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Abstract

The paper concerns identification of the Wiener system consisting of a linear subsystem followed by a static nonfitigawity
no invertibility and structure assumption. Recursive estimates are given for coefficients of the linear subsystem and for fhe)vaiue
any fixedv. The main contribution of the paper consists in establishing convergence with probability one of the proposed algorithms to
the true values. This probably is the first strong consistency result for this kind of Wiener systems. A numerical example is given, which
justifies the theoretical analysis.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction nonlinear functionf (-) are unknown. The problem is how to

estimate coefficients contained in the linear subsystem and
the static nonlinearityf (-) on the basis of observatida}
and the adequately designed ingut}, where

The Hammerstein and Wiener systems, in particular, their
identification issue have attracted a great attention from
researchers because of their importance in applications.

Since these systems are nonlinear, the identification meth-z; = y; + &. 1)
ods demonstrated bghen & Guo (1991andLjung (1987) i
are not directly applicable. The name Wiener model probably comes from the famous

A linear system cascaded with a static nonlinearity is 200k bywiener (1958)where the nonlinearity is expanded
called the Wiener (or Hammerstein) system if the nonlinear- to the functional series and the correlation analysis is carried
ity follows (or is followed by) the linear subsystem. This pa- ©Ut by using the Gaussian input. Based on the method pro-
per concerns with identification of the SISO Wiener system P0Sed byWiener (1958)here were many works on analysis
presented ifFig. 1whereu, is the one-dimensional system and identification of nonlinear systems in 1960s and 1970s.
input to be designedy is the output of the linear subsys- Among early works on identifi_catio_n of Wiener systems, a
tem serving as the input of the memoryless nonlinear block, Practical nonparametric algorithm is proposed Biltings
andyy is the system output which is observed with additive & Fakhouri (1978)where no inversion of the nonlinearity is

noise &. The coefficients of the linear subsystem and the réquired. o o ,
For characterizing the nonlinearity the parametric ap-
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It is natural to come to the idea: to solve the stated prob-

€k lem for Wiener systems by using SA algorithms with ex-
panding truncations and with kernel functions. However,
i MA R fe) Uk Zk in doing so, there is an essential difference in analysis for
Wiener systems from that for Hammerstein systems. To ex-
Fig. 1. Wiener system. plain this, we note that the analysis given®ken (2004)s

essentially based on two facts: (1) The correlation function

between the input and output of the system has a simple

analytic expression connecting parameters to be estimated;

When the parametric approach is applied, the nonlinearity (2) All signals passing through the system are bounded

is presented either as a linear combination of known func- when the input is bounded. As shown Byren (2004)for
tions with unknown coefficientsHasiewicz, 1987; Hunter =~ Hammerstein systems a sequence of bounded iid random
& Korenberg, 1986; Nordsjo & Zetterberg, 2001; Westwick variables serving as the system input results in these two
& Kearney, 1992o0r as a piecewise linear functioRgjunen, properties.
1992; Voros, 2001; Wigren, 1993n this case, the parame- For Wiener systems, though a bounded input still implies
ter estimates may be derived by minimizing some specially the boundedness of all signals in the system, the correlation
designed loss function, and this can be realized by using anyfunction between the input and output of the system, in gen-
optimizing algorithm for data with fixed sample size. Pro- eral, does not have a simple analytic expression. This hints
ceeding in this way, the parameters cannot be updated onlineus to take an iid Gaussian random variables to serve as the
as can be seen WMiros (2001) Nevertheless, the estimates system input. However, the Gaussian random variable is un-
may still be made recursive and even with certain kind of bounded, and hence the Gaussian input may give rise to the
convergency, if rather restrictive conditions are imposed as unboundedness of signals in the system. This explains why
demonstrated byigren (1993, 1997, 1998he nonlinear the analysis method given ghen (2004)cannot directly

function is assumed to be known. be applied to the present case.

When the nonparametric approach is considered, the non- The requirement for boundedness of signals passing
linear function is usually required to be invertibiergblicki, through the system can also be explained by the following
1997, 200}, and the argument for any givenu = f(v) intuitive observation. To estimat¢(v) it is important to

rather thanf (v) for any givenv is estimated. This may recover the input, of the nonlinear function. The estimate
limit applications of corresponding identification methods for v;, denoted by, is obtained as the output of the esti-
in practice by the following consideration: saturations are mated linear subsystem, which means the subsystem with
not invertible, but they quite often exist in practical sys- coefficients replaced by their estimates. Howevdgrmay
tems and affect the measured outputs; also, inversion ofnot be close tay even if the estimates for coefficients of
the nonlinearity can lead to severe amplification of possible the linear subsystem are sufficiently accurate, when is
measurement disturbances as pointed oigren (1993) unbounded.
etc. To overcome this difficulty, we proceed as follows. While
The goal of this paper is to recursively estimate the coef- the system inpufu;} is taken to be a sequence of iid Gaus-
ficients of the linear subsystem and the vajt@) for any sian random variables, not all but only suchr + 1 suc-
givenv without requiring invertibility of f (-). The estimates ~ cessiveu; that are bounded by a given constant are used
are required to be strongly consistent, i.e., to converge toto estimatev,, wherer is the order of the linear subsys-
the true values with probability one. A similar problem for tem. This selection guarantees tlat} generated by sets of
Hammerstein systems is solved Bhen (2004)by using r + 1 successive boundeqd, is bounded. Since the selec-
stochastic approximation (SA) algorithms with expanding tion depends on sample paths, we have to use the concept of
truncations Chen, 2002 There the input is designed to be stopping time, which is well developed in probability theory

a sequence of bounded iid random variables, AQdlis es- (see, e.g.Chow & Teicher (1978)
timated with the help of a kernel function applied to the SA  The rest of the paper is organized as follows. The sys-
algorithm. tem considered in the paper and conditions imposed on

