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Abstract

For the single-input-single-output (SISO) errors-in-variables system it is assumed that the system input is an ARMA process and that
the driven noise of the system input and the observation noise are jointly Gaussian. The two-dimensional observation made on system
input and output is represented as a two-dimensional (2D) ARMA system of minimum phase driven by a sequence of 2D i.i.d. Gaussian
random vectors (innovation representation). It is shown that the resulting ARMA system is identifiable, i.e., its coefficients are uniquely
defined under reasonable conditions. Recursive algorithms are proposed for estimating coefficients of the ARMA representation including
those contained in the original SISO system. The estimates are proved to be convergent to the true values with probability one and the
convergence rate is derived as well. The theoretical results are justified by numerical simulation.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

We consider the problem of identifying a linear single-
input-single-output (SISO) system described by the differ-
ence equation

A(z)y0k = B(z)u0k, (1)

whereA(z) andB(z) are unknown polynomials andz de-
notes the backward-shift operatorzyk = yk−1.

System (1) will later be referred as the original SISO
system.
The measurementsuk andyk of the system inputu0k and

outputy0k are corrupted by noises�k and�k, respectively:

yk = y0k + �k, uk = u0k + �k. (2)
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Estimation of parameters ofA(z) andB(z) from observed
data{yk} and {uk} is called the “errors-in-variables” prob-
lem.
It is well-known (Anderson, 1985; Anderson & Deistler,

1984; Deistler, 1986; Scherrer & Deistler, 1998; Stoica &
Nehorai, 1987) that there does not exist a unique solution in
general, if only second-order statistics are exploited. How-
ever, if some additional assumptions are imposed, for exam-
ple, if high order cumulant statistics can be used, then it is,
in principle, possible to achieve consistent estimates (Nikias
& Pan, 1988; Scherrer & Deistler, 1998; Tugnait, 1992).
By assuming the input is non-Gaussian and the noises are

Gaussian inTugnait (1992), the square root of the magni-
tude of the fourth cumulant of a generalized error signal is
taken as a performance criterion for parameter estimation,
and the global minimizer of the proposed criterion

√
JN(�)

is proved to be strongly consistent asN → ∞. For a fixed
N, a numerical algorithm is also proposed inTugnait (1992)
to search the minimizer of

√
JN(�). But, it is not clear

how to guarantee the algorithm to converge to the desired
global minimizer. Besides, it would be of interest to recur-
sively estimate unknown parameters with increasing data
sizeN.

http://www.elsevier.com/locate/automatica
mailto:hfchen@iss.ac.cn


1026 H.-F. Chen, J.-M. Yang / Automatica 41 (2005) 1025–1033

There have been developed many interesting numeri-
cal identification algorithms by using various methods,
e.g., Mahata and Söderström (2002), Stoica, Cedervall,
and Eriksson (1995), Söderström, Mahata, and Soverini
(2002) among others. By using the innovation representa-
tion of the observed data, the original problem is reduced
to identifying the resulting 2D process. Both parametric
and non-parametric identification methods are proposed in
Söderström et al. (2002), but no consistency is guaranteed.
A survey of different approaches is given inSöderström,
Soverini, and Mahata (2001).

Sharing the idea of 2D approach proposed inSöderström
et al. (2002), in this paper we show that the resulting repre-
sentation is identifiable under reasonable conditions. Then,
the recursive identification algorithms are proposed for es-
timating matrix coefficients appearing in the representation,
and at same time the estimates for coefficients of the orig-
inal SISO system are derived too. Conditions guaranteeing
strong consistency (convergence with probability one) of the
estimates are given, and the convergence rate is obtained
as well. As a result, all coefficients not only in the original
SISO system but also in the innovation representation of the
2D observation process are asymptotically achieved.
The rest of the paper is organized as follows. The ba-

sic assumptions on the original SISO system and the 2D
ARMA representation of the observation process are given
in Section 2. Identifiability of the ARMA representation is
established in Section 3. Recursive algorithms are given and
their strong consistency is proved in Section 4. To justify
theoretical assertions some numerical simulation results are
demonstrated in Section 5. After concluding remarks an ap-
pendix is given to present some results we refer to in order
to ease reading.

