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Abstract

For the single-input-single-output (SISO) errors-in-variables system it is assumed that the system input is an ARMA process and that
the driven noise of the system input and the observation noise are jointly Gaussian. The two-dimensional observation made on system
input and output is represented as a two-dimensional (2D) ARMA system of minimum phase driven by a sequence of 2D i.i.d. Gaussian
random vectors (innovation representation). It is shown that the resulting ARMA system is identifiable, i.e., its coefficients are uniquely
defined under reasonable conditions. Recursive algorithms are proposed for estimating coefficients of the ARMA representation including
those contained in the original SISO system. The estimates are proved to be convergent to the true values with probability one and the
convergence rate is derived as well. The theoretical results are justified by numerical simulation.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction Estimation of parameters df(z) and B(z) from observed
data{y;} and{u} is called the “errors-in-variables” prob-
We consider the problem of identifying a linear single- lem.
input-single-output (SISO) system described by the differ- It is well-known @Anderson, 1985; Anderson & Deistler,

ence equation 1984; Deistler, 1986; Scherrer & Deistler, 1998; Stoica &
Nehorai, 198Ythat there does not exist a unique solution in
A(z)y;? = B(z)u,?, Q) general, if only second-order statistics are exploited. How-
ever, if some additional assumptions are imposed, for exam-
where A(z) and B(z) are unknown polynomials arzide- ple, if high order cumulant statistics can be used, then it is,
notes the backward-shift operator, = yi—1. in principle, possible to achieve consistent estimatékids
System (1) will later be referred as the original SISO g pan, 1988; Scherrer & Deistler, 1998; Tugnait, 1292
system. By assuming the input is non-Gaussian and the noises are
The measurements; and y; of the system input and Gaussian infugnait (1992) the square root of the magni-
outputy,? are corrupted by noiseg, and ¢, respectively: tude of the fourth cumulant of a generalized error signal is
taken as a performance criterion for parameter estimation,
k=30 + & ug=ud + 2 and the global minimizer of the proposed criterighly (0)

is proved to be strongly consistent &s— oo. For a fixed
* This work is supported by the National Natural Science Foundation N, @ numerical algorithm is also proposedTiagnait (1992)
of China (Projects 60221301, 60334040). This paper was not presentedtg search the minimizer o{/]N(Q)_ But, it is not clear
at any IFAC meeting. This paper was recommended for publication in how to guarantee the algorithm to converge to the desired
revised form by Associate Editor Johan Schoukens under the direction of L . . .
Editor T. Séderstrom. global minimizer. Besides, it would be of interest to recur-
* Corresponding author. Tel.: +86 10 62579540; fax: +86 1062587343, Sively estimate unknown parameters with increasing data
E-mail addresshfchen@iss.ac.c(H.-F. Chen). sizeN.

0005-1098/$ - see front matté& 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.automatica.2004.12.007
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There have been developed many interesting numeri-A3. A,2[&, ;. e]" is a sequence of i.i.d. Gaussian ran-

cal identification algorithms by using various methods, dom vectorsd; € A7(0, R), where

e.g., Mahata and Sdderstrom (2002%toica, Cedervall, 0 0

and Eriksson (1995)Soders.trom, Mahata, . and Soverini R=|0 rn 0 With r1 =0, 75> 0 andrz >0,
(2002) among others. By using the innovation representa- 0 0 rs

tion of the observed data, the original problem is reduced
to identifying the resulting 2D process. Both parametric
and non-parametric identification methods are proposed in X
Soderstrém et al. (2002but no consistency is guaranteed. Unknown, but the upper bourgdfor orders of polynomials
A survey of different approaches is given 8bderstrom, 'S 9'ven »
Soverini, and Mahata (2001) By (1) and (3) itis clear that

