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Abstract

The paper concerns identification of the Wiener system consisting of a linear subsystem followed by a static nonlinearityf (·) with
no invertibility and structure assumption. Recursive estimates are given for coefficients of the linear subsystem and for the valuef (v) at
any fixedv. The main contribution of the paper consists in establishing convergence with probability one of the proposed algorithms to
the true values. This probably is the first strong consistency result for this kind of Wiener systems. A numerical example is given, which
justifies the theoretical analysis.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The Hammerstein andWiener systems, in particular, their
identification issue have attracted a great attention from
researchers because of their importance in applications.
Since these systems are nonlinear, the identification meth-
ods demonstrated byChen & Guo (1991)andLjung (1987)
are not directly applicable.
A linear system cascaded with a static nonlinearity is

called theWiener (or Hammerstein) system if the nonlinear-
ity follows (or is followed by) the linear subsystem. This pa-
per concerns with identification of the SISO Wiener system
presented inFig. 1whereuk is the one-dimensional system
input to be designed,vk is the output of the linear subsys-
tem serving as the input of the memoryless nonlinear block,
andyk is the system output which is observed with additive
noise�k. The coefficients of the linear subsystem and the
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nonlinear functionf (·) are unknown. The problem is how to
estimate coefficients contained in the linear subsystem and
the static nonlinearityf (·) on the basis of observation{zk}
and the adequately designed input{uk}, where
zk = yk + �k. (1)

The name Wiener model probably comes from the famous
book byWiener (1958), where the nonlinearity is expanded
to the functional series and the correlation analysis is carried
out by using the Gaussian input. Based on the method pro-
posed byWiener (1958)there were many works on analysis
and identification of nonlinear systems in 1960s and 1970s.
Among early works on identification of Wiener systems, a
practical nonparametric algorithm is proposed byBillings
& Fakhouri (1978)where no inversion of the nonlinearity is
required.
For characterizing the nonlinearity the parametric ap-

proach (Bendat, 1999; Hasiewicz, 1987; Hunter & Koren-
berg, 1986; Nordsjö & Zetterberg, 2001; Pajunen, 1992;
Verhaegen & Westwick, 1996; Vörös, 2001; Westwick &
Kearney, 1992; Wigren, 1993, 1994) is mostly applied in
literature, but the nonparametric approach is also considered
(Billings & Fakhouri, 1978; Greblicki, 1997, 2001).

http://www.elsevier.com/locate/automatica
mailto:xlhu@amss.ac.cn
mailto:hfchen@iss.ac.cn


1906 X.-L. Hu, H.-F. Chen / Automatica 41 (2005) 1905–1916

Fig. 1. Wiener system.

When the parametric approach is applied, the nonlinearity
is presented either as a linear combination of known func-
tions with unknown coefficients (Hasiewicz, 1987; Hunter
& Korenberg, 1986; Nordsjö & Zetterberg, 2001; Westwick
& Kearney, 1992) or as a piecewise linear function (Pajunen,
1992; Vörös, 2001; Wigren, 1993). In this case, the parame-
ter estimates may be derived by minimizing some specially
designed loss function, and this can be realized by using any
optimizing algorithm for data with fixed sample size. Pro-
ceeding in this way, the parameters cannot be updated online
as can be seen inVörös (2001). Nevertheless, the estimates
may still be made recursive and even with certain kind of
convergency, if rather restrictive conditions are imposed as
demonstrated byWigren (1993, 1997, 1998)the nonlinear
function is assumed to be known.
When the nonparametric approach is considered, the non-

linear function is usually required to be invertible (Greblicki,
1997, 2001), and the argumentv for any givenu = f (v)

rather thanf (v) for any givenv is estimated. This may
limit applications of corresponding identification methods
in practice by the following consideration: saturations are
not invertible, but they quite often exist in practical sys-
tems and affect the measured outputs; also, inversion of
the nonlinearity can lead to severe amplification of possible
measurement disturbances as pointed out byWigren (1993),
etc.
The goal of this paper is to recursively estimate the coef-

ficients of the linear subsystem and the valuef (v) for any
givenv without requiring invertibility off (·). The estimates
are required to be strongly consistent, i.e., to converge to
the true values with probability one. A similar problem for
Hammerstein systems is solved byChen (2004)by using
stochastic approximation (SA) algorithms with expanding
truncations (Chen, 2002). There the input is designed to be
a sequence of bounded iid random variables, andf (·) is es-
timated with the help of a kernel function applied to the SA
algorithm.
Let us explain why SA is an appropriate tool to deal with

the identification problem. When estimating an unknown
parameterϑ on the basis of observation data denoted by
{gk}, one can always transform this to a SA problem, i.e.,
to a root-seeking problem for any functiong(·) with rootϑ,
e.g.,g(x) = −(x − ϑ). This is becausegk+1 can always be
written asgk+1 = g(xk) + �k+1 with �k+1� gk+1 − g(xk),
wherexk denotes thekth estimate forϑ. In other words, the
observation data{gk} can be viewed as a noisy observation
on g(xk) with additive noise�k.

It is natural to come to the idea: to solve the stated prob-
lem for Wiener systems by using SA algorithms with ex-
panding truncations and with kernel functions. However,
in doing so, there is an essential difference in analysis for
Wiener systems from that for Hammerstein systems. To ex-
plain this, we note that the analysis given byChen (2004)is
essentially based on two facts: (1) The correlation function
between the input and output of the system has a simple
analytic expression connecting parameters to be estimated;
(2) All signals passing through the system are bounded
when the input is bounded. As shown byChen (2004), for
Hammerstein systems a sequence of bounded iid random
variables serving as the system input results in these two
properties.
For Wiener systems, though a bounded input still implies

the boundedness of all signals in the system, the correlation
function between the input and output of the system, in gen-
eral, does not have a simple analytic expression. This hints
us to take an iid Gaussian random variables to serve as the
system input. However, the Gaussian random variable is un-
bounded, and hence the Gaussian input may give rise to the
unboundedness of signals in the system. This explains why
the analysis method given byChen (2004)cannot directly
be applied to the present case.
The requirement for boundedness of signals passing