2. Representation of observation process

The objective of the paper is to design a recursive algo-
rithm based on the noise-corrupted observations{uk} and
{yk} to consistently estimate coefficients ofA(z) andB(z).
We first list conditions to be imposed on the system, input,

and observation noises.

A1. PolynomialsA(z) = 1+ a1z + · · · + asz
s andB(z) =

b1z + · · · + bsz
s�zB1(z) are coprime and bothA(z)

andB1(z) are stable, i.e., their all roots are outside the
closed unit disk.

A2. The input{u0k} is an ARMA process

P(z)u0k = Q(z)�k (3)

with

P(z) = 1+ p1z + · · · + psz
s ,

Q(z) = 1+ q1z + · · · + qsz
s ,

where bothP(z) andQ(z) are stable, andQ(z) has no
common root with bothP(z) andA(z).

A3. �k�[�k, �k, �k]T is a sequence of i.i.d. Gaussian ran-
dom vectors�k ∈ N(0, R), where

R =
[
r1 0 0
0 r2 0
0 0 r3

]
with r1>0, r2>0 andr3>0.

Here, all polynomials and the covariance matrixR are
unknown, but the upper bounds for orders of polynomials
is given.
By (1) and (3) it is clear that

A(z)P (z)y0k = B(z)Q(z)�k

andy0k is Gaussian stationary by A1 and A3.
As in Söderström et al. (2002)we denote the 2D obser-

vation vector byzk:

zk =
[
yk
uk

]
=
[
y0k
u0k

]
+
[
�k

�k

]
. (4)

By A1–A3, zk is a Gaussian stationary process.
Let

G(z)�
[
A(z) −B(z)

0 P(z)

]
= I + G1z + · · · + Gsz

s , (5)

whereI is the 2× 2 identity matrix.
Then by (1) and (3)

G(z)zk = �k, (6)

where

�k�
[
A(z)�k − B(z)�k

Q(z)�k + P(z)�k

]
(7)

which is a Gaussian stationary process by A2 and A3.
Let

S(z)�
[
A(z) −B(z) 0

P(z) Q(z)

]
= S0 + S1z + · · · + Ssz

s , (8)

where

S0 =
[
1 0 0
0 1 1

]
. (9)

From (7) it follows that

�k = S(z)�k (10)

and the spectral density of{�k} is

f�(�) = 1

2�
f (e−i�),

where by definition

f (z)�S(z)RST(z−1). (11)

Lemma 1. Assume A1–A3 hold. The2D process{�k} de-
fined by(10)can uniquely be represented as a2D MA system

�k = C(z)wk,
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where {wk} is a sequence of2D i.i.d. Gaussian random
vectors withEwk=0andEwkw

T
k �Rw, andC(z) is a stable

polynomial

C(z) = I + C1z + · · · + Csz
s , (12)

i.e., detC(z) �= 0 ∀|z|�1. As a result, zk given by(4) is
represented as an ARMA system of minimum phase

G(z)zk = C(z)wk. (13)

Proof. Notice thatf (z) given by (11) is rational and analytic
on |z| = 1, and it has full rank almost everywhere since
R>0 andA(z) /≡ 0, P (z) /≡ 0, andQ(z) /≡ 0. Then (see,
e.g.,Anderson & Moore, 1979; Söderström, 1981) f (z) can
uniquely be factorized asf (z) = H(z)RwHT(z−1) and�k
can be represented as

�k = H(z)wk, (14)

whereH(z) is a 2× 2 matrix of rational functions with
H(0)=I and bothH(z) andH−1(z) are stable, andEwk=0,
Ewkw

T
s =Rw	k,s with 	k,s =1 if k=s and	k,s =0 if k �= s.