Let us explain why SA is an appropriate tool to deal with the system are given in Section 2. Also, the basic re-
the identification problem. When estimating an unknown sults of SA used in the paper are described in Section 2.
parametery on the basis of observation data denoted by The recursive identification algorithms and their strong
{gr}, one can always transform this to a SA problem, i.e., consistency for estimating the linear subsystem and the

to a root-seeking problem for any functigi¢-) with rootJ, nonlinear block are, respectively, presented in Sections 3
e.g.,g(x) = —(x — ¥¥). This is becausg;+1 can always be  and 4. A numerical example is demonstrated in Section 5
written asgi11 = g(xx) + 1,1 With nk+1égk+1 — g(xp), and some concluding remarks are given in Section 6. The

wherex; denotes théth estimate fon). In other words, the ~ mathematical details concerning the properties of stopping
observation datég,} can be viewed as a noisy observation times and the behaviors of kernel functions are given in
on g(xx) with additive noisey,. Appendix.
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2. Preliminaries truncations inChen (2002)Let {M;} be a sequence of pos-
itive real numbersM; 1 > M; and M; k—> oo. Let x; be
Lgt us first describg thg system more precisely. Assume generated by the following algorithm: e
the linear subsystem is given by
+ if + <My,
. s = {ii Ak 8k+1 otr|1|gﬁw istékgkﬂll ok ©)
ver= Yy dju—j. do=1 )
Jj=0 k—1
and the output of the nonlinearity is o= Iixj+ajgj411>M,,1, 00 =0. (7)
j=1
e = f(vk). 3)

. _ _ ~ From (7) it is seen thato, <k — 1, and from (6)
It is worth noting thatdg is not necessary equal to 1 but is Ixksall < llx* | A My_1. This means that the growth rate of

allowed to be any known constant. The reason to asslgme  |x;, 1| is controlled: it should not be faster thafy. At any
known is technical, because otherwise there is a lack of onetime, if ||x; + argr+1] exceeds the truncation bound,, ,

equation. o _ then we pullx;1 back to the fixed poink* and simulta-
The coefficients/y, .. ., d, and the valugf (v) at any fixed neously extend the truncation bound frovfy, to My, 1.

v € Z are to be recursively estimated on the basis of system Otherwise, it develops as (5). Since the region whétrés

inputs{u;} and measurements;} given by (1). located is unknown, it is important to allow; to grow up

As explained in Introduction we take, to be Gaussian.  in order to have possibility to reactf.
Let us precisely formulate this as condition HO.

HO. {u} is a sequence of iid Gaussian random variables: General convergence theoren(GCT for the single root
ur € A°(0,1), and{u,} is independent of the observation casg. Assume the following conditions
noise{e}.

In addition to HO the following conditions H1 and H2 are (1) ax > 0,ax —> Oand} ;2 ax=00, My > 0, My41 > M,
also imposed on the Wiener system under consideration. M, — O’?"O

H1. f(-) is a measurable function and continuousvat k=00

where the valugf (v) is estimated. The growth rate ¢f(v) (2) () is _measurgble and "?Ca”y t?ounded .
as|v| — oo is not faster than a polynomial (3) There is a continuously differentiable functiof) such

H2. {¢} is a sequence of iid random variables witk, =0 that
and E < oo. o o sup " ()ue(x) <0
It is noted that no invertibility off (-) is required. ¢ < Jx—x0 < ¢”

The recursive estimates are to be generated by SA al-
gorithms, but the classical Robbins—Monro (RM) algorithm
does not work here because of its restriction conditions for
applicability. In order to ease reading, we cite a general con-
vergence theorem (GCT) for SA algorithms with expanding
truncations in the case of single root. For its proof we refer

for any ¢” > ¢’ > 0, wherewv, (x) denotes the gradient
of v(-). Further, x* used in(6) is such that|x*|| < co
andv(x*) <inf=¢,v(x) for somecg > 0.

Thenyx; defined by(6) and (7) converges ta:? for any
sample paths for which the following conditié#) is

to Chen (2002, Theorem 2.2.1) satisfied
The root of a functiorg (-) is denoted by ? if it is single. )
The problem of SA is to seek the root gf-) on the basis mg,Ty)
of its noisy observationgg;}: lim lim sup= . =0 VI, [0, T
N TI—>0 Ik_)ong i; il e
8k+1=8(Xk) + My 1 4) T ®)
wherex; is thekth estimate for® andy,_, , is the observa- ¢ h th h
tion noise. or anyny such thatx,, convergeswhere
Let {a;} with a; > 0 be the sequence of stepsizes. By the m
classical RM algorithm the roat® (g(x%) =0) is sought by mk, T)=max{m:> a;<T
the simple recursion: =
Xp+1 =Xk + axgr+1, k=0,1,.... (5)