Sharing th_e ide_:a of 2D approach proposeéBt’rde_rstrC')m A(Z)p(z)yg — B(2)0(2)&x
et al. (2002) in this paper we show that the resulting repre-
sentation is identifiable under reasonable conditions. Then,andy? is Gaussian stationary by A1 and A3.
the recursive identification algorithms are proposed for es- As in Soderstrom et al. (2002ye denote the 2D obser-
timating matrix coefficients appearing in the representation, vation vector byz:
and at same time the estimates for coefficients of the orig- 0 £
inal SISO system are derived too. Conditions guaranteeingzk = [yk] = |:yki| + [ "} . 4)
strong consistency (convergence with probability one) of the Tk
estimates are given, and the convergence rate is obtained By A1-A3, z; is a Gaussian stationary process.
as well. As a result, all coefficients not only in the original Let
SISO system but also in the innovation representation of the A _

. . : a| AR —B()
2D observation process are asymptotically achieved. G(2) [ 0 PQ
The rest of the paper is organized as follows. The ba- '
sic assumptions on the original SISO system and the 2D wherel is the 2x 2 identity matrix.

ARMA representation of the observation process are given Then by (1) and (3)

in Section 2. Identifiability of the ARMA representation is Gz = ¢ ©6)
established in Section 3. Recursive algorithms are given and ke

their strong consistency is proved in Section 4. To justify where

theoretical assertions some numerical simulation results are AR)E — B(2)

demonstrated in Section 5. After concluding remarks an ap- (;= [ DSk ¢ nk} @)
pendix is given to present some results we refer to in order Q@ex + P2y

Here, all polynomials and the covariance matRxare

U Lt]?

]=I+G1z+~-~+GsZS. )

to ease reading. which is a Gaussian stationary process by A2 and A3.
Let
2. Representation of observation process S(z)2 [A(Z) —B( 0 ]
P(z) Q)

The objective of the paper is to design a recursive algo- =80+ S1z+ -+ 857, (8)
rithm based on the noise-corrupted observatipng and where
{yx} to consistently estimate coefficients #fz) and B(z).

We first list conditions to be imposed on the system, input, §;= [l 0 O} . 9)
and observation noises. 011

From (7) it follows that
Al. PolynomialsA(z) =1+ a1z + -+ -+ agz® and B(z) =
b1z + - + byz"22B1(z) are coprime and both (z) (e = S(@) 4k (10)
and B1(z) are stable, i.e., their all roots are outside the

and the spectral densit is
closed unit disk. P y 68}

A2. The input{«?} is an ARMA process PN P
0 3 fg(/h)_zn f(e )v
P@uy = 0@)e 3) where by definition
with
f@ES@RST (™. (11)
P(z) =1+ p1z+---+ ps2’,
0@)=1+qiz+ - +qs2°, Lemma 1. Assume A-A3 hold. The 2D process{(;} de-

where bothP (z) and 0(z) are stable, an@(z) has no fined by(10) can uniquely be represented a2 MA system

common root with bothP (z) and A(z). (= C(2)wg,
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where {wy} is a sequence 02D i.i.d. Gaussian random 3. ldentifiability
vectors withEw; =0 and Ewy w;éRw. andC(z) is a stable

polynomial If we can consistently estimate(z), then from (5) we see
that the consistent estimates f¢z) and B(z) are obtained

C)=14Ciz+---+Ci2’, (12) at the same time. So, the crucial issue is the identifiability
of system (13).

i.e., detC(z) # 0V|z|<1. As a result zx given by(4) is The necessary and sufficient conditions are giveStaica

represented as an ARMA system of minimum phase and Nehorai (1987for nonuniqueness of coefficients in the
expressions (1) and (3). Thus, any violation of these con-

G(2)zk = C(2)wg. (13) ditions gives sufficient conditions for uniqueness of coeffi-
cients in (1) and (3).

Proof. Notice thatf (z) given by (11) is rational and analytic By the sufficient conditions given iBtoica and Nehorai

on |z =1, and it has full rank almost everywhere since (1987)we see that coefficients in (1) and (3) are uniquely
R>0andA(z) #0, P(z) # 0, and 0(z) # 0. Then (see,  defined. However, this uniqueness does not exclude system
e.g.,Anderson & Moore, 1979; Soderstrém, 1981(z) can (13) from having a common left factor. In other words, the

uniquely be factorized ag(z) = H(z)R, H' (z™1) and {; identifiability of system (13) is not automatically guaranteed.

can be represented as We need a mild condition imposed ¢6, C,], the matrix
being the coefficients for the highest orders ®fz) and

(e = H (2w, (14)  c().

where H(z) is a 2x 2 matrix of rational functions with ~ A4. The 2x 4-matrix [G;, C;] is of full-row-rank, where

H(0)=1 and bothH (z) andH ~1(z) are stable, anéiw; =0, G, andC; are given in (5) and (16), respectively.