through the system can also be explained by the following
intuitive observation. To estimatef (v) it is important to
recover the inputvk of the nonlinear function. The estimate
for vk, denoted bŷvk, is obtained as the output of the esti-
mated linear subsystem, which means the subsystem with
coefficients replaced by their estimates. However,v̂k may
not be close tovk even if the estimates for coefficients of
the linear subsystem are sufficiently accurate, when{uk} is
unbounded.
To overcome this difficulty, we proceed as follows. While

the system input{uk} is taken to be a sequence of iid Gaus-
sian random variables, not alluk but only suchr + 1 suc-
cessiveuk that are bounded by a given constant are used
to estimatevk, where r is the order of the linear subsys-
tem. This selection guarantees that{vk} generated by sets of
r + 1 successive boundeduk is bounded. Since the selec-
tion depends on sample paths, we have to use the concept of
stopping time, which is well developed in probability theory
(see, e.g.,Chow & Teicher (1978)).
The rest of the paper is organized as follows. The sys-

tem considered in the paper and conditions imposed on
the system are given in Section 2. Also, the basic re-
sults of SA used in the paper are described in Section 2.
The recursive identification algorithms and their strong
consistency for estimating the linear subsystem and the
nonlinear block are, respectively, presented in Sections 3
and 4. A numerical example is demonstrated in Section 5
and some concluding remarks are given in Section 6. The
mathematical details concerning the properties of stopping
times and the behaviors of kernel functions are given in
Appendix.
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2. Preliminaries

Let us first describe the system more precisely. Assume
the linear subsystem is given by

vk+1 =
r∑

j=0

djuk−j , d0 = 1 (2)

and the output of the nonlinearity is

yk = f (vk). (3)

It is worth noting thatd0 is not necessary equal to 1 but is
allowed to be any known constant. The reason to assumed0
known is technical, because otherwise there is a lack of one
equation.
The coefficientsd1, . . . , dr and the valuef (v) at any fixed

v ∈ R are to be recursively estimated on the basis of system
inputs{uk} and measurements{zk} given by (1).
As explained in Introduction we takeuk to be Gaussian.

Let us precisely formulate this as condition H0.
H0. {uk} is a sequence of iid Gaussian random variables:

uk ∈ N(0,1), and{uk} is independent of the observation
noise{�k}.
In addition to H0 the following conditions H1 and H2 are

also imposed on the Wiener system under consideration.
H1. f (·) is a measurable function and continuous atv

where the valuef (v) is estimated. The growth rate off (v)

as|v| → ∞ is not faster than a polynomial.
H2.{�k} is a sequence of iid random variables withE�k=0

andE�2k <∞.
It is noted that no invertibility off (·) is required.
The recursive estimates are to be generated by SA al-

gorithms, but the classical Robbins–Monro (RM) algorithm
does not work here because of its restriction conditions for
applicability. In order to ease reading, we cite a general con-
vergence theorem (GCT) for SA algorithms with expanding
truncations in the case of single root. For its proof we refer
to Chen (2002, Theorem 2.2.1).
The root of a functiong(·) is denoted byx0 if it is single.

The problem of SA is to seek the root ofg(·) on the basis
of its noisy observations{gk}:
gk+1� g(xk) + �k+1, (4)

wherexk is thekth estimate forx0 and�k+1 is the observa-
tion noise.
Let {ak} with ak >0 be the sequence of stepsizes. By the

classical RM algorithm the rootx0 (g(x0)=0) is sought by
the simple recursion:

xk+1 = xk + akgk+1, k = 0,1, . . . . (5)

For convergence ofxk to x0, a certain growth rate restriction
on g(·) or an a priori boundedness assumption on{xk} are
required in the classical theory, in addition to conditions on
the noise{�k}.
In order to extend the range of applicability of SA al-

gorithms, the RM algorithm (5) is modified by expanding

truncations inChen (2002). Let {Mk} be a sequence of pos-
itive real numbersMk+1>Mk andMk −→

k→∞ ∞. Let xk be

generated by the following algorithm:

xk+1 =
{
xk + akgk+1 if ‖xk + akgk+1‖�M�k

,

x∗ otherwise,
(6)

�k =
k−1∑
j=1

I[|xj+aj gj+1|>M�j ], �0 = 0. (7)

From (7) it is seen that�k �k − 1, and from (6)
‖xk+1‖�‖x∗‖ ∧ Mk−1. This means that the growth rate of
‖xk+1‖ is controlled: it should not be faster thanMk. At any
time, if ‖xk + akgk+1‖ exceeds the truncation boundM�k

,
then we pullxk+1 back to the fixed pointx∗ and simulta-
neously extend the truncation bound fromM�k

to M�k+1.
Otherwise, it develops as (5). Since the region wherex0 is
located is unknown, it is important to allowxk to grow up
in order to have possibility to reachx0.

General convergence theorem(GCT for the single root
case). Assume the following conditions.

(1) ak >0,ak −→
k→∞0and

∑∞
k=1ak=∞,Mk >0,Mk+1>Mk,

Mk −→
k→∞ ∞.

(2) g(·) is measurable and locally bounded.
(3) There is a continuously differentiable functionv(·) such

that

sup
c′ �‖x−x0‖�c′′

gT (x)vx(x)<0

for any c′′ >c′ >0, wherevx(x) denotes the gradient
of v(·). Further, x∗ used in(6) is such that‖x∗‖<c0
andv(x∗)< inf ‖x‖=c0v(x) for somec0>0.
Thenxk defined by(6) and (7) converges tox0 for any
sample paths for which the following condition(4) is
satisfied:

(4)

lim
T →0

lim sup
k→∞

1

T

∥∥∥∥∥∥
m(nk,Tk)∑

i=nk

ai�i+1

∥∥∥∥∥∥= 0 ∀Tk ∈ [0, T ]

(8)

for anynk such thatxnk
converges, where

m(k, T ) = max


m :

m∑
j=k

aj �T


 .

