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DYNAMICS AND CONTROL OF SINGULAR BOOLEAN NETWORKS

Hongsheng Qi, Yupeng Qiao

ABSTRACT

Consider a class of singular Boolean networks, which consist of two
parts: difference part and algebraic part. Using the truth matrix of the algebraic
part, the trajectories of the networks are obtained and certain properties are
investigated. Then the results are extended to Boolean control networks and the
controllability of singular Boolean control systems is investigated. Necessary
and sufficient conditions are obtained.

Key Words: Singular Boolean (control) network, truth matrix, trajectory,
controllability, mix-valued logical (control) network.

I. INTRODUCTION

Boolean networks were firstly introduced by
Kauffman to describe the genetic regulatory net-
works [16, 17]. Since then, it has attracted much
attention from biologists, physicians, and system
scientists, because it has shown strong power on
modeling and analyzing biological networks as well as
social and circuit networks [1, 10].

Recently, a new research tend has risen, which
is based on the algebraic state space representation
(ASSR) of Boolean networks, using semi-tensor prod-
uct (STP) [3]. Particularly, various control problems
of Boolean networks have been investigated using
ASSR. For instance, the controllability of Boolean
control networks [2, 20]; the observability of Boolean
networks [37, 21]; optimal control of Boolean control
networks [22, 38, 12]; stability and stabilization [4, 24];
disturbance decoupling [5]; and some other applications
such as observer design of finite automata [36], game
theory [8, 33], and particularly industrial application in
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control of combustion engines [34, 35], just to name a
few. The ASSR is also a basic tool for this paper.

When a Boolean network is used to describe a
biological network or a social network, its dynamics
is described as a difference equation. But, it happens
that the nodes (or states) may be restricted by
some algebraic constraints [29]. Hence, the difference-
algebraic Boolean network (or singular Boolean
network) becomes a theoretically interesting and
practically meaningful topic. It has also been discussed
widely [7, 11, 26, 27, 28].

It is well known that for a differential/difference-
algebraic system in Rn, a natural and convenient way
to investigate it is to solve the algebraic equations
to get the second part of variables as functions of
the first part of variables. The existence of such
a function is guaranteed by so called the Implicit
Function Theorem. Then substituting them into the
differential/difference equations transforms the system
to a normal differential/difference system. If this
solution-substitution process cannot be done, it is
hard to get a closed-form solution and the numerical
solutions are mostly adopted [13, 14]. Similarly, for
difference-algebraic Boolean network, as the second
part of variables can be solved the problem becomes
easier. The necessary and sufficient conditions for the
solvability of the second part variables of a Boolean
or k-valued logical network were given by [7]. The
corresponding conditions for a mix-valued logical
network were presented in [30].

This paper is focused on a class of singular control
Boolean networks, where the second part of variables
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may not be solvable from the algebraic equations. We
start from the algebraic part, which is a static Boolean
system as

Σ :


ϕ1(ξ1, · · · , ξn) = c1,
...
ϕs(ξ1, · · · , ξn) = cs,

(1)

where ξi ∈ D := {0, 1}, i = 1, · · · , n are arguments;
ci ∈ D, i = 1, · · · , s are constant parameters;
ϕi : Dn → D, i = 1, · · · , s are Boolean functions.
Assume (X,Z) is a partition of Ξ := {ξ1, · · · , ξn},
precisely,X = {x1, · · · , xp} ⊂ Ξ, Z = {z1, · · · , zq} ⊂
Ξ, X ∪ Z = Ξ and X ∩ Z = ∅. (Hence, p+ q = n.)

The Ledley solution of system Σ (or (1)) was
firstly introduced by Ledley [23], and discussed in detail
in [19]:

Definition I.1 Consider the static Boolean system Σ.
Assume there exists a partition (X,Z) of the set of
arguments Ξ = {ξ1, · · · , ξn} such that zi, i = 1, · · · , q
are logical functions of xi, i = 1, · · · , p, denoted as

Γ :


z1 = f1(x1, · · · , xp),
...
zq = fq(x1, · · · , xp).

(2)

Moreover,

• if Γ⇒ Σ, then Γ is called an antecedence
solution of Σ;

• if Σ⇒ Γ, then Γ is called a consequence solution
of Σ.

The existence of the antecedence/consequence
solutions has been discussed in detail in [30]. In this
paper the antecedence solution will be used to transform
a singular Boolean control network into a regular form.
Then the latter is used to investigate some control
problems of the original singular Boolean network.