Ewgw] =Ry 0x s With 6y s =1if k=s anddy s =01if k # s. For identifiability we also need the following technical

Since H1(z) is stable, w;y can be expressed via condition:
{Ck, (i1, ...}, Let Z# be the g-algebra generated by
{4;, j<k}. By (10) it is clear thatl, € Z, and hence
wy € Z . By stability of H(z), {; can be represented as a ¢DErARZ A + BBz,
moving average of infinite order:

A5. P(z) is coprime with the polynomiag(z):

wherer; andro are the variances of observation noises
o0 ¢, andy, respectively.
Go=) Ciwgin Co=1. (15)
i=0 Theorem 1. Assume A-A5 hold. Then the matrix polyno-
mials G(z) and C(z) in (13) are uniquely defined.e., the
By A3 and (10),; is independent ofl;_;, and hence in- system(13) is identifiable
dependent o7 _;, Vi >s + 1. Noticing thatwy_; € F_;,

we have Proof. We first recall that a matrix polynomial is called uni-
modular if its determinant is a constant. It is well known that

E{w(_; = EQEw]_; =0, Vizs+L1. a unimodular matrix can be expressed as a finite product of
elementary transformations. In the case of 2-matrices,

Therefore, in (15) the summation ceases,ate., the elementary transformation corresponds to one of the fol-

lowing four matrices:
{ =wp + Crwg—1 + - - + Cswp—s. (16)

3] [ ) L
This means that the rational matri(z) in (14) coincides o 1 | 1 0y fl@ 1}’
with the polynomialC(z) : H(z)=C(z). Consequenthy( (z) 0 1

is stable, which implies that; is Gaussiamw; € A47(0, Ry,) [1 f(z)} ’

from (16) since; is Gaussian. From (6) and (16) we derive . . ]
(13). O where f(z) is an arbitrary polynomial.

We now show that with possible exception of a unimod-

Remark 1. For the innovation representation (16) the Gaus- Ular matrix the matrix polynomialé'(z) and C(z) have no
sian assumption is not necessary. If we remove the Gaus-Common left factor. _ _ _
sian assumption, the#; should be replaced by the Hilbert ~ Assume the converse- there is & 2-matrix polynomial
space#’, spanned by, j <k} in the mean square sense. L(z) with detL(z)=h(z) being not a constant such that
In this casewy is no longer i.i.d. but a seqlTJ(znce of zero LG (2), C'(2)] =[G(2), C@)].

mean uncorrelated random vectors withv; w, =R,,, and

(15) corresponds to the Wold decomposition of the station- Let zo be a root ofi(z) : h(zo) = 0. Then we have

ary process(y}. det G (z0) = h(zo) det G'(z0) (18)

(17)
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and Let N(z) be a unimodular matrix polynomial of order
m >1 such that
det C(zp) = h(zo) det C'(zo). (19)

. [G(2), C(2)] = N(2)[G'(2), C'(2)], (22)
Thuszg is a common root of de6 (z) and detC (z).

If we can show that def(z) and detC(z) have no com-  whereG'(zx) =1+ Gz +---+G;_,z* " andC’(z) =1 +
mon root, then the obtained contradiction shows th&t) C'z+4---+C;_, 27"
andC(z) have no common left factor with possible excep- First, let N(z) be one of the matrices expressed in (17),
tion of a unimodular matrix. Assume the conversezfebe say,
a common root of det (z) and detC(z). Since detG(z) =
A(z)P(z), z0 must be a root of eithet (z) or P(z). By sta- N(z) = [1 f(Z)} ,
bility of A(z) and P(z) we have|z°| > 1. 0 1

In the proof of Lemma 1, based @mderson and Moore

(1979)we have shown where f(z) = fiz + -+ fn2".