It is worth noting that condition (8) is required to verify

For convergence of to x°, a certain growth rate restriction  only along convergent subsequen¢es } rather than along

on g(-) or an a priori boundedness assumption{op} are the whole sequencgx,}. As pointed byChen (2002)in

required in the classical theory, in addition to conditions on many cases (8) cannot be directly verified along the whole

the noise{n}. sequencelx,}, but it can be done for convergent subse-
In order to extend the range of applicability of SA al- quences. This is the case in Lemma 2 and Theorem 2 of Sec-

gorithms, the RM algorithm (5) is modified by expanding tion 4. The method verifying condition (8) along convergent
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subsequences has shown a great advantage over verificaRemark. The choice ofa;, My, andb; in (27) has some
tion along the whole sequence, and it is called as trajectory-flexibility: a; = 1/k is a conventional choice of stepsizes
subsequence (TS) method@hen (2002) buta; may be different fron{1/k} (seeChen (2002). Here
The convergence analysis to be carried out in Sections 3we selecta; = 1/k only for simplicity of description. The
and 4 is based on GCT, and also on the convergence rateselection of{a;} should be coordinated witfb;} given by

theorem (CRT), which is presented below. (27) and{M, }, and the rate selection f¢M,} is used in the
proof of Lemma 1 to upper bound the maximal divergence
Convergence rate theoren{CRT). Assume conditio(8) in rate of|u,, (v)| in (33).

GCT holds and the following conditios)—(7)are satisfied
The algorithms for estimating coefficients of the linear
- L L subsystem are the same as those use@hsn (2004)i.e.,
(5) ax >0, ax =20 and ) pljar =00, z= — & Py they are the SA algorithms with expanding truncations
>0; My, >0, My41> My, My k—) 00.

— 00
(6) For the sample patlw under consideration the obser-

Or+10) = 0k () — ax (0 (i) — ukZi+i+1)

X Iro, iy N . 1, 10
vation noise{s,} in (4) can be decomposed into two 18k )=k O D~k zt4141)1 < Moy ) (10)
partsn, =, + n; such that k-1
~ ok (i) = Z 1[|9,-(i)fuj(ej(i)fujz,-+,~+1)\>M{,j(,-)], o0(i) =0
Za,}_‘sn}( <oo, 1= O(a,‘z) j=1
k=1 (11)
for somes < (0, 1]. with initial valuesOp(i), i =0, 1, ..., r. Here0;(0) is used
(7) g() is measurable and locally boundeand is differ-  t0 estimatep = (1/a%) Elv f (v)], and 0(i) for pd;, i =
entiable atx® such that asc — x©° 1,...,r, wheres? denotes the variance of.
It is clear that(0(i)/0x(0)) £ d;; may serve as the esti-
0 0
gx)=Fx —x7) +4(x), A7) =0, mate ford; at timek whenevert; (0) # 0.

A@) = o(llx = x°I,
] ) Theorem 1. AssumeH0—-H2 hold. Then
and the matrixF 4 yol is stable wherey and 6 are

given above 0,(0) — p2 M as. (12)
k— o0 ay
Thenx; given by(4), (6) and (7) converges to® with the
following convergence rate and
||Xk —.XOHIO(QI(:), Hk(l)k:gopdl a.s., i=1,...,r (13)
whered is given in Condition(5). with rates of convergence

For the proof of the theorem we refer @hen (2002,  10k(0) — pl =0k ™) as, |0k(i) — pdi| = 0(k™) a.s.,
Theorem 3.1.1) ce(0.3)., i=1....r. (14)
It may be worth paying attention to the difference in
numbering conditions: conditions (1)—(7) are used in GCT Proof. The proof is essentially based on the convergence
and CRT, while conditions HO—H4 are used for the Wiener theorems GCT and CRT of SA given in Section 2.
system. Noticing that{u;} is Gaussian with zero mean and iid,
from

3. Estimation for linear subsystem :
E(ugvg+i+1) = E | ug Zdjukﬂ'fj =d;,
j=0

We now use the algorithm (6) and (7) to estimate coef-

ficientsd;, i =1,...,r in (2). For this we first concretize  \ye conclude that
{ar} and the truncation bound34;}. J
) Vil
Define E [(uk - GZH ) Uk+i+l:|
1 v
ax==> and M= Mo+ kP (9) d;
k = E(uivisi+1) = 5 E@fy40) =0,

v

to serve as the stepsizes and truncation bounds to be used in
the SA algorithms, wherg € (0,1/2 — 3a), o € (0, 1/6), which impliesu; — (d; vk+i+1/ag) is uncorrelated with and
and My is a positive number. hence is independent of ;. 1, since for Gaussian random
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variables independence is equivalent to uncorrelatednesswhereA ; ={j+k(r+1) :

From independence it follows that

diviyiil
E Mk-%
GU

which implies

Uk+i+l> =0,

diVi+it+1
E(uic|vitiv) = —5—
GU

Consequently, we have

E(uiykyiv1) = E [E@iykyirilverivn) ]

dA
=E |:yk+i+1a—lzvk+i+l] =d;p. (15)
v
The recursion (10) can be rewritten as
Ok+1(0) = Ok (i) — ax (0x (i) — dip) — aréx+1()
X 1110, (1) i (O () —ds p) a1 ()| < Moy D1 (16)
where
er1(l) = —ugzerivr +dip, i=0,1,...,r (7)

Comparing (16) with (4) and (6), we find thatx) in (4)
corresponds to the linear functioA(x — d;p) in (16). In

1909

k=0,1,...},j=12,...,r+1.
From (20) and (21) and the independencd:qf} and {&;}
we conclude

Zajéj+i+1(i) <oo a.s. (22)

j=1

which implies (18).
The rates of convergence are derived from CRT given in
Section 2 for the case whepe=1, F = —1,¢/=0. O

4. Estimation for f(v)

As explained in Introduction, the input of the nonlinear
part is estimated by
(23)

A A
Uk =up—1+duyug—2+ -+ drgthp—r 1.