The rest of this paper is organized as follows:
Section 2 provides some necessary preliminaries,
including (i) a brief review for semi-tensor product
of matrices, which is one of the fundamental tools
in our approach; (ii) truth matrix and the solution
of static logical networks. In Section 3, we consider
the trajectories of singular Boolean networks. Section
4 considers the controllability of singular Boolean
networks, necessary and sufficient conditions are
obtained. Section 5 is a brief conclusion.

II. PRELIMINARIES

2.1. Semi-tensor Product (STP) of Matrices

This section gives a brief review for STP, which
is the fundamental tool in our analysis. The readers are
referred to [3] or [6] for details.

First, we give some notations:

• 1n = [1, · · · , 1︸ ︷︷ ︸
n

]>.

• Mm×n: the set of m× n real matrices.
• Col(M) (Row(M)) is the set of columns (rows)

of matrix M . Coli(M) (Rowi(M)) is the i-th
column (row) of matrix M .

• δin: the i-th column of the identity matrix In.
• ∆n :=

{
δin|i = 1, · · · , n

}
, ∆ := ∆2.

• A matrix L ∈Mm×n is called a logical matrix if
Col(L) ⊂ ∆m. Denote by Lm×n the set of m× n
logical matrices.

• If L ∈ Ln×r, by definition it can be expressed as
L = [δi1n , δ

i2
n , · · · , δirn ]. For simplicity, it is briefly

denoted as L = δn[i1, i2, · · · , ir].
• Let B = (bi,j) ∈Mm×n. If bi,j ∈ D, ∀i, j, then
B is called a Boolean matrix. The set of
m× n Boolean matrices is denoted by Bm×n.
Particularly, Bm is the set of m-dimensional
Boolean vectors.

• Let B = (bi,j) ∈ Bm×n. The Hamming weight of
B is defined as

wH(B) :=

m∑
i=1

n∑
j=1

bi,j .

Definition II.1 ([3]) Let M ∈Mm×n, N ∈Mp×q,
and t = lcm{n, p} be the least common multiple of n
and p. The semi-tensor product (STP) of M and N ,
denoted by M nN , is defined as

M nN :=
(
M ⊗ I t

n

)(
N ⊗ I t

p

)
∈Mmt

n ×
qt
p
, (3)

where ⊗ is the Kronecker product.

When n = p, the STP coincides with the conven-
tional matrix product. So the STP is a generalization
of conventional matrix product. Fortunately, it keeps
almost all the properties of the conventional matrix
product unchanged. In addition, it has some new
properties. The following properties are frequently used
in the sequel.

Proposition II.2 ([3]) Let X ∈ Rm be a column and
M is an arbitrary matrix. Then

X nM = (Im ⊗M)X. (4)
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Definition II.3 ([18]) Given M ∈Mm×p, N ∈Mn×p.
The Khatri-Rao product of M and N is defined as

M ∗N := [Col1(M) n Col1(N), · · · ,
Colp(M) n Colp(N)] ∈Mmn×p.

(5)

Next, we consider the algebraic state space
expression of logical dynamic systems.

Definition II.4 (i) A function f : Dn → D is called a
Boolean function. It can be expressed as

y = f(x1, x2, · · · , xn), y, x1, · · · , xn ∈ D. (6)

(ii) A mapping F : Dn → Dm is called a Boolean
mapping. A Boolean mapping F is composed of m
Boolean functions, as

F :


y1 = f1(x1, · · · , xn),
...
ym = fm(x1, · · · , xn).

(7)

Identifying

1 ∼ δ1
2 = [1, 0]>, 0 ∼ δ2

2 = [0, 1]>,

and it is called the vector form of Boolean variable,
then the Boolean function f becomes f : ∆n → ∆ and
the Boolean mapping F becomes F : ∆n → ∆m. In
vector form we have the following algebraic form of
expression.

Theorem II.5 ([6]) Let f : Dn → D be a Boolean
function. Then there exists a unique logical matrix
Mf ∈ L2×2n , such that in vector form (6) can be
expressed as

f(x1, · · · , xn) = Mf nn
i=1 xi, (8)

where Mf is called the structure matrix of f .

Consider the Boolean mapping (7). According to
Theorem II.5, there exist Mi, i = 1, · · · ,m which are
the structure matrices of the corresponding component
functions. Then we have the following result.

Theorem II.6 ([6]) Consider the Boolean mapping (7).
In vector form, let x = nn

i=1xi, y = nm
i=1yi. Then there

exists a unique logical matrix Mf ∈ L2m×2n , such that
(7) can be expressed as

y = MFx, (9)

where

MF = M1 ∗M2 ∗ · · · ∗Mm (10)

is called the structure matrix of F .

The following propositions are useful in this paper.