Then, equalizing the coefficients aef in both sides of
f@=S@RST@ Y =C@R,CTY, VzeC, (20)  (22), wederive

Coml

and hence [Gs, Cs]l = [8 fg’] [C—

To-1y _ T . -1
detC(z) det Ry detC (™) = detS@RS (7). which clearly is not of full-row rank. This contradicts with

We then have Ad.
Since a unimodular matrix is a finite product of matrices
detC(z%) det R, det CT((z9) ™Y given by (17), continuing the argument given above leads to
=[r1ACHAEO ™Y + r2BEYB((D) )] the conclusion that a nonconstant unmodular matrix cannot
x [P P +r30E) ()] be a common left factor o6 (z) and C(z). Noticing that
_ V22P(ZO)P((ZO)_l)B(ZO)B((ZO)_l) G (z) andC(z) are monic, we conclude that the only possible

common left factor is the identity matrix. This means that

=r1r2A@)AE) HPEIPE) ™ G(z) andC(z) are uniquely defined. [

+r1r3AEAE)™H 0™
+r2r3BE) B2 ™00 0D ™. (21) Remark 2. We have succeeded in guaranteeing uniqueness
of coefficients in (13) due to the coprimeness and stability
conditions figured in A1, A2 and A5 and the full-row rank
condition of Gy, Cy]. Besides, the nondegeneracyAf is

also crucial for achieving uniqueness. However, the Gaus-
sian assumption od, is not needed for identifiability of the
system (13). As a matter of fact, the Gaussian assumption
is used in Section 4 fofw;} to be a martingale difference
sequence, (which is guaranteed by Lemma 1,) in order to
apply existing results concerning the extended least squares

80 = O ACYAE) ™) + BB b £0.  (ELS) algorithm.

If 20 is a root of A(z), then by Al and A2,B(z%) #
0, 0(z°) # 0 and the right-hand side of (21) equals
rar3B(0)B((2%) ™ H 090%™ Y. Since | >1 and
both B1(z) and Q(z) are stable(z%)~! cannot be a root of
B(z) and Q(z). Noticing thatr, andrz are positive by A3,
we conclude that the right-hand side of (21) is nonzero.

If z0is a root of P(z), then Q(z°) # 0 andz® cannot be
a root ofg(z) by A5:

Noticing |z°| > 1, we then have
4. Consistent parameter estimates

rAGHAE) ™ + BB ™ #£0
) ) In the last section we have shown that the minimum phase
and the right-hand side of (21) equals system (13) is identifiable in the sense that its coefficients
0 0.1 0 01 are uniquely defined under A1-A5 (without need for Gaus-
[riAGAGD) ) +r2BE)B(E) ] sianity). Itis clear that if consistent estimates for coefficients
x r30(29 (%)™ #0. can somehow be derived, then the system coefficients are
uniquely defined. However, the converse, in general, is not

This contradicts with the converse assumption tffais a ¢ Uniqueness does not indicate how to derive consistent
root of detC(z). Therefore, detG(z) and detC(z) have no estimates for coefficients.

common root, and hence we have proved the assertion that  gjnce the right-hand side of (13) is a correlated process,

G(z) and C(z) have no common left factor with possible e existing estimation methods like ELS, IV method, sub-

exception of a unmodular matrix. , _ space method, and prediction error method for estimating
We now show that except constant matrices a unimodular

matrix can neither be a common left factor®¢z) andC (z). 0" =[-G1,..., =Gy, C1, ..., Cs]
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either are not directly applicable or require additional con- (13). The overparameterized system is SPR and is used to
ditions to guarantee consistency. estimatew,. The obtained estimate is applied to servebas
We will use the ELS algorithmGhen & Guo, 1991in- appearing in (26) ignoring (23). The resulting estimate for
corporating with the overparameterization technique. But, 0 is strongly consistent.
we first demonstrate the convergence result when the com- We now give a detailed description. By stability 6fz),
monly used in practice ELS algorithm without modification we have
is applied with some additional assumption.
Let us introduce the strictly positive real (SPR) condition ¢~1(;) = Z F/Z] V|z]<1,
=0
A6. C-1(z) — L1 is SPR, ie., =
a _ where||I';[| <M/, for someM >0 and/ € (0, 1).
creH+c e -1>0, Viel02n] Let m be a sufficiently large integer such that