It is conceivable to estimatg(v) on the basis ofv;} and
{zx+} by using SA algorithm with kernel functions as done in
Chen (2004)However,ty is, in general, unbounded because
of the unboundedness ¢}, and hence we will use only
suchr+1 successive, that are bounded by a given constant
c to estimatef (v). To be precise, we introduce a sequence
of Markov times as follows. Fix a positive constant |v|

other words, the algorithm (16) and (11) seeks for the root and define

of the linear functiorg® (x) £ — (x —d;p),i=0,1,...,r
It is also noticed that™ in (6) corresponds to O in (16).
It is clear that for the linear functiof (x — d; p), v(x) =
(x — d; p)? satisfies condition (3) in GCT, while (1) and (2)

in GCT obviously hold in the present case. Thus, by GCT 7

given in Section 2, for (12) and (13) it suffices to show

m(n,t)

Ilinollinﬁigp7 jz_:,, ajejr1(0)| =0
Vte[0,T], i=01,...,r, (18)

where
21

mn.t)y=max{m:» Z<rt. (19)
—J
/_n

Notice that

ek4+1(1) = — (Ui Yi+i+1 — dip) — UkEk+i+1- (20)

By (15), {uj+k¢r+1)Yj+ko+1+i+1 — dip, k =0,1,...} is
a sequence of iid random variables for any fixed i =

1,...,r, and by the convergence theorem for independent

random variablesGhow & Teicher, 1978we find

o0
Zaj(ujyj+i+l —dip)
j=1
r+1
= Z Z ar(Upyreriv1 —dip) <oo a.s.,

j:lkEAj

(21)

n=inflk>r+1: |u_j|<c, j=1,...,r+1} (24)
and
=infli>tnu_1: |ui—jI<c, j=1...,r+1},
k=2,3,.... (25)

From (24) and (25) we see thaf >1;_1, and start-
ing from u;_,_1 there arer + 1 successivex; with
luil<c, i =1 —r —1,...,1% — 1. Thus, amongy;
given by (23) only those witli = 7; are used to estimate
f(v). It is clear that the seftry = s] is completely deter-
mined by random variabless, ..., u;_1. In other words,
[tx =s] € Fs20{us, ..., us_1}, the c-algebra generated
by {u1,...,us_1}. We recall that the nonnegative ran-
dom variabler is called the Markov time with respect to
the family of nondecreasing-algebras% ; if [t = s] €
Fg, Vs =1,2,.... Further, if a Markov timer < co a.s.,
then 7 is called the stopping time with respect {& }.
Consequentlyri ,k =1, 2, ... are the Markov times.

It is worth noting that

|U‘L'k| = |u1'k—1 + dl”l’k—z +- 4+ dru‘[k—r—].'
r

<e ) ldil, k=1.2.... (26)
i=0
Let
1

whereq is figured in the definition off appearing in (9).
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For a fixedv € £, define the kernel function

2, 1541 2
wrkéie—((vfk—v)/bk) +5 20wy -, (28)
by
and its estimate
1 _ _ r+1
iy, 2 o (G —v)/b?+3 3y Sl -3, (29)

bk

which is used in the SA algorithm for estimatirfgv):

M1 (V) = i (V) — agie, (e (V) — z7;)
X g ) —agivg, (1 ()25 < My 0] (30)
k—1
Ae(v) = le[\yj(v)—a,-ﬁ)fj ;@) =ye )I>M;; )]
Jo(v) =0 31)

with an initial valueug(v).

It is worth noting that if all signals in the system were

bounded, then it would be unnecessary to introdycand

or there is O< M < oo, which may depend on samples, such
that

|U)1_-k - wrklng a.s. Vk.

Therefore, taking notice aif, =Mo+k° andM;, ) < Mo+
(k1)) < Mo + (k — 2 < (Mo + DKP, we have

o0 o
> k| (g, — we) )<Y a| (e, — we)| - |y (V)]
k=1 k=1
o0
SM(Mo+1) Z W Ji-1(v)
1
<M(Mo+ 1) Z S a.s. (33)

(k)3/2 30— fi— b

Since{y, } is bounded by H1 and (26), we have

Z akl(wrk

W, ) Yy |

the analysis carried out in this section would be much sim- ;=1

pler. As a matter of fact, in this case ajll in what follows

could be replaced bl and Lemmas A and B in Appendix
would no longer be needed, while Lemmas C and D could

be proved much simpler.
We intend to show, (v) a.s. converges t@ (v). For this
we first prove lemmas.