It is worth noting that condition (8) is required to verify
only along convergent subsequences{xnk

} rather than along
the whole sequence{xn}. As pointed byChen (2002), in
many cases (8) cannot be directly verified along the whole
sequence{xn}, but it can be done for convergent subse-
quences. This is the case in Lemma 2 and Theorem 2 of Sec-
tion 4. The method verifying condition (8) along convergent
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subsequences has shown a great advantage over verifica-
tion along the whole sequence, and it is called as trajectory-
subsequence (TS) method inChen (2002).
The convergence analysis to be carried out in Sections 3

and 4 is based on GCT, and also on the convergence rate
theorem (CRT), which is presented below.

Convergence rate theorem(CRT). Assume condition(3) in
GCT holds and the following conditions(5)–(7)are satisfied:

(5) ak >0, ak −→
k→∞0, and

∑∞
k=1ak = ∞, 1

ak+1
− 1

ak
−→
k→∞ �

�0; Mk >0,Mk+1>Mk, Mk −→
k→∞ ∞.

(6) For the sample path� under consideration the obser-
vation noise{�k} in (4) can be decomposed into two
parts�k = �′

k + �′′
k such that

∞∑
k=1

a1−�
k �′

k <∞, �′′
k = O(a�

k )

for some� ∈ (0,1].
(7) g(·) is measurable and locally bounded, and is differ-

entiable atx0 such that asx → x0

g(x) = F(x − x0) + �(x), �(x0) = 0,

�(x) = o(‖x − x0‖),
and the matrixF + ��I is stable, where� and � are
given above.

Thenxk given by(4), (6) and (7) converges tox0 with the
following convergence rate:

‖xk − x0‖ = o(a�
k ),

where� is given in Condition(5).

For the proof of the theorem we refer toChen (2002,
Theorem 3.1.1).

It may be worth paying attention to the difference in
numbering conditions: conditions (1)–(7) are used in GCT
and CRT, while conditions H0–H4 are used for the Wiener
system.

3. Estimation for linear subsystem

We now use the algorithm (6) and (7) to estimate coef-
ficientsdi , i = 1, . . . , r in (2). For this we first concretize
{ak} and the truncation bounds{Mk}.
Define

ak = 1

k
and Mk = M0 + k� (9)

to serve as the stepsizes and truncation bounds to be used in
the SA algorithms, where� ∈ (0,1/2− 3	), 	 ∈ (0,1/6),
andM0 is a positive number.

Remark. The choice ofak, Mk, andbk in (27) has some
flexibility: ak = 1/k is a conventional choice of stepsizes
butak may be different from{1/k} (seeChen (2002)). Here
we selectak = 1/k only for simplicity of description. The
selection of{ak} should be coordinated with{bk} given by
(27) and{Mk}, and the rate selection for{Mk} is used in the
proof of Lemma 1 to upper bound the maximal divergence
rate of|
�k (v)| in (33).

The algorithms for estimating coefficients of the linear
subsystem are the same as those used byChen (2004), i.e.,
they are the SA algorithms with expanding truncations

�k+1(i) = �k(i) − ak(�k(i) − ukzk+i+1)

× I[|�k(i)−ak(�k(i)−ukzk+i+1)|�M�k(i)], (10)

�k(i) =
k−1∑
j=1

I[|�j (i)−aj (�j (i)−uj zj+i+1)|>M�j (i)], �0(i) = 0

(11)

with initial values�0(i), i = 0,1, . . . , r. Here�k(0) is used
to estimate� (1/�2

v)E[vkf (vk)], and�k(i) for di , i =
1, . . . , r, where�2

v denotes the variance ofvk.
It is clear that(�k(i)/�k(0))� dik may serve as the esti-

mate fordi at timek whenever�k(0) �= 0.

Theorem 1. AssumeH0–H2hold. Then

�k(0) −→
k→∞ � E(vjf (vj ))

�2
v

a.s. (12)

and

�k(i) −→
k→∞ di a.s., i = 1, . . . , r (13)

with rates of convergence

|�k(0) − | = o(k−�) a.s., |�k(i) − di | = o(k−�) a.s.,

� ∈ (0, 1
2

)
, i = 1, . . . , r. (14)

Proof. The proof is essentially based on the convergence
theorems GCT and CRT of SA given in Section 2.
Noticing that {uk} is Gaussian with zero mean and iid,

from

E(ukvk+i+1) = E


uk

r∑
j=0

djuk+i−j


= di ,

we conclude that

E

[(
uk − divk+i+1

�2
v

)
vk+i+1

]

= E(ukvk+i+1) − di

�2
v

E(v2k+i+1) = 0,

which impliesuk − (divk+i+1/�2
v) is uncorrelated with and

hence is independent ofvk+i+1, since for Gaussian random
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variables independence is equivalent to uncorrelatedness.
From independence it follows that

E

(
uk − divk+i+1

�2
v

∣∣∣∣ vk+i+1

)
= 0,

which implies

E(uk|vk+i+1) = divk+i+1

�2
v

.

