ∈ V and k ∈ Z.
When n = 2m+1 where m ∈ N, we obtain that yi = yi+2m = yi−1
for all i ∈ V. Therefore, we have that yi = 1 for all i ∈ V. That is,
xi + xi+1 = 1, for all i ∈ V. Because n = 2m+ 1 where m ∈ N, we

see that xi = xi+2m = xi−1 for all i ∈ V. This immediately gives us
x1 = x2 = · · · = xn = 1/2. From Proposition 1, there holds that
(1/2, . . . , 1/2)⊤ is unstable.

(iv). When b = 2 and n = 2m where m ∈ N, let yi = ã, i ≡

0(mod 2) and yi = 2 − ã, i ≡ 1(mod 2) where ã ∈ (0, 2) for all
i ∈ V. In view of the definition of yi, we know that

∑n
i=1 xi =∑m

i=1 y2i−1 =
∑m

i=1 y2i. Therefore, we get that mã = m(2 − ã)
and ã = 1. This tells us xi + xi+1 = 1 for all i ∈ V. Because
n = 2m, we know that xi = xi+2k for all i ∈ V and k ∈ N. We
thus conclude that Eint =

{
(a, 1 − a, a, 1 − a, . . . , a, 1 − a)⊤ :

a ∈ (0, 1)
}
when b = 2 and n ≡ 0(mod 2). The instability of

(a, 1 − a, a, 1 − a, . . . , a, 1 − a)⊤ can be proved similarly to the
statement (ii) in Theorem 2. This completes the proof. □
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