Lemma 1. AssumeH0-H2hold andp # 0. Then

o]

Z ak |(li)tk

k=1

- wfk)(;uk(v) - Z‘Ek)| <o as, (32)

wherew,,, Wy, and y (v) are given by(28), (29)and (30),
respectively

Proof. Letd e (0, 3 —3x— f), then3 —3x—f— 5> 1. By
the boundedness ({)f)rk}, (14), and the factzy / k) k—> Et
—> 00

(see Lemma A in Appendix), it follows that
Vg, — U 2 Uy, — v 2
by by
1 A N
= ﬁ(vrk + U, — 20) (g, — V)
k

=0 (k_(l/z_z"‘_‘s)) — 0 as.

k— 00

From this we have

N 1 5 2 2
e, — we, = E[e—«vfk—v)/hk) _ g (g )/

_ 1wy omp?

by
% [e((vfk—v)/bk)z—«ﬁf,{—v)/bk)2 —1

—o(k~W/23=9)y g,

o0
<Y al (g, — we)l - |yg|

=1
o
/

MZk3/2 55 <o° as, (34)
=1

where 0< M’ < co.
Further, by (A18) in Appendix it follows that

o0
> arl (e, — wey)ey|

=1

o
M
<Zak|(wrk we)| - |81k|<ZW|Su|

=1
M(ler, | — Eleg,|) ME|e, |
= E =+ E <00 a.s.
P (k)3/2 30—0 P k3/2—3fx—(3
(35)

Combining (33), (34) and (35) implies (32)[1

Lemma 2. AssumeH0—H2 hold andp # 0. Then there is
an Qg with PQp = 1 such that for any fixed sample path
w € Qo if . (v) is a convergent subsequence{pf (v)},
then

Py 1 (V) = pg (V) — asWe, (s (V) — z7,), (36)

and

g1 () =y, OII<eT,  s=ki, ki +1,...,mk;, T)
(37)

for all sufficiently large i and small enough > 0, where
¢ >0, c may depend on sample pathbut is independent
of k;.
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Proof. Before proving the lemma we first note that here a This means thaj (v) generated by the recursion (36) is
convergent subsequen¢g, (v)} of {x (v)} is considered, close togy, (v), which has a finite limit ag — oo, for s €

and from the subsequent proof it can be seen that replacinglk;, ..., m(k;, T)]. In other words, (36) can be considered

1y, (v) with g (v) does not work. As mentioned in Sec- as a part of the algorithm (30) and (31), and there is no

tion 2, here the TS method is applied. truncation fors € [k;, ..., m(k;, T)] for largei and small
Temporarily ignoring (30) and (31), consider recursion T > 0, while (37) is an alternative writing of (43).

(36) with initial value . (v). The set2o may be taken as the one where all (A14) (A19)
Set and (32) are simultaneously satisfied.]

®; ; é(l—aiwn)n-(l—ajwrj),

izj, @jj1=1

Theorem 2. AssumeH0—-H2 hold andp # 0. Then

By (Al14) in Appendix and the fact thaEw,, o wo w () — f(v) as, (44)
— 00 k—
proved in Lemma C it follows that >

s wherey, (v) is given by(30) and (31).
Zajwrj=0(T) Vs € [ki, ..., mki, T)] (38)
J=ki Proof. Write (30) as
and hence

s Hr1(v) = (V) — apwo(y (v) — f(v)) + arex (v)
log &, 1, = O (Z ajwrj) : X ]y ) ~agwo gy ()~ ) +aker )| < My 1 (45)
J=ki

Gy =14+ OT) Vs € lki,....mki, T)] (39) wherewg is given in Lemma C, and

asi - oo and7 — O. _ B oA B

By (A19) we have ex(v) = wo( (v) — f (V) — We (e (V) — 2g,). (46)
s Since f (v) is the root of the linear functiong(x — f(v)),

Y Py jraajwe e | = O(T) (40) by GCT given in Section 2 for (44) it suffices to show

J=ki

and by (38) and the boundedness{pjj} 1 m ki, T;)
. . als) _
s s 7|""—T>]0 “rln_jgp? le: 4j ej )| =0,
Z @S,j-i-lajwijfj =0 Z ajWr; | = o(T) s=1,23,4 VT, €[0,T] (47)
j=ki Jj=k;

Vs € [kiy ..., mki, T)] (41)

asi — ocoandT — 0.
Combining (39), (40) and (41) yields

for any convergent,. (v) — u(v), where
11— 0

s e’ ) + 2 ) + 67 ) + ¢! ) = e (v),
¢S,ki#ki (U) + Z st’j+1alejZ‘[j = ,uki (U) + O(T)

J=ki and
Vs e lki,...,m(k;, T)]. (42)
From (36) we have et () £ (e, — o) (1 (V) = ygp),
M1 (V) = s (0) = aswe, (s (v) = 2¢,) el (v) 2 (wo — we )y (),
+ as (e, — Wr) (U (V) = 21,) P () 2w,y — wof V),
S
= (ps,k,'iukl-(v) + Z ¢S,j+lajwsz‘fj 4 4
j=ki ande” (v) is free ofv and equale,” with
S
+ Z ¢s,j+laj(w‘rj - ﬁ)‘cj)(/v‘j(v) - Z‘cj)y ¥ a ‘
ik € = W&y

which incorporating with (42) by Lemma 1 implies
P g (42) by P It is clear that (47) holds fos = 1 by Lemma 1, while for