> [log[lIC ()l "M (L = )]/Ilog A1 -1,
Itis known that A6 implies stability of (). It is also known d > /llog

that ELS may not converge to the true coefficients if A6 where||C(2)[|%, = max; =1 [[C(z)CT(z~1)||. Denote
fails even thoughC(z) is stable. This is demonstrated by m
Example 2 in Section 5.. . _ _ ()2 Z [‘J.ZJ" To=1.

The ELS for the matrix is recursively defined by the v

following algorithm: )
Itis known Chen & Guo, 1991; Guo & Huang, 198%hat

Brr1 = 2k41 — O 41D (23) [F)C)I =11

01 = O + ak Py (2 — S0, (24) is SPR and’(z) is stable.

Pir1= P — axPrdpdf Pr.  ar = (1+ g Pep) ™", (25) From (13) it follows that

Po=oal, I'@)G @)z =I'(2)C(R)wk (28)

O =12f s gt B o ]y (26) for which the SPR condition required for convergence of the

ELS algorithm is satisfied. Let
whereo > 0 andfy is arbitrary. N
It is worth noting that in the special cag&(z) = I the M@)=I'()G@) =1+ Miz+---+Mpz",  p=ms,
ELS is nothing else but the recursive expression of the LS a _ »
estimate. WherC(z) # I, LS is not directly applicable, FOZI@CR) =1+ Fiz+---+ Fpz

sincewy, is not available. The idea of ELS is to replacg; 1 and
with its estimate given by (23) in the regress@hén & T
Guo, 199), and this results in (26). 0 =[-My,....—Mp, F1,.... Fpl.

We first estimatev, by the ELS algorithm for system (28)

Theorem 2. Assume A-A6 hold. Let 0, be given by and denote the estimate still iy

(23)—(26).Thend, is strongly consistent with the following

. T
convergence rate Wit = 21 — O 1 Pr (29)

log n _ _ o T
||9n+1—9||2=0< : ) as. @) Bipr= O+ G Pedu(clay — D100, (30)

- - - - =T _ “T= -
Proof. By Lemma 1,{wy} is a sequence of i.i.d. Gaussian Dk+1= Pk — ak Py Pe. =1+ P, (31)
random vectors, which satisfy the moment condition (i) re- Py =al,
quired in Theorem A in Appendix. Then, (27) follows from
Theorem A, if we observe that the remaining conditions re- (],Z - [ZZ, o ,Z]I o wz, o ﬁ)k—p+l]’ (32)
quired in Theorem A are satisfied by settigg= 0. [

whereo > 0 andfy is arbitrary.

We now apply the overparameterized technique proposed Using @, we now estimate the unknown coefficients
in Guo and Huang (198%p estimatef without A6. The n
idea of the technique consists in the following observation: ¥ = =[=G1....=Gs. C1, ..., G (33)
Although C~1(z) — I is not SPR, there always exists a py the following algorithm:
matrix I'(z) such that[F(z)C(z)] 1 _ 1 1is SPR provided
C(z) is stable. Then multiplying (13) “rom the left b (z) Gp =120 Tyt W D],
we obtain an overparameterized system equivalent to systemg, — (1 + ¢k Py ¢k)* (34)
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Okt = Ox + ax Py (21 — &1 00),

Piy1= Pe — ax Py Pr, (35)
where{wy} is given by (29)—(32) rather than by (23).
Theorem 3. Assume A-A5 hold. Let w; be generated by

(29)—(32).Thend,, given by(34) and (35) is strongly con-
sistent with the following rate of convergence

lo
||9n+1—9||2=0< 3”) a.s.