Proposition II.7 Let X ∈ ∆m and Y ∈ ∆n. Then(
In ⊗ 1>n

)
XY = X; (11)(

1>m ⊗ In
)
XY = Y. (12)

Proof. We only prove (11), and it is similar for (12).
Since for two vectors X n Y = X ⊗ Y , we have(

In ⊗ 1>n
)
XY = (InX)⊗ (1>n Y ) = X ⊗ 1 = X,

where we use the property of Kronecker product: (A⊗
B)(C ⊗D) = (AC)⊗ (BD), here A,B,C,D are of
proper dimensions. 2

Proposition II.8 Define

RPn := diag
(
δ1
n, δ

2
n, · · · , δnn

)
,

which is called the power-reducing matrix. Then for any
X ∈ ∆n, we have

X2 = RPnX. (13)

2.2. Solution of Static Logical Systems

We start from investigating the solutions of a static
Boolean system (1). First, we introduce the truth matrix.
Motivated by [19], it was proposed and discussed in
detail in [30].

Definition II.9 ([30]) Consider the system (1) (or Σ).
Let (X,Z) be a partition of the argument set Ξ =
{ξ1, · · · , ξn}. |X| = p, |Z| = q, p > 0, q > 0, p+ q =

n. A matrix T (X,Z)
Σ = (tij) ∈ B2q×2p is called the truth

matrix of system (1) (or of Σ) with respect to the
partition (X,Z), if

ti,j =

{
1, x = δj2p , z = δi2q is a solution of (1),
0, otherwise.

(14)

We give a simple example to depict this.

Example II.10 Consider a Boolean system

Σ : ϕ(ξ1, ξ2, ξ3, ξ4) = (ξ1 ∧ ξ2 ∧ ξ4)

∨ (ξ1 ∧ ¬ξ2 ∧ ξ3 ∧ ¬ξ4) ∨ (¬ξ1 ∧ ξ2 ∧ ¬ξ4)

∨ (¬ξ1 ∧ ¬ξ2 ∧ ξ3 ∧ ξ4) = 1.

(15)

Assume the partition (X,Z) is given as X = {x1 =
ξ1, x2 = ξ2}, Z = {z1 = ξ3, z2 = ξ4}. Denote x =
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Table 1. Truth Matrix of (15)

z\x 1, 1 1, 0 0, 1 0, 0
1, 1 1 0 0 1
1, 0 0 1 1 0
0, 1 1 0 0 0
0, 0 0 0 1 0

x1x2 = ξ1ξ2, z = z1z2 = ξ3ξ4. Then it is easy to figure
out the truth matrix shown in Table 1.

Hence the truth matrix, denoted by T (X,Z)
Σ := T , is

T =

1 0 0 1
0 1 1 0
1 0 0 0
0 0 1 0

 (16)

Assume A,B ∈ Bm×n, A = (ai,j) and B = (bi,j).
Then

A ≤ B (A < B)⇔ ai,j ≤ bi,j (ai,j < bi,j), ∀i, j.

The main result in [30] is:

Theorem II.11 Consider a static Boolean system (1)
(or Σ) with partition (X,Z) as defined in Definition I.1.

(i) Σ with given partition has antecedence solution
(2) (or Γ), if and only if there exists a logical
matrix M ∈ L2q×2p such that

M ≤ T (X,Z)
Σ . (17)

(ii) If M satisfies (17), then the corresponding
antecedence solution (2) can be expressed in
vector form as

z = Mx. (18)

Conversely, if (18) is an antecedence solution,
then M satisfies (17).

(iii) Σ with given partition has consequence solution
(2) (or Γ), if and only if there exists a logical
matrix M ∈ L2q×2p such that

T
(X,Z)
Σ ≤M. (19)

(iv) If M satisfies (19), then the corresponding
consequence solution (2) can be expressed in
vector form as (18).

(v) (1) is equivalent to (2), if and only if the
truth matrix T

(X,Z)
Σ := T is a logical matrix.

Moreover, the solution (2) is z = Tx, which
is both antecedence and consequence solution
of (1).

Example II.12 Recall Example II.10. It is clear that
there are 4 logical matrices satisfying (17) as follows

M1 =

1 0 0 1
0 1 1 0
0 0 0 0
0 0 0 0

 , M2 =

1 0 0 1
0 1 0 0
0 0 0 0
0 0 1 0

 ,
M3 =

0 0 0 1
0 1 1 0
1 0 0 0
0 0 0 0

 , M4 =

0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0

 .
Hence we have 4 antecedence solutions of (15), which
are

z = Mix, i = 1, 2, 3, 4.