Since H−1(z) is stable, wk can be expressed via
{�k, �k−1, . . .}. Let Fk be the 
-algebra generated by
{�j , j �k}. By (10) it is clear that�k ∈ Fk, and hence
wk ∈ Fk. By stability ofH(z), �k can be represented as a
moving average of infinite order:

�k =
∞∑
i=0

Ciwk−i , C0 = I . (15)

By A3 and (10),�k is independent of�k−i , and hence in-
dependent ofFk−i ,∀i�s+1. Noticing thatwk−i ∈ Fk−i ,

we have

E�kw
T
k−i = E�kEwT

k−i = 0, ∀i�s + 1.

Therefore, in (15) the summation ceases ats, i.e.,

�k = wk + C1wk−1 + · · · + Cswk−s . (16)

This means that the rational matrixH(z) in (14) coincides
with the polynomialC(z) : H(z)=C(z). Consequently,C(z)

is stable, which implies thatwk is Gaussianwk ∈ N(0, Rw)

from (16) since�k is Gaussian. From (6) and (16) we derive
(13). �

Remark 1. For the innovation representation (16) the Gaus-
sian assumption is not necessary. If we remove the Gaus-
sian assumption, thenFk should be replaced by the Hilbert
spaceHk spanned by{�j , j �k} in the mean square sense.
In this case,wk is no longer i.i.d. but a sequence of zero
mean uncorrelated random vectors withEwkw

T
k �Rw, and

(15) corresponds to the Wold decomposition of the station-
ary process{�k}.

3. Identifiability

If we can consistently estimateG(z), then from (5) we see
that the consistent estimates forA(z) andB(z) are obtained
at the same time. So, the crucial issue is the identifiability
of system (13).
The necessary and sufficient conditions are given inStoica

and Nehorai (1987)for nonuniqueness of coefficients in the
expressions (1) and (3). Thus, any violation of these con-
ditions gives sufficient conditions for uniqueness of coeffi-
cients in (1) and (3).
By the sufficient conditions given inStoica and Nehorai

(1987)we see that coefficients in (1) and (3) are uniquely
defined. However, this uniqueness does not exclude system
(13) from having a common left factor. In other words, the
identifiability of system (13) is not automatically guaranteed.
We need a mild condition imposed on[Gs,Cs], the matrix
being the coefficients for the highest orders ofG(z) and
C(z).

A4. The 2× 4-matrix [Gs,Cs] is of full-row-rank, where
Gs andCs are given in (5) and (16), respectively.

For identifiability we also need the following technical
condition:

A5. P(z) is coprime with the polynomialg(z):

g(z)�r1A(z)zsA(z−1) + r2B(z)zsB(z−1),

wherer1 andr2 are the variances of observation noises
�k and�k, respectively.

Theorem 1. Assume A1–A5 hold. Then the matrix polyno-
mialsG(z) andC(z) in (13) are uniquely defined, i.e., the
system(13) is identifiable.

Proof. We first recall that a matrix polynomial is called uni-
modular if its determinant is a constant. It is well known that
a unimodular matrix can be expressed as a finite product of
elementary transformations. In the case of 2× 2-matrices,
the elementary transformation corresponds to one of the fol-
lowing four matrices:[
1 f (z)

0 1

]
,

[
f (z) 1
1 0

]
,

[
1 0

f (z) 1

]
,[

0 1
1 f (z)

]
, (17)

wheref (z) is an arbitrary polynomial.
We now show that with possible exception of a unimod-

ular matrix the matrix polynomialsG(z) andC(z) have no
common left factor.
Assume the converse: there is a 2× 2-matrix polynomial

L(z) with detL(z)�h(z) being not a constant such that

L(z)[G′(z), C′(z)] = [G(z), C(z)].
Let z0 be a root ofh(z) : h(z0) = 0. Then we have

detG(z0) = h(z0)detG
′(z0) (18)
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and

detC(z0) = h(z0)detC
′(z0). (19)

Thusz0 is a common root of detG(z) and detC(z).
If we can show that detG(z) and detC(z) have no com-

mon root, then the obtained contradiction shows thatG(z)

andC(z) have no common left factor with possible excep-
tion of a unimodular matrix. Assume the converse: letz0 be
a common root of detG(z) and detC(z). Since detG(z)=
A(z)P (z), z0 must be a root of eitherA(z) or P(z). By sta-
bility of A(z) andP(z) we have|z0|>1.