Bsr1 (V) = py, () + O(T) Vs € [ki,...,m(k;, T)]. (43) s =4 by (A17). We now show (47) fos = 2. From the
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following inequality 1
m(k;,T;)

- 1
im lim sup— Z ajeﬁ.z)(v)
—

|
-0 .~ T

m (ki T;)

< lim fim sup= | D™ a;1;(v) — p(w) (wy; — Ews,) d
S 0 SUPT fart RALTAL AN 7 7 05}
1 m(k;, T;)
lim lim sup— (W — Ew- -—
+ Jim lim sup=z k@)l | D aj(we, = Ews) d
J=ki 5
m (ki T;)
+ lim _lim sup— Z ajp;()(Ewg; —wo)|, 0y
T— i—00 T pars

we see that at its right-hand side the first term is zero by (37)

and (A15), the second term is zero because of (A14), while

the last term is zero by the first part of (A8). Thus (47) also
holds fors = 2. Finally, by (A16) and (A17) and the second -0.5 . . . . .
part of (A8) we conclude that (47) holds foe= 3 too. This 0 500 1000 1500 2000 2500 3000
completes the proof of the theoremJ

Fig. 2. Estimates for linear subsystem.

5. Numerical example

Let the linear subsystem be a second order MA process 1

Via1r = g + 0.65u_1 + 0.28up_2, up € (0, 1), 08 F

and let the nonlinear function be 06|
sin(mv/2) if v <1, 0.4

f(v):{l !fv>1, 02+t
-1 if v<-—1,

and the observation noise be Gaussigg ./7(0, 0.1).
Letay =k 1, b =k~ VD and My =50+ k/19 | and let 0.2 ¢
¢ = 3 in the definition ofry. 04t
In Fig. 2the estimates (dotted lines) for coefficients (solid
lines) of the linear subsystem are demonstrated, whitégn -0.6 |
3itis shown how the trug (v) (solid line) is approximated
by its estimate (dotted line). The estimate faw) is derived
in the following way: the interval—1.5, 1.5] where f (v) is -1
defined on is equally divided into 100 subintervals, and at
each endpoint of subintervals,f (v) is estimated by (30)
and (31). The dotted line consists of the estimates given at
k = 3000. InFig. 4 the estimates (dotted lines) fgt(v) Fig. 3. Estimate forf(-).
(solid lines) are plotted vs time far=—1, —0.5,0, 0.5, 1 to
demonstrate the procedure of convergence of the estimates.
FromFigs. 2 3, and4 it is seen that the numerical simu- for coefficients of the linear subsystem as well as for the val-
lation justifies Theorems 1 and 2. ues f(v) of the nonlinear block are given recursively with
the help of SA algorithms with expanding truncations, and
are proved strongly consistent. To the authors’ knowledge
6. Concluding remarks this probably is the first piece of work on strong consistency
of estimates for identifying Wiener systems with nonpara-
This work concerns the nonparametric approach to iden- metric nonlinearity.
tification of Wiener systems. The invertibility of(-) often Although the SA algorithms with expanding truncations
used in literature is not assumed in the paper. All estimateswere applied to identifying Hammerstein systemGhen

-0.8 1

-1.5 -1 -0.5 0 0.5 1 15
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15

f(1)

f(0.5) -

- f o

f(0.5) |

f(-1)

500 1000 1500 2000 2500 3000

Fig. 4. Estimates forf (v) with v =0, £0.5, +1.

(2004) extension of the method to identifying Wiener sys-

tems is not straightforward. This is because we have to use
Gaussian rather than bounded input in order to appropri-
ately estimate the linear subsystem based on the observatio
data which are made not directly on the output of the linear
subsystem but on the output of the nonlinear block. The un-
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sequencd.7;} of nondecreasingr-algebras. If% is in-
dependent o&{¢;, j >k}, k=1, then7 . is independent
of 6{l; 41, &ryp. ...} and{&, 4, k>1} is a sequence of iid
random variables with the same distribution as that &er

Define

T2 -(r+1)

=inftk>1: lupsr1jl<c,j=1,....r+1}. (Al)

Lemma A. If {u;} is iid and Gaussianthen Et; < oo,
Et? <00, and % — Ert a.s, wheret; is defined by24)

— 00
and (25).

Proof. We first show that forEt; < oo and Er,% <oo it

suffices to prove
Et<oo and ET?<oo. (A2)

Itis clear thatr < oo a.s. and is a stopping time with respect
to% = o{uj, j=1,...,k+r}. Then for any integey >0

there isa Borel seB; ., suchthaft=jl=[(u1, ..., uj4,) €
Bj.,1. By Proposition 1 it follows that
Plt=jl=P[(u1,...,uj+s) € Bjys]

= P[(”‘Ek_l-l-lv cees u‘rk_1+j+r) € Bj+r]

=Pt —1h_1=j] with tg2r+1, (A3)

and that{z; — 7;_1} is a sequence of mutually independent

Dandom variabies by taking notice of measurability of —

Tj—1}, j=1,..., k=1l andrt; — 1,1 with respect ta¥%,, ,
ando{u,_ 41,y 42, - - .}, respectively. Consequently, we

boundedness of signals gives rise to additional difficulty in have

estimating f (v). If the signals were bounded, the stopping

times introduced in the paper would be unnecessary and the

proof of Theorem 2 could be greatly simplified.