Using Proposition II.7, we have
Case 1:

z1 =
(
I2 ⊗ 1>2

)
z =

(
I2 ⊗ 1>2

)
M1x

=

[
1 1 1 1
0 0 0 0

]
x.

Similarly,

z2 =
(
1>2 ⊗ I2

)
z =

(
1>2 ⊗ I2

)
M1x

=

[
1 0 0 1
0 1 1 0

]
x.

Back to logical form, we have{
z1 = 1,

z2 = x1 ↔ x2.
(20)

Case 2: {
z1 = x1 ∨ [¬(x1 ∨ x2)],

z2 = x1 ↔ x2.
(21)

Case 3: {
z1 = ¬(x1 ∧ x2),

z2 = x1 ↔ x2.
(22)

Case 4: {
z1 = ¬x2,

z2 = x1 ↔ x2.
(23)
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III. TRAJECTORIES OF SINGULAR
LOGICAL NETWORKS

Consider a singular Boolean network:
ξ1(t+ 1) = f1(ξ1(t), · · · , ξn(t)),
...
ξp(t+ 1) = fp(ξ1(t), · · · , ξn(t));
ϕ1(ξ1(t), · · · , ξn(t)) = c1,
...
ϕq(ξ1(t), · · · , ξn(t)) = cq,

(24)

where ξi(t) ∈ D, i = 1, · · · , n are state variables; ϕj :
Dn → D, j = 1, · · · , q, are Boolean functions. We call
the first part and the second part of (24) difference (D)-
part and algebraic (A)-part respectively.

Assume the A-part of (24) has truth matrix with
respect to the partition (X,Z) as X = {ξ1, · · · , ξp},
Z = {ξp+1, · · · , ξn} as T

(X,Z)
(24)-A := T ∈ B2n−p×2p .

Using vector expression of ξi, and let xi(t) := ξi(t),
i = 1, · · · , p, zi(t) = ξp+i(t), i = 1, · · · , n− p,
x(t) := np

i=1xi, z(t) = nn−p
i=1 zi(t), ξ(t) = x(t)z(t),

c = nq
i=1ci, then we can express (24) into its algebraic

state space form as{
x(t+ 1) = LDx(t)z(t),

Ψx(t)z(t) = c,
(25)

where LD is the structure matrix of (24)-D.

Definition III.1 Consider system (24) (equivalently,
(25)). A sequence ξ = {ξ(t) = x(t)z(t) | t = 0, 1, · · · }
is said to be a solution of (24) with initial value ξ(0) =
ξ0, where ξ0 is pre-assigned, if the sequence {ξ(t)}
satisfies (24). Such a solution is also called a trajectory
starting from ξ0.

Definition III.2 Consider system (24). Let the succes-
sive state of ξ(t) be denoted by ξ(t+ 1) = x(t+ 1) n
z(t+ 1), and assume x(t+ 1) = δα2p .

(i) x(t) is called a bifurcation point, if
wH [Colα(T )] > 1;

(ii) x(t) is called a stop point, if wH [Colα(T )] = 0;
(iii) x(t) is called a regular point, if wH [Colα(T )] =

1.

Assume the truth matrix of (24)-A is T , then a
partition can be obtained as

∆2p = S ∪ B ∪R.

It follows that if x(t) ∈ S, it is a stop point; if x(t) ∈ B,
it is a bifurcation point; and if x(t) ∈ R, it is a regular
point.

We use a simple example to depict these three
kinds of states.

Example III.3 Consider the following network:
ξ1(t+ 1) = ¬ξ2(t),

ξ2(t+ 1) = ξ1(t) ∧ ξ3(t),

[ξ1(t) ∧ (ξ2(t)→ ξ3(t)]∨
[ξ1(t)↔ (ξ2(t) ∨ ξ3(t))] = 1.

(26)

Consider the partition (X,Z) = ({ξ1, ξ2}, {ξ3}). Then
it is easy to figure out the truth matrix of (26)-A as:

Table 2. Truth Matrix of (26)-A

z\x 1, 1 1, 0 0, 1 0, 0
1 1 1 0 0
0 1 1 0 1

From the definition and the truth matrix above, we
have the predecessive points of δ1

4 ∼ (1, 1) and δ2
4 ∼

(1, 0) are bifurcation points, the predecessive point of
δ4
4 ∼ (0, 0) is a regular point, and the predecessive point

of δ3
4 ∼ (0, 1) is a stop point.

In the following, the trajectories of a singular
logical network are investigated case by case.