In the proof of Lemma 1, based onAnderson and Moore
(1979)we have shown

f (z) = S(z)RST(z−1) = C(z)RwCT(z−1), ∀z ∈ C, (20)

and hence

detC(z)detRw detCT(z−1) = det(S(z)RST(z−1)).

We then have

detC(z0)detRw detCT((z0)−1)

= [r1A(z0)A((z0)−1) + r2B(z0)B((z0)−1)]
× [r2P(z0)P ((z0)−1) + r3Q(z0)Q((z0)−1)]
− r22P(z0)P ((z0)−1)B(z0)B((z0)−1)

= r1r2A(z0)A((z0)−1)P (z0)P ((z0)−1)

+ r1r3A(z0)A((z0)−1)Q(z0)Q((z0)−1)

+ r2r3B(z0)B((z0)−1)Q(z0)Q((z0)−1). (21)

If z0 is a root ofA(z), then by A1 and A2,B(z0) �=
0, Q(z0) �= 0 and the right-hand side of (21) equals
r2r3B(z0)B((z0)−1)Q(z0)Q((z0)−1). Since |z0|>1 and
bothB1(z) andQ(z) are stable,(z0)−1 cannot be a root of
B(z) andQ(z). Noticing thatr2 andr3 are positive by A3,
we conclude that the right-hand side of (21) is nonzero.
If z0 is a root ofP(z), thenQ(z0) �= 0 andz0 cannot be

a root ofg(z) by A5:

g(z0) = (z0)s[r1A(z0)A((z0)−1) + r2B(z0)B((z0)−1)] �= 0.

Noticing |z0|>1, we then have

r1A(z0)A((z0)−1) + r2B(z0)B((z0)−1) �= 0

and the right-hand side of (21) equals

[r1A(z0)A((z0)−1) + r2B(z0)B((z0)−1)]
× r3Q(z0)Q((z0)−1) �= 0.

This contradicts with the converse assumption thatz0 is a
root of detC(z). Therefore, detG(z) and detC(z) have no
common root, and hence we have proved the assertion that
G(z) andC(z) have no common left factor with possible
exception of a unmodular matrix.
We now show that except constant matrices a unimodular

matrix can neither be a common left factor ofG(z) andC(z).

Let N(z) be a unimodular matrix polynomial of order
m�1 such that

[G(z), C(z)] = N(z)[G′(z), C′(z)], (22)

whereG′(z)= I +G′
1z+ · · ·+G′

s−mzs−m andC′(z)= I +
C′z + · · · + C′

s−mzs−m.
First, letN(z) be one of the matrices expressed in (17),

say,

N(z) =
[
1 f (z)

0 1

]
,

wheref (z) = f1z + · · · + fmzm.
Then, equalizing the coefficients ofzs in both sides of

(22), we derive

[Gs,Cs] =
[
0 fm

0 0

]
[G′

s−m,C′
s−m]

which clearly is not of full-row rank. This contradicts with
A4.

Since a unimodular matrix is a finite product of matrices
given by (17), continuing the argument given above leads to
the conclusion that a nonconstant unmodular matrix cannot
be a common left factor ofG(z) andC(z). Noticing that
G(z) andC(z) are monic, we conclude that the only possible
common left factor is the identity matrix. This means that
G(z) andC(z) are uniquely defined.�

Remark 2. We have succeeded in guaranteeing uniqueness
of coefficients in (13) due to the coprimeness and stability
conditions figured in A1, A2 and A5 and the full-row rank
condition of[Gs,Cs]. Besides, the nondegeneracy of�k is
also crucial for achieving uniqueness. However, the Gaus-
sian assumption on�k is not needed for identifiability of the
system (13). As a matter of fact, the Gaussian assumption
is used in Section 4 for{wk} to be a martingale difference
sequence, (which is guaranteed by Lemma 1,) in order to
apply existing results concerning the extended least squares
(ELS) algorithm.