Consequently, we have

E(ukyk+i+1) = E
[
E(ukyk+i+1|vk+i+1)

]
= E

[
yk+i+1

di

�2
v

vk+i+1

]
= di. (15)

The recursion (10) can be rewritten as

�k+1(i) = �k(i) − ak(�k(i) − di) − ak �̄k+1(i)

× I[|�k(i)−ak(�k(i)−di)−ak �̄k+1(i)|�M�k (i)], (16)

where

�̄k+1(i) = −ukzk+i+1 + di, i = 0,1, . . . , r. (17)

Comparing (16) with (4) and (6), we find thatg(x) in (4)
corresponds to the linear function−(x − di) in (16). In
other words, the algorithm (16) and (11) seeks for the root
of the linear functiong(i)(x)� − (x − di), i =0,1, . . . , r.
It is also noticed thatx∗ in (6) corresponds to 0 in (16).
It is clear that for the linear function−(x − di), v(x) =

(x − di)2 satisfies condition (3) in GCT, while (1) and (2)
in GCT obviously hold in the present case. Thus, by GCT
given in Section 2, for (12) and (13) it suffices to show

lim
T →0

lim sup
n→∞

1

T

∣∣∣∣∣∣
m(n,t)∑
j=n

aj �̄j+1(i)

∣∣∣∣∣∣= 0

∀t ∈ [0, T ], i = 0,1, . . . , r, (18)

where

m(n, t) = max


m :

m∑
j=n

1

j
� t


 . (19)

Notice that

�̄k+1(i) = −(ukyk+i+1 − di) − uk�k+i+1. (20)

By (15), {uj+k(r+1)yj+k(r+1)+i+1 − di, k = 0,1, . . .} is
a sequence of iid random variables for any fixedi : i =
1, . . . , r, and by the convergence theorem for independent
random variables (Chow & Teicher, 1978) we find

∞∑
j=1

aj (ujyj+i+1 − di)

=
r+1∑
j=1

∑
k∈Aj

ak(ukyk+i+1 − di)<∞ a.s., (21)

whereAj ={j +k(r+1) : k=0,1, . . .}, j =1,2, . . . , r+1.
From (20) and (21) and the independence of{uk} and{�k}
we conclude
∞∑

j=1

aj �̄j+i+1(i)<∞ a.s. (22)

which implies (18).
The rates of convergence are derived from CRT given in

Section 2 for the case where� = 1, F = −1, �′′k = 0. �

4. Estimation for f (v)

As explained in Introduction, the input of the nonlinear
part is estimated by

v̂k �uk−1 + d1kuk−2 + · · · + drkuk−r−1. (23)

It is conceivable to estimatef (v) on the basis of{v̂k} and
{zk} by using SA algorithm with kernel functions as done in
Chen (2004). However,v̂k is, in general, unbounded because
of the unboundedness of{uk}, and hence we will use only
suchr+1 successiveuk that are bounded by a given constant
c to estimatef (v). To be precise, we introduce a sequence
of Markov times as follows. Fix a positive constantc > |v|
and define

�1 = inf {k > r + 1 : |uk−j |�c, j = 1, . . . , r + 1} (24)

and

�k = inf {i > �k−1 : |ui−j |�c, j = 1, . . . , r + 1},
k = 2,3, . . . . (25)

From (24) and (25) we see that�k > �k−1, and start-
ing from u�k−r−1 there arer + 1 successiveui with
|ui |�c, i = �k − r − 1, . . . , �k − 1. Thus, amongv̂i

given by (23) only those withi = �k are used to estimate
f (v). It is clear that the set[�k = s] is completely deter-
mined by random variablesu1, . . . , us−1. In other words,
[�k = s] ∈ Fs ��{u1, . . . , us−1}, the�-algebra generated
by {u1, . . . , us−1}. We recall that the nonnegative ran-
dom variable� is called the Markov time with respect to
the family of nondecreasing�-algebrasFs if [�k = s] ∈
Fs , ∀s = 1,2, . . .. Further, if a Markov time�<∞ a.s.,
then � is called the stopping time with respect to{Fs}.
Consequently,�k,k = 1,2, . . . are the Markov times.
It is worth noting that

|v�k | = |u�k−1 + d1u�k−2 + · · · + dru�k−r−1|
�c

r∑
i=0

|di |, k = 1,2, . . . . (26)

Let

bk = 1

k	 , (27)

where	 is figured in the definition of� appearing in (9).
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For a fixedv ∈ R, define the kernel function

w�k � 1

bk

e
−((v�k −v)/bk)

2+1
2
∑r+1

j=1u
2
�k−j , (28)

and its estimate

ŵ�k � 1

bk

e
−((v̂�k −v)/bk)

2+1
2
∑r+1

j=1u
2
�k−j , (29)

which is used in the SA algorithm for estimatingf (v):


k+1(v) = 
k(v) − akŵ�k (
k(v) − z�k )

× I[|
k(v)−akŵ�k (
k(v)−z�k )|�M�k(v)], (30)

�k(v) =
k−1∑
j=1

I[|
j (v)−aj ŵ�j (
j (v)−y�j )|>M�j (v)],

�0(v) = 0 (31)

with an initial value
0(v).
It is worth noting that if all signals in the system were

bounded, then it would be unnecessary to introduce�k and
the analysis carried out in this section would be much sim-
pler. As a matter of fact, in this case all�k in what follows
could be replaced byk and Lemmas A and B in Appendix
would no longer be needed, while Lemmas C and D could
be proved much simpler.
We intend to show
k(v) a.s. converges tof (v). For this

we first prove lemmas.

Lemma 1. AssumeH0–H2hold and �= 0. Then

∞∑
k=1

ak

∣∣(ŵ�k − w�k )(
k(v) − z�k )
∣∣<∞ a.s., (32)

wherew�k , ŵ�k and
k(v) are given by(28), (29)and (30),
respectively.

Proof. Let � ∈ (0, 1
2 −3	−�), then3

2 −3	−�−�>1. By
the boundedness of{v̂�k }, (14), and the fact(�k/k) −→

k→∞ E�

(see Lemma A in Appendix), it follows that(
v�k − v

bk

)2

−
(

v̂�k − v

bk

)2

= 1

b2k
(v�k + v̂�k − 2v)(v�k − v̂�k )

= o
(
k−(1/2−2	−�)

)
−→
k→∞0 a.s.

From this we have

ŵ�k − w�k = 1

bk

[e−((v̂�k −v)/bk)
2 − e−((v�k −v)/bk)

2]

= 1

bk

e−((v�k −v)/bk)
2

× [e((v�k −v)/bk)
2−((v̂�k −v)/bk)

2 − 1]
= o(k−(1/2−3	−�)) a.s.,

or there is 0<M <∞, which may depend on samples, such
that

|ŵ�k − w�k |�M
1

k1/2−3	−�
a.s. ∀k.