3.1. Regular Points

Consider system (24) with its algebraic state space
expression (25). Assume (24)-A has only regular points:
That is, the truth matrix is a logical matrix. Then, its
A-part is equivalent to

z = Tx, (27)

where T ∈ L2n−p×2p . Substituting (27) into (25)-D
yields

x(t+ 1) = LDx(t)Tx(t) = LD (I2p ⊗ T )x2(t)

= LD (I2p ⊗ T )RP2px(t) := Mx(t).
(28)

Then the trajectories are obtained as{
x(t) = M tx(0),

z(t) = TM tx(0), t = 0, 1, · · · .
(29)

We give an example to depict this.
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Example III.4 Consider the following network:
ξ1(t+ 1) = ξ2(t) ∧ ξ3(t),

ξ2(t+ 1) = ¬ξ1(t) ∨ ξ3(t),

[¬ξ1(t) ∨ (ξ2(t)↔ ξ3(t))] ∧ [ξ1(t) ∨ ¬ξ3(t)] = 0.

(30)

The partition is (X,Z) = ({ξ1, ξ2}, {ξ3}). It is easy to
figure out the truth matrix as

T =

[
0 1 1 1
1 0 0 0

]
.

Hence, the (30)-A is equivalent to z = Tx, which is
expressed in logical form as

ξ3(t) = ¬(ξ1(t) ∧ ξ2(t)).

Then (30)-D can be written as{
ξ1(t+ 1) = ξ2(t) ∧ ¬(ξ1(t) ∧ ξ2(t)),

ξ2(t+ 1) = ¬ξ1(t) ∨ ¬(ξ1(t) ∧ ξ2(t)).

3.2. Regular and Stop Points

In this case we have to deal with stop points. We
need the following new concepts.

Definition III.5 Let x = np
i=1xi ∈ ∆2p , E ⊂ ∆2p ,

zj = fj : E → ∆2, j = 1, · · · , q. zj is called a
restricted logical function of x. Setting z := nq

j=1zj ,
the algebraic expression of z = F (x) is expressed as

z = HEx, (31)

whereHE ∈M2q×2p is defined as follows: Assume x =
δs2p ,

• if x ∈ E and z = nq
j=1zj(x) = δα2q , then

Cols(H
E) := δα2q ;

• if x 6∈ E , then

Cols(H
E) := 02q .

If LE ∈Mm×n and Col(LE) ⊂ ∆m ∪ {0m}, then
LE is called a restricted logical matrix. The set ofm× n
dimensional restricted logical matrices is denoted by
L0
m×n.

Now, if a logical network is defined over E ⊂ ∆2p

only. Then it can be expressed as

x(t+ 1) = LEx(t), (32)

where

Colj(L
E) =

{
x(t+ 1), x(t) = δj2p ∈ E ,
02p , x(t) = δj2p 6∈ E .

We give a new concept:

Definition III.6 Consider (24). If z = Tx implies (24)-
A, where T ∈ L0

2q×2p\L2q×2p , it is called a restricted
antecedence solution (RAS) of (24)-A.

The technique proposed for the case where the
system has only regular points can be used to investigate
the singular logical networks with stop points. Consider
network (24) again, and it is clear that z = Tx is an
RAS of (24)-A, where T ∈ L0

2n−p×2p . Plugging it into
(25)-D, a restricted dynamic network of x(t) can be
obtained. Note that x(t) = 02p implies that x(t− 1)
corresponds to the successor of a stop point. That is,
z(t− 1) does not exist. Therefore, x(t− 2) is a stop
point.

We use an example to describe this.

Example III.7 Consider the following system
x1(t+ 1) = x2(t),

x2(t+ 1) = (x1(t) ∨ x2(t)) ∧ z(t),
[x1(t) ∧ (x2(t)↔ z(t))] ∨ [¬(x1(t)∨
x2(t) ∨ z(t))] = 1.

(33)

It is easy to figure out that the truth matrix is:

T =

[
1 0 0 0
0 1 0 1

]
.

There are 3 regular points R := {(1, 1), (1, 0), (0, 0)}
and 1 stop point {(0, 1)}. The algebraic form of (33)-D
is

x(t+ 1) = δ4[1, 2, 3, 4, 1, 2, 4, 4]x(t)z(t). (34)

Plugging z = Tx into (34) and using (28) yield

x(t+ 1) = LEx(t), (35)

where LE = δ4[1, 4, 0, 4].