4. Consistent parameter estimates

In the last section we have shown that the minimum phase
system (13) is identifiable in the sense that its coefficients
are uniquely defined under A1–A5 (without need for Gaus-
sianity). It is clear that if consistent estimates for coefficients
can somehow be derived, then the system coefficients are
uniquely defined. However, the converse, in general, is not
true. Uniqueness does not indicate how to derive consistent
estimates for coefficients.
Since the right-hand side of (13) is a correlated process,

the existing estimation methods like ELS, IV method, sub-
space method, and prediction error method for estimating

�T = [−G1, . . . ,−Gs,C1, . . . , Cs]
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either are not directly applicable or require additional con-
ditions to guarantee consistency.
We will use the ELS algorithm (Chen & Guo, 1991) in-

corporating with the overparameterization technique. But,
we first demonstrate the convergence result when the com-
monly used in practice ELS algorithm without modification
is applied with some additional assumption.
Let us introduce the strictly positive real (SPR) condition

A6. C−1(z) − 1
2I is SPR, i.e.,

C−1(ei�) + C−T(e−i�) − I >0, ∀� ∈ [0,2�].

It is known thatA6 implies stability ofC(z). It is also known
that ELS may not converge to the true coefficients if A6
fails even thoughC(z) is stable. This is demonstrated by
Example 2 in Section 5.
The ELS for the matrix� is recursively defined by the

following algorithm:

ŵk+1 = zk+1 − �Tk+1�k, (23)

�k+1 = �k + akPk�k(z
T
k+1 − �T

k �k), (24)

Pk+1 = Pk − akPk�k�
T
k Pk, ak = (1+ �T

k Pk�k)
−1, (25)

P0 = �I ,

�T
k = [zTk , . . . , zTk−s+1, ŵ

T
k , . . . , ŵ

T
k−s+1], (26)

where�>0 and�0 is arbitrary.
It is worth noting that in the special caseC(z) = I the

ELS is nothing else but the recursive expression of the LS
estimate. WhenC(z) /≡ I, LS is not directly applicable,
sincewk is not available. The idea of ELS is to replacewk+1
with its estimate given by (23) in the regressor (Chen &
Guo, 1991), and this results in (26).

Theorem 2. Assume A1–A6 hold. Let �n be given by
(23)–(26).Then�n is strongly consistent with the following
convergence rate

‖�n+1 − �‖2 = O

(
log n

n

)
a.s. (27)

Proof. By Lemma 1,{wk} is a sequence of i.i.d. Gaussian
random vectors, which satisfy the moment condition (i) re-
quired in Theorem A in Appendix. Then, (27) follows from
Theorem A, if we observe that the remaining conditions re-
quired in Theorem A are satisfied by setting�n ≡ 0. �

We now apply the overparameterized technique proposed
in Guo and Huang (1989)to estimate� without A6. The
idea of the technique consists in the following observation:
Although C−1(z) − 1

2 I is not SPR, there always exists a
matrix
(z) such that[
(z)C(z)]−1 − 1

2 I is SPR provided
C(z) is stable. Then multiplying (13) from the left by
(z)

we obtain an overparameterized system equivalent to system

(13). The overparameterized system is SPR and is used to
estimatewk. The obtained estimate is applied to serve asŵk

appearing in (26) ignoring (23). The resulting estimate for
� is strongly consistent.
We now give a detailed description. By stability ofC(z),

we have

C−1(z) =
∞∑
j=0


j z
j , ∀|z|�1,

where‖
j‖�M�j , for someM >0 and� ∈ (0,1).
Let m be a sufficiently large integer such that

m> [log[‖C(z)‖−1∞ M−1(1− �)]/| log �|] − 1,

where‖C(z)‖2∞ = max|z|=1 ‖C(z)CT(z−1)‖. Denote


(z)�
m∑

i=0


j z
j , 
0 = I .