Therefore, taking notice ofMk=M0+k� andM�k−1(v)�M0+(
�k−1(v)

)��M0 + (k − 2)��(M0 + 1)k�, we have

∞∑
k=1

ak|(ŵ�k − w�k )
k(v)|�
∞∑
k=1

ak|(ŵ�k − w�k )| · |
k(v)|

�M(M0 + 1)
∞∑
k=1

1

(k)3/2−3	−�
M�k−1(v)

�M(M0 + 1)
∞∑
k=1

1

(k)3/2−3	−�−�
<∞ a.s. (33)

Since{y�k } is bounded by H1 and (26), we have

∞∑
l=1

ak|(ŵ�k − w�k )y�k |

�
∞∑
l=1

ak|(ŵ�k − w�k )| · |y�k |

�M ′
∞∑
l=1

1

k3/2−3	−�
<∞ a.s., (34)

where 0<M ′ <∞.
Further, by (A18) in Appendix it follows that

∞∑
l=1

ak|(ŵ�k − w�k )��k |

�
∞∑
l=1

ak|(ŵ�k − w�k )| · |��k |�
∞∑
l=1

M

k3/2−3	−�
|��k |

=
∞∑
l=1

M(|��k | − E|��k |)
(k)3/2−3	−�

+
∞∑
l=1

ME|��k |
k3/2−3	−�

<∞ a.s.

(35)

Combining (33), (34) and (35) implies (32).�

Lemma 2. AssumeH0–H2 hold and �= 0. Then there is
an �0 with P�0 = 1 such that for any fixed sample path
� ∈ �0 if 
ki

(v) is a convergent subsequence of{
k(v)},
then


s+1(v) = 
s(v) − asŵ�s (
s(v) − z�s ), (36)

and

‖
s+1(v) − 
ki
(v)‖�cT , s = ki, ki + 1, . . . , m(ki, T )

(37)

for all sufficiently large i and small enoughT >0, where
c >0, c may depend on sample path� but is independent
of ki .
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Proof. Before proving the lemma we first note that here a
convergent subsequence{
ki

(v)} of {
k(v)} is considered,
and from the subsequent proof it can be seen that replacing

ki

(v) with 
k(v) does not work. As mentioned in Sec-
tion 2, here the TS method is applied.
Temporarily ignoring (30) and (31), consider recursion

(36) with initial value
ki
(v).

Set

�i,j � (1− aiw�i ) · · · (1− ajw�j ),

i�j, �j,j+1 = 1.

By (A14) in Appendix and the fact thatEw�k −→
k→∞ w0

proved in Lemma C it follows that

s∑
j=ki

ajw�j = O(T ) ∀s ∈ [ki, . . . , m(ki, T )] (38)

and hence

log�s,ki = O


 s∑

j=ki

ajw�j


 ,

�s,ki = 1+ O(T ) ∀s ∈ [ki, . . . , m(ki, T )] (39)

asi → ∞ andT → 0.
By (A19) we have∣∣∣∣∣∣
s∑

j=ki

�s,j+1ajw�j ��j

∣∣∣∣∣∣= O(T ) (40)

and by (38) and the boundedness of{y�j }
s∑

j=ki

�s,j+1ajw�j y�j = O


 s∑

j=ki

ajw�j


= O(T )

∀s ∈ [ki, . . . , m(ki, T )] (41)

asi → ∞ andT → 0.
Combining (39), (40) and (41) yields

�s,ki
ki
(v) +

s∑
j=ki

�s,j+1ajwjz�j = 
ki
(v) + O(T )

∀s ∈ [ki, . . . , m(ki, T )]. (42)

From (36) we have


s+1(v) = 
s(v) − asw�s (
s(v) − z�s )

+ as(w�s − ŵ�s )(
s(v) − z�s )

= �s,ki
ki
(v) +

s∑
j=ki

�s,j+1ajw�j z�j

+
s∑

j=ki

�s,j+1aj (w�j − ŵ�j )(
j (v) − z�j ),

which incorporating with (42) by Lemma 1 implies


s+1(v) = 
ki
(v) + O(T ) ∀s ∈ [ki, . . . , m(ki, T )]. (43)

This means that
s(v) generated by the recursion (36) is
close to
ki

(v), which has a finite limit asi → ∞, for s ∈
[ki, . . . , m(ki, T )]. In other words, (36) can be considered
as a part of the algorithm (30) and (31), and there is no
truncation fors ∈ [ki, . . . , m(ki, T )] for large i and small
T >0, while (37) is an alternative writing of (43).
The set�0 may be taken as the one where all (A14) (A19)

and (32) are simultaneously satisfied.�

Theorem 2. AssumeH0–H2hold and �= 0. Then


k(v) −→
k→∞ f (v) a.s., (44)

where
k(v) is given by(30) and (31).

Proof. Write (30) as


k+1(v) = 
k(v) − akw0(
k(v) − f (v)) + akek(v)

× I[|
k(v)−akw0(
k(v)−f (v))+akek(v)|�M�k(v)], (45)

wherew0 is given in Lemma C, and

ek(v) = w0(
k(v) − f (v)) − ŵ�k (
k(v) − z�k ). (46)

Sincef (v) is the root of the linear functionw0(x − f (v)),
by GCT given in Section 2 for (44) it suffices to show

lim
T →0

lim sup
i→∞

1

T

∣∣∣∣∣∣
m(ki ,Ti )∑
j=ki

aje
(s)
j (v)

∣∣∣∣∣∣= 0,

s = 1,2,3,4 ∀Ti ∈ [0, T ] (47)

for any convergent
ki
(v) −→

i→∞ 
(v), where

e
(1)
k (v) + e

(2)
k (v) + e

(3)
k (v) + e

(4)
k (v) = ek(v),

and

e
(1)
k (v)� (w�k − ŵ�k )(
k(v) − y�k ),

e
(2)
k (v)� (w0 − w�k )
k(u),

e
(3)
k (v)�w�k y�k − w0f (v),

ande
(4)
k (v) is free ofv and equalse(4)k with

e
(4)
k �w�k ��k .