Note that in equation (32) it is reasonable to
remove the stop points from the equation. Then we have
the following S-reduced (stop point reduced) system as

x(t+ 1)|R = LRx(t)|R, (36)

where LR is obtained from LE by deleting the rows and
columns which correspond to stop points.
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Example III.8 Continue Example III.7. Since δ3
4 ∼

(0, 1) is a stop point. We can delete the third row and
third column of LE in (35) to get the equation of regular
points as

x̃(t+ 1) = LRx̃(t), (37)

where LR = δ3[1, 3, 3]. Note that in (37) x̃(t) ∈ ∆3 is
the restriction x(t)|R. Precisely,

x̃ = δ1
3 ⇔ (x1, x2, z) = (1, 1, 1)

x̃ = δ2
3 ⇔ (x1, x2, z) = (1, 0, 0)

x̃ = δ3
3 ⇔ (x1, x2, z) = (0, 0, 0).

3.3. General Case

This subsection considers the general case, that is,
in addition to regular and stop points, (24) has also
bifurcation point(s).

Now assume the bifurcation happens at columns
jr, r = 1, · · · , µ. Precisely,

wH(Coljr (T )) = `r > 1, r = 1, · · · , µ.

Then we can split Coljr (T ) into `r columns as

Coljr (T ) =

`r∨
s=1

Crs ,

where Crs ∈ ∆2n−p . Then we can construct T as follows

T = ∨`1j1=1 ∨
`2
j2=1 · · · ∨

`µ
jµ=1 Ti1,i2,··· ,iµ , (38)

where each Ti1,i2,··· ,iµ has the same columns α of T
if α 6∈ {jr | r = 1, · · · , µ}; and its jr-th column is one
of Crs , r = 1, · · · , µ. Note that each Ti1,i2,··· ,iµ is of the
“regular and stop” type as discussed in previous section.

Using each Ti1,i2,··· ,iµ , we can construct corre-
sponding LEi1,i2,··· ,iµ as what we did in previous section.
Then we construct a matrix LT ∈ L2n−p×µ2n−p as

LT :=
[
LE1,1,··· ,1, L

E
1,1,··· ,2, · · · , LE1,1,··· ,`µ ,

LE1,··· ,2,1, L
E
1,··· ,2,2, · · · , LE1,··· ,2,`µ ,

· · · ,
LE`1,··· ,`µ−1,1, · · · , L

E
`1,··· ,`µ−1,`µ

]
.

Using this LT , we can build a control Boolean
network as

x(t+ 1) = LT nµ
i=1 ui(t)x(t)

z(t) = Tx(t).
(39)

From the construction one sees easily that

Proposition III.9 Each controlled trajectory of (39)
under the control sequence {u(t) | t = 0, 1, · · · } corre-
sponds to each RAS of (24).

Proof. Assume a trajectory of (24) and a trajectory of
(39) start from same initial state (x(0), z(0)). Consider
a particular RAS of (24): when it goes through regular
or stop point, the corresponding trajectory of (39) will
go through the same point no matter what control is
chosen. When it meets a bifurcation point, which is
at column jr of T , the RAS must choose one feasible
direction to go. Assume the i-th 1 is chosen. Precisely,
if the i-th 1 is at α-th position of the column, which
means z(t) = δα2n−p . Then we can choose ur = δi`r ,
which forces z(t) = δα2n−p too. That is, for each RAS,
we can construct a proper control sequence {u(t) | t =
0, 1, · · · } such that the controlled trajectory of (39)
coincides with the RAS. Conversely, for each controlled
trajectory, it is also easy to see that we can also find an
RAS matching it. 2

We also give an example to depict this.

Example III.10 Consider the following system
x1(t+ 1) = x2(t)

x2(t+ 1) = (x1(t) ∨ x2(t)) ∧ z(t)
[x1(t) ∧ (x2(t) ∧ z(t))] ∨ [x1(t) ∧ ¬x2(t)]∨

[¬x1(t) ∧ x2(t) ∧ ¬z(t)] ∨ [¬x1(t) ∧ ¬x2(t)] = 1.

(40)

It is easy to figure out that the truth matrix is:

T =

[
1 1 0 1
0 1 1 1

]
.

Then the system can be expressed as a switched system,
for τ(t) ∈ {1, 2, 3, 4}. As τ(t) = 1 we have a system
with the dynamic part as the original one and the
algebraic part with

T1,1 =

[
1 1 0 1
0 0 1 0

]
,

that is,

z = x1 ∨ ¬x2. (41)

Plugging it into (40)-D, we have{
x1(t+ 1) = x2(t),

x2(t+ 1) = x1(t).
(42)

© 2019 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society
Prepared using asjcauth.cls



8 Asian Journal of Control, Vol. 21, No. 6, pp. 2604–2613, November 2019

Similarly, for τ(t) = 2, 3, 4, we have

T1,2 =

[
1 1 0 0
0 0 1 1

]
,

then we have

z = x1. (43)