It is known (Chen & Guo, 1991; Guo & Huang, 1989) that

[
(z)C(z)]−1 − 1
2 I

is SPR and
(z) is stable.
From (13) it follows that


(z)G(z)zk = 
(z)C(z)wk (28)

for which the SPR condition required for convergence of the
ELS algorithm is satisfied. Let

M(z)�
(z)G(z) = I + M1z + · · · + Mpz
p, p = ms,

F(z)�
(z)C(z) = I + F1z + · · · + Fpz
p

and

�̄
T = [−M1, . . . ,−Mp,F1, . . . , Fp].
We first estimatewk by the ELS algorithm for system (28)

and denote the estimate still bŷwk:

ŵk+1 = zk+1 − �̄
T
k+1�̄k, (29)

�̄k+1 = �̄k + ākP̄k�̄k(z
T
k+1 − �̄

T
k �̄k), (30)

P̄k+1 = P̄k − ākP̄k�̄k�̄
T
k P̄k, āk = (1+ �̄

T
k P̄k�̄k)

−1, (31)

P̄0 = �I ,

�̄
T
k = [zTk , . . . , zTk−p+1, ŵ

T
k , . . . , ŵ

T
k−p+1], (32)

where�>0 and�̄0 is arbitrary.
Using ŵk, we now estimate the unknown coefficients

�T = [−G1, . . . ,−Gs,C1, . . . , Cs] (33)

by the following algorithm:

�T
k = [zTk , . . . , zTk−s+1, ŵ

T
k , . . . , ŵ

T
k−s+1],

ak = (1+ �T
k Pk�k)

−1 (34)
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�k+1 = �k + akPk�k(z
T
k+1 − �T

k �k),

Pk+1 = Pk − akPk�k�
T
k Pk, (35)

where{ŵk} is given by (29)–(32) rather than by (23).

Theorem 3. Assume A1–A5 hold. Let ŵk be generated by
(29)–(32).Then�n given by(34) and (35) is strongly con-
sistent with the following rate of convergence:

‖�n+1 − �‖2 = O

(
log n

n

)
a.s. (36)

Proof. By Theorem 4.8 ofChen and Guo (1991)�n gener-
ated by (34) and (35) is with the following rate of conver-
gence

‖�n+1 − �‖2 = O

(
log �0max(n)

�0min(n)

)
a.s., (37)

where�0max(n) and�0min(n), respectively denote the maxi-
mum and minimum eigenvalue ofP−1

0 +∑n
k=1�0

k�
0T
k with

�0T
k = [zTk , . . . , zTk−s+1, w

T
k , . . . , w

T
k−s+1].

By stability ofG(z) and the fact that{wk} is i.i.d. Gaus-
sian, form (13) it is clear that�0max(n) = O(n). On the
other hand, from Remark A in Appendix lim infn→∞ 1

n
�0min

(n)>0. Putting these estimates into (37) leads to the desired
result (36). �

Remark 3. By Theorems 2 and 3 the strongly consistent
estimatesAn(z) andBn(z) are derived forA(z) andB(z):

lim
n→∞ An(z) = A(z) a.s. and lim

n→∞ Bn(z) = B(z) a.s.

Besides, the strongly consistent estimateCn(z) for C(z),

characterizing the innovation representation (16) is also ob-
tained:

lim
n→∞ Cn(z) = C(z) a.s.

Remark 4. It is worth noting that when estimatingG(z) and
C(z) we do not know ifC(z) satisfies A6 although the order
s of C(z) is known. Therefore, in practice we may first try
to estimate� by (23)–(26). If it turns out that the estimate
is undesirable, then we try to use (29)–(35) with sufficiently
largem, say, a multiple ofs. In Section 5,s =1 and we take
m = 10 for Example 2. Of course, we may try differentm.