Proof. By Theorem 4.8 ofChen and Guo (1991, gener-
ated by (34) and (35) is with the following rate of conver-
gence

(36)

37)

10n41 — 02 =0 (M) as.,

Fapin ()

where 12,..(n) and 22, (n), respectively denote the maxi-

mum and minimum eigenvalue & * 4+ Y_; ¢2¢%T with
oT _ T T T T
ko= 2 T Wi oo Wl

By stability of G(z) and the fact thafwy} is i.i.d. Gaus-
sian, form (13) it is clear thaﬂ%w(n) = O(n). On the
other hand, from Remark A in Appendix lim ipf, o %A%in

(n) > 0. Putting these estimates into (37) leads to the desired

result (36). O
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defined, and by Theorem 2 the ELS algorithm gives consis-

tent estimates.

Let
A(z) =14 a1z, B(z) =b1iz,
P(z2)=1+4+p1z, 0@ =1+4+qiz

with a1 = —0.8, b1 =0.2, p1 =—0.5, g1 = 0.8, and let the
covariance matriR of 4; be a 3x 3-identity matrix. Then

1-08 -02¢ 0 ]

S(Z)=[ 0

and the spectral density 9f=S(z) 4k is f: (D) =5 f (€71%),
where

1-05z 1+08; (38)

. [168 017 ,[-08 07,
fe )_[0.1 2.89]+[—0.2 0.3}e
~08 -02] i
+[ 0 0.3]e '

A direct computation shows that
f&) =CE)RuCT(E,
whereC(z) = I + C1z with
€y~ |:—0.7326 —0.0412:| ,

—0.0109 01054

[1.0857 01124]

Ruw=101124 28584]"

(39)

Remark 3. By Theorems 2 and 3 the strongly consistent Thus, we have the innovation representation

estimatesA,, (z) and B,,(z) are derived forA(z) and B(z):

lim A,(z)=A(z) a.s. and |lim B,(z) = B(z) a.s.
n—oo n—o0

Besides, the strongly consistent estiméigz) for C(z),

characterizing the innovation representation (16) is also ob-

tained:

nILmoo C,(z2)=C(z) as.

Remark 4. Itis worth noting that when estimating(z) and

C(z) we do not know ifC (z) satisfies A6 although the order
sof C(z) is known. Therefore, in practice we may first try
to estimatef) by (23)—(26). If it turns out that the estimate

is undesirable, then we try to use (29)—(35) with sufficiently

largem, say, a multiple ok. In Section 55 =1 and we take
m = 10 for Example 2. Of course, we may try different

5. Numerical examples

We give two examples corresponding to the cases: (i) A6

holds, (ii) A6 does not hold, respectively.

Example 1. In this example all conditions A1-A6 are met.

& = C(@Qwi.

Notice thatC(z) has roots approximately equal +60.4397
and 13640. Therefore(C(z) is stable. Furthermore,

B 1

~ 1-0.627% — 0.077&2

1+ 0.1054 0.0412%
0.010% 1-0.732&

c )

and it is easy to numerically verify that

cr@H+c Te—1>0 Vielo,2n].
Since

Gi—|® -bp| |-05 -1

=lo pr || 0o -o05]"
G itself is of full-row-rank. Therefore|G1, C1] is of full-
row-rank whateveiC; is. In our caseC; given by (39) is
also of full-row-rank.

Further,
8(2) = A(@)zAGZ Y + B()zB( ™

= —0.8:2+ 168 —0.8

(40)

By Theorem 1 the coefficients of system (13) are uniquely andg(z) is coprime withP(z) (=1 — 0.5z).
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.............................. p;=0.5 1

IEstirT]atles Ifor a,,b; and p;

a,=08

\\\\\\\\

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number for iterations

Fig. 1. Example 1 (ELS).

Thus, all conditions A1-A6 are satisfied and Theorem 2 is
applicable. By (23)—(26&T =[—G1, C1] is estimated. The
computational results given Fig. 1show that the estimates
for ay, b1, and p1, respectively, converge to the true values.

In what follows in all figures the true values are denoted
by solid lines and their estimates by dashed lines.

Example 2. We take the same system as that considered
in Example 1 but with different coefficients. Namely, let
a1=-0.1, b1=-1.39, p1=0.89, ¢1=0.6. Let the covariance
matrix R of 4; be a 3x 3 diagonal matrix with diagonal
elementq2, 0.5, 0.5}.