The identification problems for multidimensional sys-
tems, for Hammerstein—Wiener systems, and for systems
with more complicated linear systems are under considera-
tion.

Acknowledgements

The authors would like to thank the Associate Editor and
the reviewers for their comments and suggestions which are
helpful for improving the paper.

Appendix

In the Appendix we demonstrate some properties;of
k=12, ... and kernel functions defined by (28). For this
we need the following well-known fact for whose proof we
refer toChow & Teicher (1978)

Proposition 1. Let {£;} be a sequence of iid random
variables and letr be a stopping time with respect to a

k
E7y =ET0+ZE(‘L'J' —1j—1)=0+1+kET
j=1

and
2

k
ET]% =E| 10+ Z(rj —Tj-1)
j=1

<@ 4+ D%+2(r + DkET + kK2ET2.

This proves sufficiency of (A2) for Lemma A. Therefore,
(A2) implies Ety < oo and Et2 < 0o, ¥ k> 1.

We now prove (A2).

From (Al) it is seen that is the first time that the imme-
diately pastr + 1 (with the tth random variable included)
successive random variables{ir,} are bounded by.

Setp £ P[|u1| <c]andg £ 1— p. Consider a sequence of
independent trials. Each trial with probabilfhyhas outcome
“success” and with probabilitg “failure”. Assumen > 2k
and letP, (k) be the probability that im trials there are no
k successive successes.

It is clear that

Pn(k) = an—l(k) + qun—Z(k)

+o g P (), (A4)
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or

A(2) Py (k) =0,

where
A()=1-qz—pgz® —-- = pqd (A5)
with z being the backward-shift operator.
Since
1— k
|qz+pqz+~-~+pk71qzk|<Q(T£):1—pk<1

on the unit circlgz|=1, by the Rouché theorem from the the-
ory of complex variable functions it is concluded th#tz)

and 1 have the same number of roots inside the unit circle.
In other words, all roots ofi(z) are outside the closed unit
disk. Therefore P, (k) as a solution of the stable difference
equation exponentially decays, i.e., there are constafits

and O< p(k) < 1 possibly depending ok such that

Py (k) <C(k)p" (k). (A6)

Forn>2(r + 1) + 2, from the definition (Al) we see that
[t =n] means thaju,_1| > ¢, there are ne + 1 successive
random variables bounded layin the firstn — 2 random
variables of{u}, and|u,+;|<cforalli=0,1,...,r. Thus,
by (A6) we have

Plt=n]= P,_2(r + 1gp'**
<Cr+Dp" 20 + Dgp™,

and hence
o0
Et= Z nP[t=n]
n=1
2r+3 o0
= Y nPlt=n]+ Y  nPlt=n]
n=1 n=2r+4
2r+3

< Z nP[t=n]
n=1

o
+C(r+ Dgp ™+t Z np"2(r + 1) < 00,
n=2r+4

since O< p(r +1) < 1.
The proof of ET2 < oo is completed in a similar way.
By Proposition 1 and (A3) it follows thdt ; —7;_1} with
t0=r + 1 is iid. By the strong law of large numberStfow
& Teicher, 1978 we have

k
1
+z2;(‘fj—fj_1)kj;oET a.s. O
]=

rk_r—i—l
k

=

Corollary 1. Since Et; <oo, we have 1; <oo a.s.
Hencet; is a stopping time with respect t67;} and
Tr — Tx—1 IS @ stopping time with respect o7’ ;}, where
HiEo(ug vii=1,...,j—1}.
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Lemma B. Let{¢,} be a sequence of iid random variables
and let{¢;, j =k, k +1,...} be independent ofu;, j =
1,...,k—1}. Then{¢,,} is iid where{z;} is given by(24)
and (25).

Proof. Since {r;} is a sequence of stopping times with
respect to{#;} and i<t <---<7, we see that
{Cry. ..., &, ) are #  -measurable. On the other hand, by
the definition of tx41, g’ml is measurable with respect
to {41, &g 42, - -} Which is independent o7, by
Proposition 1. This implies that , is independent of
(&z;» - - -+ &r) and hence proves the mutually independence
of {&;,} by induction.

We now show that they are identically distributed. Similar
to (A3) we have

P&, <]

o0

= Z Plty — k1= J, Sy q4j <4l
j=1
o0

P[(Mrk,l-J—J_, U 1425 -+ )€ Bj+ra érk_l-fj <]

Il
i

J

K

Pl(uy, uz,...) € Bjyr, ¢j <4l

I
N

O

Plt=j, & <Al=Pl& <Al=P[E <Al

e

Il
i

J

Introduce the following notations:

A
S =

r r
s+éc+2djsj—v, —c—i—Zdjsj—v, (A7)
Jj=1 Jj=1

BT (&) £ {(51, 52, . -
s+

., 8r) €[—c, ]
>¢g, 5 <—¢, 20}
B (e) = {(s1. 52, -

B~ (&) £ {(s1, 52, - -

sT >¢, £20},

st <—¢ >0}

8 €[—c,c]
8 E—c, ]
Clearly, Bf(¢), B (¢) and BZ(¢) are bounded sets. De-
note their Lebesgue measuresWyB* (¢)), V(B (¢)) and
V(B (¢)), respectively.