It is clear that (47) holds fors = 1 by Lemma 1, while for
s = 4 by (A17). We now show (47) fors = 2. From the
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following inequality

lim
T →0

lim sup
i→∞

1

T

∣∣∣∣∣∣
m(ki ,Ti )∑
j=ki

aj e
(2)
j (v)

∣∣∣∣∣∣
� lim

T →0
lim sup

i→∞
1

T

∣∣∣∣∣∣
m(ki ,Ti )∑
j=ki

aj (
j (v)−
(v))(w�j −Ew�j )

∣∣∣∣∣∣
+ lim

T →0
lim sup

i→∞
1

T
|
(v)|

∣∣∣∣∣∣
m(ki ,Ti )∑
j=ki

aj (w�j − Ew�j )

∣∣∣∣∣∣
+ lim

T →0
lim sup

i→∞
1

T

∣∣∣∣∣∣
m(ki ,Ti )∑
j=ki

aj
j (v)(Ew�j − w0)

∣∣∣∣∣∣ ,
we see that at its right-hand side the first term is zero by (37)
and (A15), the second term is zero because of (A14), while
the last term is zero by the first part of (A8). Thus (47) also
holds fors =2. Finally, by (A16) and (A17) and the second
part of (A8) we conclude that (47) holds fors = 3 too. This
completes the proof of the theorem.�

5. Numerical example

Let the linear subsystem be a second order MA process

vk+1 = uk + 0.65uk−1 + 0.28uk−2, uk ∈ N(0,1),

and let the nonlinear function be

f (v) =
{sin(�v/2) if |v|�1,
1 if v >1,
−1 if v < − 1,

and the observation noise be Gaussian�k ∈ N(0,0.1).
Let ak = k−1, bk = k−(1/7) andMk = 50+ k(1/15), and let

c = 3 in the definition of�k.
In Fig. 2the estimates (dotted lines) for coefficients (solid

lines) of the linear subsystem are demonstrated, while inFig.
3 it is shown how the truef (v) (solid line) is approximated
by its estimate (dotted line). The estimate forf (v) is derived
in the following way: the interval[−1.5,1.5] wheref (v) is
defined on is equally divided into 100 subintervals, and at
each endpointv of subintervals,f (v) is estimated by (30)
and (31). The dotted line consists of the estimates given at
k = 3000. In Fig. 4 the estimates (dotted lines) forf (v)

(solid lines) are plotted vs time forv=−1,−0.5,0,0.5,1 to
demonstrate the procedure of convergence of the estimates.
FromFigs. 2, 3, and4 it is seen that the numerical simu-

lation justifies Theorems 1 and 2.

6. Concluding remarks

This work concerns the nonparametric approach to iden-
tification of Wiener systems. The invertibility off (·) often
used in literature is not assumed in the paper. All estimates

0 500 1000 1500 2000 2500 3000
-0.5

0

0.5

1

d1

d2

Fig. 2. Estimates for linear subsystem.
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-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 3. Estimate forf (·).

for coefficients of the linear subsystem as well as for the val-
uesf (v) of the nonlinear block are given recursively with
the help of SA algorithms with expanding truncations, and
are proved strongly consistent. To the authors’ knowledge
this probably is the first piece of work on strong consistency
of estimates for identifying Wiener systems with nonpara-
metric nonlinearity.
Although the SA algorithms with expanding truncations

were applied to identifying Hammerstein system inChen
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0 500 1000 1500 2000 2500 3000
-1.5
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-0.5

0

0.5

1

1.5

f (1)

f (0.5)

f (0)

f (0.5)

f (-1)

Fig. 4. Estimates forf (v) with v = 0, ±0.5, ±1.

(2004), extension of the method to identifying Wiener sys-
tems is not straightforward. This is because we have to use
Gaussian rather than bounded input in order to appropri-
ately estimate the linear subsystem based on the observation
data which are made not directly on the output of the linear
subsystem but on the output of the nonlinear block. The un-
boundedness of signals gives rise to additional difficulty in
estimatingf (v). If the signals were bounded, the stopping
times introduced in the paper would be unnecessary and the
proof of Theorem 2 could be greatly simplified.
The identification problems for multidimensional sys-

tems, for Hammerstein–Wiener systems, and for systems
with more complicated linear systems are under considera-
tion.

Acknowledgements

The authors would like to thank the Associate Editor and
the reviewers for their comments and suggestions which are
helpful for improving the paper.

Appendix

In the Appendix we demonstrate some properties of�k,
k = 1,2, . . . and kernel functions defined by (28). For this
we need the following well-known fact for whose proof we
refer toChow & Teicher (1978).

Proposition 1. Let {�k} be a sequence of iid random
variables and let� be a stopping time with respect to a

sequence{Fk} of nondecreasing�-algebras. IfFk is in-
dependent of�{�j , j > k}, k�1, thenF� is independent
of �{��+1, ��+2, . . .} and {��+k, k�1} is a sequence of iid
random variables with the same distribution as that for�1.

Define

�� �1 − (r + 1)

= inf {k�1 : |uk+r+1−j |�c, j = 1, . . . , r + 1}. (A1)

Lemma A. If {uk} is iid and Gaussian, then E�k <∞,
E�2k <∞, and �k

k
−→
k→∞ E� a.s., where�k is defined by(24)

and (25).