5. Numerical examples

We give two examples corresponding to the cases: (i) A6
holds, (ii) A6 does not hold, respectively.

Example 1. In this example all conditions A1–A6 are met.
By Theorem 1 the coefficients of system (13) are uniquely

defined, and by Theorem 2 the ELS algorithm gives consis-
tent estimates.

Let

A(z) = 1+ a1z, B(z) = b1z,

P(z) = 1+ p1z, Q(z) = 1+ q1z

with a1 = −0.8, b1 = 0.2, p1 = −0.5, q1 = 0.8, and let the
covariance matrixR of �k be a 3× 3-identity matrix. Then

S(z) =
[
1− 0.8z −0.2z 0

0 1− 0.5z 1+ 0.8z

]
(38)

and the spectral density of�k=S(z)�k isf�(�)= 1
2�f (e−i�),

where

f (e−i�) =
[
1.68 0.1
0.1 2.89

]
+
[−0.8 0
−0.2 0.3

]
ei�

+
[−0.8 −0.2

0 0.3

]
e−i�.

A direct computation shows that

f (e−i�) = C(e−i�)RwCT(ei�),

whereC(z) = I + C1z with

C1 �
[−0.7326 −0.0412
−0.0109 0.1054

]
, and

Rw �
[
1.0857 0.1124
0.1124 2.8584

]
. (39)

Thus, we have the innovation representation

�k = C(z)wk.

Notice thatC(z) has roots approximately equal to−9.4397
and 1.3640. Therefore,C(z) is stable. Furthermore,

C−1(z) = 1

1− 0.6272z − 0.0776z2

×
[
1+ 0.1054z 0.0412z
0.0109z 1− 0.7326z

]

and it is easy to numerically verify that

C−1(ei�) + C−T(e−i�) − I >0 ∀� ∈ [0,2�].
Since

G1 =
[
a1 −b1
0 p1

]
=
[−0.5 −1

0 −0.5

]
. (40)

G1 itself is of full-row-rank. Therefore,[G1, C1] is of full-
row-rank whateverC1 is. In our caseC1 given by (39) is
also of full-row-rank.
Further,

g(z) = A(z)zA(z−1) + B(z)zB(z−1)

= − 0.8z2 + 1.68z − 0.8

andg(z) is coprime withP(z) (=1− 0.5z).
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Fig. 1. Example 1 (ELS).

Thus, all conditions A1–A6 are satisfied and Theorem 2 is
applicable. By (23)–(26)�T = [−G1, C1] is estimated. The
computational results given inFig. 1show that the estimates
for a1, b1, andp1, respectively, converge to the true values.
In what follows in all figures the true values are denoted

by solid lines and their estimates by dashed lines.

Example 2.We take the same system as that considered
in Example 1 but with different coefficients. Namely, let
a1=−0.1, b1=−1.39, p1=0.89, q1=0.6. Let the covariance
matrix R of �k be a 3× 3 diagonal matrix with diagonal
elements{2,0.5,0.5}.

Since detG1 �= 0, A4 holds.
Further,g(z)=−0.2z2+2.986z−0.2 is with roots equal to

14.863 and 0.0673, and hence it is coprime withP(z)=1−
0.89z. So, Conditions A1–A5 are satisfied, and by Theorem
1 system (13) is identifiable.
Notice that

S(z) =
[
1− 0.1z 1.39z 0

0 1− 0.89z 1+ 0.6z

]
(41)

and the spectral density of�k=S(z)�k isf�(�)= 1
2�f (e−i�),

where

f (e−i�) =
[

2.9421 −1.2371
−1.2371 3.1521

]
+
[−0.1 0
1.39 −0.29

]
ei�

+
[−0.1 1.39

0 −0.29

]
e−i�.

A direct computation shows that

f (e−i�) = C(e−i�)RwCT(ei�),

whereC(z) = I + C1z with

C1 �
[−0.6537 −0.7531
−0.1182 −0.1486

]
,

Rw �
[

1.8299 −1.4555
−1.4555 3.1090

]
. (42)
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Fig. 2. Example 2 (ELS).