Lemma C. AssumeH0—H2 hold. Then

Ewy — wo, Elwg f(vy)] — wof(v) (A8)
k— 00 k—o00
and
SUPE (v/brwy,)? < 00, (A9)
k
V(BT (0))
wherewg = ———— and =P <cl].
o (W2m) pr+l i ikl el
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Proof. For any integersk and n there is a Borel set

B,,_,_»(k) such that

[tk =nl={(ua, ..., up—r—2) € By_r_2(k),

uj € [—c,cl, i=n—r—1,...,n—1}
Then, by the independence pf;} we have

E[wrk f(vrk)l [tk=n] ]
b L plenmomP 3T b, )
k
X I[(ul,.
_ Pl(uy, ..

JUp—r—2)EBy_y_2(k), uj€[—c,cl, i=n—r—1,...n— 1]]

JUp—r—2) € By__ Z(k)]/ /
(Jﬁ)’“bk e Je
x exp[_<z;=0iixj - v) }

k

x f (Zd xj) dxo- - - dx,

Plty =n]

T W2rp) / /-

x f (Zd xj) dxo- - - dx,

Pltr =n] d q
—_— S DRI Sr
( /27'Cp)r+l 1
sT/be
X / €% f (v + brso) dso | , (A10)
s~ /bi
where
xo+dix1+---+dx, —v
S0 = )
by
si=xj, j=12,...,r,
ands™ ands~ are given by (A7).
Noticing
st q
b koo 0 A ST
in BF(¢) with ¢ > 0, we find that
s /bi s
/ dsq - - - ds, / € %0 f(v + brsg) dso
BT (¢) s~ /by
= V2rV (Bt (e)) f (v),
—00
and by tending: — 0
st /by )
/ dsy---ds, f €0 f'(v + byso) dso
BT (0) s~ /by
= V21V (BT (0) f (v). (A11)
—00
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Similarly, it is proved that the limit of integral (A11) is zero

if the integral is taken ovij[(O) or BZ(0).
Thus, by (A10) and (A11) it follows that

E[wrk f(vrk)]

= Z E[w‘[k f(v‘[k)l[’[k=”]]

n=1
1 /c c
- S dsy---ds
( /27'Cp)r+1 e e r
st /by
</
s~ /bx
1
-
k— 00 (a/zn)’p"‘*‘l

As a special case of (A12), we haau., 2 wo-
— 00
By a similar approach we find that

E(V/by wfk)2
(\/Zp)rJrlbk /—c /—c

> i=odjxj —v 1 2
xexp{—Z(T +§Z)€]
j=0
e((r+1)c2) /2 c ¢
(V2rp) by /_ /_

2
Todix: —
xexp{—z(zjob./xj v) }dxo"'dxr (A13)
k

e*"gf(v + bkso)dso)

V(BX(0) f(v) =wof(v). (A12)

dxg - -

and the right side of (A13) is uniformly bounded with respect

to k. This proves (A9). I

Lemma D. AssumeH0-H2hold. Then

o0
Zaj(wfj — Ewg) <00 aus., (A14)
j=1
o0
Y aj(lwe; — Ewg,| — Elwe; — Ewg)|) <00 as.,
j=1

(A15)
o0
Zaj(wijrj — Ewg,;yr;) <00 a.s., (Al6)
j=1
o0
Zajwrjafj <00 a.s., (A17)
j=1
Z (lec,| = Elec,[) <00 a.s., (A18)
and
o0
Zaj (we;lec;| — Ewe,le,]) <00 a.s. (A19)
j=1
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Proof. Since for any fixed; =0, 1,...,r, the sequence
{(vjqke+n, £ =0,1,...} is iid, by Lemmas B and C,
{\/ bj+k(l’+l)w‘[j+k(r+1) _ E bj+k(r+l)wrj+k(,+1>»} IS a se- .
quence of mutually independent random variables with
bounded variances, =1, 2, ..., r + 1. Therefore, by the

convergence theorem for sum of independent random vari-

ables Chow & Teicher, 1978we derive (A14) by writing
o

Z aj(we;
j=1

j=lkeA;

- Ew‘L’j)

(\/_wrk

E\/b_kwfk) <00 a.s.,

whereA ;={j+k(r+1) : k=0,1,2,...},j=1,2,...,r+1.
Similarly, we can show (A15) and (A16) by noticing that
{yr} is bounded by H1 and (26).
We now show (A17). Proceeding as (A10) by the inde-
pendence ofu;} and{g;} we find that

E[w‘[k Tk [‘E/\v=n]]

oy r41
=E | exp —2( ) +Z”n/ &2
X A{(uy.....tyr—2)€Byr—2(k), uiel—c.cl, i=n—r—1,...n—1]
< Plty =nl]Eé&? S]l(JpE(\/EwTk)Z
and hence by H2 and Lemma C
Elbw? e ] = ZP n)Ee? supE(\/EwTk)
= E¢? S]l(JpE(\/b—kwTk)z < 00. (A20)

By the similar treatment and using the independenda gf
and{e;} and Lemma B we find that

E[we, 5,1 =0 (A21)

Combining (A20) and (A21) leads to (A17) and (A19), while
(A18) follows from Lemma B. O
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