Proof. We first show that forE�k <∞ and E�2k <∞ it
suffices to prove

E�<∞ and E�2<∞. (A2)

It is clear that�<∞ a.s. and� is a stopping time with respect
toGk ��{uj , j =1, . . . , k + r}. Then for any integerj �0
there is a Borel setBj+r such that[�=j ]=[(u1, . . . , uj+r ) ∈
Bj+r ]. By Proposition 1 it follows that

P [� = j ] = P [(u1, . . . , uj+r ) ∈ Bj+r ]
= P [(u�k−1+1, . . . , u�k−1+j+r ) ∈ Bj+r ]
= P [�k − �k−1 = j ] with �0� r + 1, (A3)

and that{�j − �j−1} is a sequence of mutually independent
random variables by taking notice of measurability of{�j −
�j−1}, j = 1, . . . , k − 1 and�k − �k−1 with respect toG�k−1

and�{u�k−1+1, u�k−1+2, . . .}, respectively. Consequently, we
have

E�k = E�0 +
k∑

j=1

E(�j − �j−1) = (r + 1) + kE�

and

E�2k = E


�0 +

k∑
j=1

(�j − �j−1)




2

�(r + 1)2 + 2(r + 1)kE� + k2E�2.

This proves sufficiency of (A2) for Lemma A. Therefore,
(A2) impliesE�k <∞ andE�2k <∞, ∀ k�1.
We now prove (A2).
From (A1) it is seen that� is the first time that the imme-

diately pastr + 1 (with the�th random variable included)
successive random variables in{uk} are bounded byc.
Setp �P [|u1|�c] andq �1−p. Consider a sequence of

independent trials. Each trial with probabilityp has outcome
“success” and with probabilityq “failure”. Assumen�2k
and letPn(k) be the probability that inn trials there are no
k successive successes.
It is clear that

Pn(k) = qP n−1(k) + pqPn−2(k)

+ · · · + pk−1qP n−k(k), (A4)
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or

A(z)Pn(k) = 0,

where

A(z) = 1− qz − pqz2 − · · · − pk−1qzk (A5)

with z being the backward-shift operator.
Since

|qz + pqz + · · · + pk−1qzk|� q(1− pk)

1− p
= 1− pk <1

on the unit circle|z|=1, by the Rouché theorem from the the-
ory of complex variable functions it is concluded thatA(z)

and 1 have the same number of roots inside the unit circle.
In other words, all roots ofA(z) are outside the closed unit
disk. Therefore,Pn(k) as a solution of the stable difference
equation exponentially decays, i.e., there are constantsC(k)

and 0<(k)<1 possibly depending onk such that

Pn(k)�C(k)n(k). (A6)

For n�2(r + 1) + 2, from the definition (A1) we see that
[� = n] means that|un−1|>c, there are nor + 1 successive
random variables bounded byc in the firstn − 2 random
variables of{uk}, and|un+i |�c for all i=0,1, . . . , r. Thus,
by (A6) we have

P [� = n] = Pn−2(r + 1)qpr+1

�C(r + 1)n−2(r + 1)qpr+1,

and hence

E� =
∞∑

n=1

nP [� = n]

=
2r+3∑
n=1

nP [� = n] +
∞∑

n=2r+4

nP [� = n]

�
2r+3∑
n=1

nP [� = n]

+ C(r + 1)qpr+1
∞∑

n=2r+4

nn−2(r + 1)<∞,

since 0<(r + 1)<1.
The proof ofE�2<∞ is completed in a similar way.
By Proposition 1 and (A3) it follows that{�j −�j−1} with

�0= r +1 is iid. By the strong law of large numbers (Chow
& Teicher, 1978) we have

�k
k

= r + 1

k
+ 1

k

k∑
j=1

(�j − �j−1) −→
k→∞ E� a.s. �

Corollary 1. Since E�k <∞, we have �k <∞ a.s.
Hence �k is a stopping time with respect to{Fk} and
�k − �k−1 is a stopping time with respect to{Hj }, where
Hj ��{u�k−1+i , i = 1, . . . , j − 1}.

Lemma B. Let {�k} be a sequence of iid random variables
and let {�j , j = k, k + 1, . . .} be independent of{uj , j =
1, . . . , k − 1}. Then{��k } is iid where{�k} is given by(24)
and (25).

Proof. Since {�j } is a sequence of stopping times with
respect to {Fj } and �1< �2< · · ·< �k, we see that
{��1, . . . , ��k } areF�k -measurable. On the other hand, by
the definition of �k+1, ��k+1 is measurable with respect
to �{��k+1, ��k+2, . . .} which is independent ofF�k by
Proposition 1. This implies that��k+1 is independent of
(��1, . . . , ��k ) and hence proves the mutually independence
of {��k } by induction.
We now show that they are identically distributed. Similar

to (A3) we have

P [��k < �]

=
∞∑

j=1

P [�k − �k−1 = j, ��k−1+j < �]

=
∞∑

j=1

P [(u�k−1+1, u�k−1+2, . . .) ∈ Bj+r , ��k−1+j < �]

=
∞∑

j=1

P [(u1, u2, . . .) ∈ Bj+r , �j < �]

=
∞∑

j=1

P [� = j, �� < �] = P [�� < �] = P [�1< �]. �

Introduce the following notations:

s+ � c +
r∑

j=1

dj sj − v, s− � − c +
r∑

j=1

dj sj − v, (A7)

B+− (�)� {(s1, s2, . . . , sr ) ∈ [−c, c]r :
s+ > �, s− < − �, ��0},

B++ (�)� {(s1, s2, . . . , sr ) ∈ [−c, c]r : s− > �, ��0},
B−− (�)� {(s1, s2, . . . , sr ) ∈ [−c, c]r : s+ < − �, ��0}.

Clearly, B+− (�), B++ (�) and B−− (�) are bounded sets. De-
note their Lebesgue measures byV (B+− (�)), V (B++ (�)) and
V (B−− (�)), respectively.