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-1.8

-1.7

-1.6

-1.5

-1.4

-1.3

-1.2

-1.1

-1

-0.9

-0.8

-0.7

-0.6

-0.5

Number for iterations

E
st

im
at

e 
fo

r 
b 1

Fig. 3. Example 2 (ELS).

Since the roots of detC(z) = 0.0081z2 − 0.8023z + 1 are
97.5209 and 1.2626,C(z) is stable. However, at� = 0 the
determinant ofC−1(ei�) + C−T(e−i�) − I equals−0.7193,
and hence A6 is violated.
Figs. 2–4show that in this case ELS give biased estimates.
According to Theorem 3 the algorithm (29)–(35) with

m = 10 gives strongly consistent estimates as shown
in Fig. 5.

6. Concluding remarks

For the SISO errors-in-variables models the 2D observa-
tion process is represented as a 2D ARMA system driven
by an i.i.d. random sequence. The identifiability of the rep-
resented system is proved. This is achieved under coprime-
ness and stability conditions. The consistency of parame-
ter estimates together with the rate of convergence are de-
rived with the additional Gaussian assumption. Numerical
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Fig. 4. Example 2 (ELS).
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Fig. 5. Example 2 (ELS with overparameterization technique applied).

examples are given and justify the theoretical results given
in the paper.
For further work it is desirable to extend results to the

MIMO systems, and to consider more general noises. Fur-
thermore, it is of interest to consider the input to be a general
feedback control rather than an ARMA process.

Appendix A.

The following m-dimensional model is considered in
Chen and Deniau (1994):

A(z)yn = C(z)wn + �n, yi = wi = �i = 0, i <0,

whereA(z) = I + A1z + · · · + Apz
p, C(z) = I + C1z +

· · · + Crz
r , {wn,Fn} is a martingale difference sequence,

and�n is the possibly existing model error.

The ELS algorithm is applied for estimating

�T = [−A1, . . . ,−Ap,C1, . . . , Cr ],
ŵk+1 = yk+1 − �Tk+1�k,

�k+1 = �k + akPk�k(y
T
k+1 − �T

k �k),

Pk+1 = Pk − akPk�k�
T
k Pk, ak = (1+ �T

k Pk�k)
−1,

�T
k = [yTk , . . . , yTk−p+1, ŵ

T
k , . . . , ŵ

T
k−r+1].

P0 �= 0.

The theorem proved inChen and Deniau (1994)is presented
here as

Theorem A. Assume the following conditions hold:

(i) The martingale difference sequence{wk,Fk} has the
properties:

sup
n

E[‖wk+1‖2|Fk]<∞, and

lim
n→∞

1

n

n∑
k=1

wkw
T
k = R>0 a.s.

(ii) det A(z) �= 0, ∀|z|<1;
(iii) A(z) andC(z) are left coprime and[Ap,Cr ] is of full

rank;
(iv) C−1(ei�) + C−T(e−i�) − I >0, ∀� ∈ [0,2�];
(v) �n is Fn−1 -measurable and

	n�
1

n

n∑
k=0

‖�k+1‖2 → 0 a.s.

Then the�n given by ELS is strongly consistent with con-
vergence rate

‖�n − �‖2 = O(	n) + O

(
log(log log n)c

n

)
, ∀c >1 a.s.

Remark A. In the proof of Theorem A the crucial step is
to show that

lim inf
n→∞

1

n
�0min(n)>0,

where�0min(n) denotes the minimum eigenvalue ofP−1
0 +∑n

k=1�0
k�

0T
k with

�0T
k = [yTk , . . . , yTk−p+1, w

T
k , . . . , w

T
k−r+1].

It is noticed that this estimate for the minimum eigenvalue
takes place whatever	n is zero or not. Therefore, it holds
true if yi in �0

k is replaced byzi defined by (13) and bothp
andr are replaced bys.
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