Plugging it into (40)-D, we have{
x1(t+ 1) = x2(t),

x2(t+ 1) = (x1(t) ∨ x2(t)) ∧ x1(t);
(44)

T2,1 =

[
1 0 0 1
0 1 1 0

]
,

then we have

z = x1 ↔ x2. (45)

Plugging it into (40)-D, we have{
x1(t+ 1) = x2(t),

x2(t+ 1) = (x1(t) ∨ x2(t)) ∧ (x1(t)↔ x2(t));

(46)

T2,2 =

[
1 0 0 0
0 1 1 1

]
,

then we have

z = x1 ∧ x2. (47)

Plugging it into (40)-D, we have{
x1(t+ 1) = x2(t),

x2(t+ 1) = (x1(t) ∨ x2(t)) ∧ (x1(t) ∧ x2(t));

(48)

According to Proposition III.9, each RAS of the system
(40) corresponds to a trajectory of the following
switched system:{

x(t+ 1) = fσ(x(t))

z(t+ 1) = gσ(x(t+ 1)),
(49)

where σ ∈ {1, 2, 3, 4}, and f1, f2, f3, f4 are described
as (42), (44), (46), and (48) respectively; and g1, g2,
g3, g4 are described as (41), (43), (45), and (47)
respectively.

IV. CONTROLLABILITY OF SINGULAR
LOGICAL NETWORKS

A singular control logical network concerned in
this paper is of the following form:

ξ1(t+ 1) = f1(ξ1(t), · · · , ξn(t);u1(t), · · · , um(t)),
...
ξp(t+ 1) = fp(ξ1(t), · · · , ξn(t);u1(t), · · · , um(t));
ϕ1(ξ1(t), · · · , ξn(t)) = c1,
...
ϕq(ξ1(t), · · · , ξn)(t)) = cq.

(50)

Since we are only concerning the controllability, the
output of the system is ignored.

The algebraic state space representation of (50) is
expressed as{

x(t+ 1) = Lu(t)x(t)z(t)

Ψx(t)z(t) = c,
(51)

where x(t) = np
i=1xi(t) := np

i=1ξi(t), z(t) =
nn−p
i=1 zi(t) := nn

j=p+1ξj(t), u(t) = nm
i=1ui(t).

A state ξ satisfying (50)-A is called a legal point.
Denote the set of legal points by Ω.

Definition IV.1 System (50) is

1. controllable from p ∈ Ω to q ∈ Ω, if there is a
finite control sequence {u(0), u(1), · · · , u(T )},
such that the controlled RAS satisfies ξ(0) = p
and ξ(T + 1) = q;

2. controllable at p ∈ Ω, if for each q ∈ Ω, there is
a finite control sequence {u(0), u(1), · · · , u(T )},
such that the controlled RAS satisfies ξ(0) = p
and ξ(T + 1) = q;

3. controllable, if for any p ∈ Ω to q ∈ Ω there is
a finite control sequence {u(0), u(1), · · · , u(T )},
such that the controlled RAS satisfies ξ(0) = p
and ξ(T + 1) = q;

Assume (50)-A (equivalently, (51)-A) has only
regular and stop points. Then we have a unique RAS

z(t) = Tx(t). (52)

Plugging it into (51)-D yields

x(t+ 1) = Lu(t)x(t)Tx(t)

= Lu(t)(I2p ⊗ T )x2(t)

= Lu(t)(I2p ⊗ T )RP2px(t)

= L(I2p+m ⊗ T )(I2m ⊗RP2p)u(t)x(t)

:= L̃u(t)x(t)

(53)
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Note that in the algebraic deduction of (53) the
following easily verified result has been used.

Proposition IV.2 Assume the conventional matrix
product of A and B is legal (that is, the column number
of A equals the row number of B). Then for any two
matrices C and D, we have

(A⊗ C) n (B ⊗D) = (AnB)⊗ (C nD). (54)

Split L̃ into 2m equal blocks as

L̃ = [L̃1, L̃2, · · · , L̃2m ],

where L̃i ∈ L0
2p×2p , ∀i. Deleting their rows and

columns, which are corresponding to S (set of stop
points), we have L̃Ri , ∀i, which form L̃R. Then similar
to (36), we have an S-reduced control system as

x(t+ 1)|R = L̃Ru(t)x(t)|R. (55)

In the following we use Boolean addition B
∑

(i.e.,
1 + 1 = 1) and Boolean power A(s), where A ∈ Bn×n
[19]. Define

M := B

2m∑
i=1

L̃Ri , (56)

and set

C = B

r∑
j=1

M (j), (57)

where r = 2p − |S|. Similar to regular case (refer to
[3]), we can prove the following result:

Theorem IV.3 Assume (50)-A has no bifurcation
points, then

(i) (xi, Txi) ∈ Ξ is controllable to (xj , Txj) ∈ Ξ, if
and only if Cj,i > 0;

(ii) (50) is controllable at (xj , Txj) ∈ Ξ, if and only
if Colj(C) > 0;

(iii) (50) is controllable, if and only if C > 0.