Since detG; # 0, A4 holds.

Further,g(z)=—0.2z2+2.986; —0.2 is with roots equal to
14.863 and 0.0673, and hence it is coprime witly) =1 —
0.89%;. So, Conditions A1-A5 are satisfied, and by Theorem
1 system (13) is identifiable.

Notice that
[1-01: 13% 0
5@ = [ 0 1-08% 1+ 0.61] (1)

and the spectral density 6f=S(z) 4y is f:(A) == f(€7%),

where
L [ 29421 —12371] [[-01 0 7
fe )_[—1.2371 31521}{1.39 _0_29}9
—01 1397 i
+[ 0 —0.29]6 '

A direct computation shows that
f&) =CEe)R,CTED,
whereC(z) = I + Cyz with

)~ [ ~0.6537 —0.7531
1=1-01182 -0.1486|"
1.8299 —1.4555
Rw—[—1.4555 31090]' (42)
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Fig. 3. Example 2 (ELS).

Since the roots of def (z) = 0.0081%z2 — 0.802% + 1 are
97.5209 and 1.2628(z) is stable. However, at = 0 the
determinant o ~1(é*) + C~T(e7'*) — I equals—0.7193,
and hence A6 is violated.

Figs. 2—4show that in this case ELS give biased estimates.
According to Theorem 3 the algorithm (29)—(35) with
m = 10 gives strongly consistent estimates as shown

in Fig. 5.

6. Concluding remarks

For the SISO errors-in-variables models the 2D observa-
tion process is represented as a 2D ARMA system driven
by an i.i.d. random sequence. The identifiability of the rep-
resented system is proved. This is achieved under coprime-
ness and stability conditions. The consistency of parame-
ter estimates together with the rate of convergence are de-
rived with the additional Gaussian assumption. Numerical
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Fig. 5. Example 2 (ELS with overparameterization technique applied).

examples are given and justify the theoretical results given

in the paper.
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The ELS algorithm is applied for estimating

0" =[-A1,...,—A,, C1,...,Cl,

Wil = Yl — 91+1¢k!

Oks1= 0k + ax Pechy (vl 1 — &1 00,

Pey1=Pr — ax ey P, ax = 1+ ¢ Pecp) ™2,
i =Iy ..o ot W D]

Py #0.

The theorem proved i@hen and Deniau (1994 presented
here as

Theorem A. Assume the following conditions hold

(i) The martingale difference sequenje,
properties

Z i} has the

sup E[|lwg+1/1?F ] < oo, and
n

lim

n—oo n

Zwkwk =R>0 as.

(ii)y det A(z) #0, V|z|<1;

(i) A(z) andC(z) are left coprime andA,, C,] is of full
rank;

(iv) cCY@H +Cc T —1>0, Viel0,2n];

(V) &, is #,_1 -measurable and

E:H%+ﬂ —~0 as.
kO

Then the),, given by ELS is strongly consistent with con-
vergence rate

log(log log n)¢

n

||0n—0||2=0(5,,)+0< ), Ve>1a.s.

Remark A. In the proof of Theorem A the crucial step is

For further work it is desirable to extend results to the to show that

MIMO systems, and to consider more general noises. Fur-
thermore, it is of interest to consider the input to be a general IM inf —

feedback control rather than an ARMA process.

Appendix A.

The following m-dimensional model is considered in
Chen and Deniau (1994)

A@yn =C(@)wp + &1, yi=wi=¢=0, i<0,
whereA(z) =1+ A1z + ---

: + Crzr, {wn, f
ande, is the possibly existing model error.

+Apzf, C(@) =1+ Ciz +

Amm(n) >0,

Wherelgmn(n) denotes the minimum eigenvalue Bgl +

Yo $RYT with

OT

T T T
[yk,...,yk_p+l,wk,...,wk_r+1].

It is noticed that this estimate for the minimum eigenvalue
takes place whateve¥, is zero or not. Therefore, it holds
true if y; in qﬁg is replaced by; defined by (13) and both
andr are replaced by.
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