Lemma C. AssumeH0–H2hold. Then

Ew�k −→
k→∞ w0, E[w�k f (v�k )] −→

k→∞ w0f (v) (A8)

and

sup
k

E(
√

bkw�k )
2<∞, (A9)

wherew0 = V (B+− (0))

(
√
2�)rpr+1

and p = P [|uk|�c].
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Proof. For any integersk and n there is a Borel set
Bn−r−2(k) such that

[�k = n] = {(u1, . . . , un−r−2) ∈ Bn−r−2(k),

ui ∈ [−c, c], i = n − r − 1, . . . , n − 1}.
Then, by the independence of{uj } we have

E[w�k f (v�k )I[�k=n]]
= 1

bk

E[e−((vn−v)/bk)
2+1

2
∑r+1

j=1u
2
n−j f (vn)

× I[(u1,...,un−r−2)∈Bn−r−2(k), ui∈[−c,c], i=n−r−1,...,n−1]]
= P [(u1, . . . , un−r−2) ∈ Bn−r−2(k)]

(
√
2�)r+1bk

∫ c

−c

· · ·
∫ c

−c

× exp


−

(∑r
j=0djxj − v

bk

)2



× f


 r∑

j=0

djxj


 dx0 · · ·dxr

= P [�k = n]
(
√
2�p)r+1bk

∫ c

−c

· · ·
∫ c

−c

× exp


−

(∑r
j=0djxj − v

bk

)2



× f


 r∑

j=0

djxj


 dx0 · · ·dxr

= P [�k = n]
(
√
2�p)r+1

∫ c

−c

· · ·
∫ c

−c

ds1 · · ·dsr

×
(∫ s+/bk

s−/bk

e−s20f (v + bks0)ds0

)
, (A10)

where

s0 = x0 + d1x1 + · · · + drxr − v

bk

,

sj = xj , j = 1,2, . . . , r,

ands+ ands− are given by (A7).
Noticing

s+

bk

−→
k→∞ ∞ and

s−

bk

−→
k→∞ −∞

in B+− (�) with �>0, we find that∫
B+− (�)

ds1 · · ·dsr
(∫ s+/bk

s−/bk

e−s20f (v + bks0)ds0

)

−→
k→∞

√
2�V (B+− (�))f (v),

and by tending� → 0∫
B+− (0)

ds1 · · ·dsr
(∫ s+/bk

s−/bk

e−s20f (v + bks0)ds0

)

−→
k→∞

√
2�V (B+− (0))f (v). (A11)

Similarly, it is proved that the limit of integral (A11) is zero
if the integral is taken overB++ (0) or B−− (0).
Thus, by (A10) and (A11) it follows that

E[w�k f (v�k )]
=

∞∑
n=1

E[w�k f (v�k )I[�k=n]]

= 1

(
√
2�p)r+1

∫ c

−c

· · ·
∫ c

−c

ds1 · · ·dsr

×
(∫ s+/bk

s−/bk

e−s20f (v + bks0)ds0

)

−→
k→∞

1

(
√
2�)rpr+1

V (B+− (0))f (v) = w0f (v). (A12)

As a special case of (A12), we haveEw�k −→
k→∞ w0.

By a similar approach we find that

E(
√

bkw�k )
2

= 1

(
√
2�p)r+1bk

∫ c

−c

· · ·
∫ c

−c

dx0 · · ·dxr

× exp


−2

(∑r
j=0djxj − v

bk

)2

+ 1

2

r∑
j=0

x2j




� e((r+1)c2)/2

(
√
2�p)r+1bk

∫ c

−c

· · ·
∫ c

−c

× exp


−2

(∑r
j=0djxj − v

bk

)2

 dx0 · · ·dxr (A13)

and the right side of (A13) is uniformly boundedwith respect
to k. This proves (A9). �

Lemma D. AssumeH0–H2hold. Then
∞∑

j=1

aj (w�j − Ew�j ) <∞ a.s., (A14)

∞∑
j=1

aj (|w�j − Ew�j | − E|w�j − Ew�j |)<∞ a.s.,

(A15)
∞∑

j=1

aj (w�j y�j − Ew�j y�j ) <∞ a.s., (A16)

∞∑
j=1

ajw�j ��j <∞ a.s., (A17)

∞∑
j=1

aj

(|��j | − E|��j |
)
<∞ a.s., (A18)

and
∞∑

j=1

aj

(
w�j |��j | − Ew�j |��j |

)
<∞ a.s. (A19)
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Proof. Since for any fixedj = 0,1, . . . , r, the sequence
{vj+k(r+1), k = 0,1, . . .} is iid, by Lemmas B and C,
{√bj+k(r+1)w�j+k(r+1) − E

√
bj+k(r+1)w�j+k(r+1) , } is a se-

quence of mutually independent random variables with
bounded variances,j = 1,2, . . . , r + 1. Therefore, by the
convergence theorem for sum of independent random vari-
ables (Chow & Teicher, 1978) we derive (A14) by writing

∞∑
j=1

aj (w�j − Ew�j )

=
r∑

j=1

∑
k∈Aj

ak√
bk

(
√

bkw�k − E
√

bkw�k ) <∞ a.s.,

whereAj ={j+k(r+1) : k=0,1,2, . . .}, j=1,2, . . . , r+1.
Similarly, we can show (A15) and (A16) by noticing that

{yk} is bounded by H1 and (26).
We now show (A17). Proceeding as (A10) by the inde-

pendence of{uk} and{�k} we find that

E[w2
�k �

2
�k I[�k=n]]

= E


exp


−2

(
vn − v

bk

)2

+
r+1∑
j=1

u2n−j


 �2n

× I[(u1,...,un−r−2)∈Bn−r−2(k), ui∈[−c,c], i=n−r−1,...,n−1]




�P [�k = n]E�2n sup
k

E(
√

bkw�k )
2

and hence by H2 and Lemma C

E[bkw
2
�k �

2
�k ] =

∞∑
n=1

P [�k = n]E�2n sup
k

E(
√

bkw�k )
2

= E�2n sup
k

E(
√

bkw�k )
2<∞. (A20)

By the similar treatment and using the independence of{uk}
and{�k} and Lemma B we find that

E[w�k ��k ] = 0. (A21)

Combining (A20) and (A21) leads to (A17) and (A19), while
(A18) follows from Lemma B. �
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