Next, we consider the general case.
Since (50)-A is exactly the same as (24)-A, we

have exactly the same decomposition of T as in (38).
Next, we can use each Ti1,i2,··· ,iµ to replace the T of
(50)-A, which turns (50) to be of previous type, i.e., its
algebraic part has only regular and stop points. Using
previous technique, we can construct Mr1,r2,··· ,rµ as in
(56). Finally, an overall M can be defined as

M := B

`1∑
r1=1

B

`2∑
r2=1

· · · B

`µ∑
rµ=1

Mr1,r2,··· ,rµ . (58)

Applying this M to (57), the controllability matrix C
for general case is obtained. Arguing as in the proof
of Proposition III.9, one sees easily that Theorem IV.3
remain true for general case.

Corollary IV.4 Consider system (50). When M is the
union of all possible Mr1,r2,··· ,rµ (as defined by (58))
and the controllability matrix C is constructed by this
generalized M , the conclusions of Theorem IV.3 remain
true for general case.

Remark IV.5 In fact, we can also convert the system
into a standard control system where an additional
control will be added. This control is used to “perform”
the switch among different models. Eventually, the
controllability of this extended system is exactly the
same as what we did above.

The following practical example is from [27] and
initially proposed in [9, 15] for biochemical oscillator
in the cell cycle.

Example IV.6 ([27]) Consider a Boolean model for
the biochemical oscillator in the cell cycle which
includes cyclins (denoted by x1), cyclin-dependent
kinases (cdks) (x2), and ligases (x3). In addition,
another cyclins (denoted by u), which may affect the
cell cycle, is considered as the input. Thus we have the
following singular Boolean control system:

x1(t+ 1) = ¬x3(t) ∨ ¬u(t),

x2(t+ 1) = x1(t),

1 = x2(t)↔ x3(t).

(59)

The partition is (X,Z) = ({x1, x2}, {x3}). The truth
matrix can be figured out from the (59)-A part as

T =

[
1 0 1 0
0 1 0 1

]
,

which is a logical matrix. Hence (59)-A part is
equivalent to x3 = Tx1x2 = x2. Then (59) can be
rewritten as{

x1(t+ 1) = ¬x2(t) ∨ ¬u(t),

x2(t+ 1) = x1(t),
(60)

which is a classical Boolean control network. Its
controllability matrix is obtained as

C =

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 > 0.

Therefore the system (59) is controllable.
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The following example gives a more general case.

Example IV.7 Consider a control logical network as
x1(t+ 1) = z(t),

x2(t+ 1) = x1(t) ∧ u(t),

[x1(t) ∧ (x2(t) ∧ z(t))] ∨ [x1(t) ∧ ¬x2(t)]∨
[¬x1(t) ∧ x2(t) ∧ ¬z(t)] ∧ [¬x1(t) ∧ ¬x2(t)] = 1.

(61)

Since the algebraic part of (61) is exactly the same
as (40)-A, we can use the decomposition of Example
III.10 directly. Skipping the tedious computation, we
can calculate the controllability matrix as

C =

1 1 0 0
1 1 0 1
0 1 0 0
0 1 1 1

 .
Thus, (61) is not overall controllable. But it
is controllable at (x0, Tx0), where x0 = δ2

4 ,
T ∈ {T1,1, T1,2, T2,1, T2,2} could be any one.
Back to the logical value, we have that the system is
controllable at (1, 0, 1) as well as (1, 0, 0).

V. CONCLUSION

The controllability of difference-algebraic logical
control systems is considered in this paper. It is well
known that for a differential-algebraic control system,
the variables involved in algebraic part, in general, are
not able to be solved out from algebraic equations.
This paper reveals that for a difference-algebraic logical
control system, the variables involved in algebraic part
are always “solvable” from the algebraic equations in
the sense that the solution could be empty or multiple
depending on individual points. This property makes
the investigation of its controllability always possible.
First, the dynamics and controllability of systems,
which have only regular and stop points are considered.
Necessary and sufficient conditions are obtained. Then
the results are extended to general case, where the
bifurcation points exist.

It is worth noting that the technique proposed in
this paper can be applied to mix-valued difference-
algebraic logical control systems immediately, and
all the results in this paper can be extended to this
class of general logical systems with some obvious
modification.
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