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Pathwise Convergence of Recursive Identification
Algorithms for Hammerstein Systems

Han-Fu Chen, Fellow, IEEE

Abstract—This paper gives estimates for: 1) coefficients con-
tained in the linear part of the Hammerstein system; 2) the value
of the nonlinear function f(u) in the Hammerstein system at
any u; 3) Ef(ui) and Euy f(ui) with u, denoting the system
input. No assumption is made on structure of f(-). The estimates
given by the stochastic approximation algorithms with expanding
truncations are recursive and convergent to the true values with
probability one. Two numerical examples are given.

Index Terms—Hammerstein system, nonparametric nonlin-
earity, recursive estimate, stochastic approximation, strong
consistency.

1. INTRODUCTION

HE single-input-single-output (SISO) Hammerstein
system considered in the paper consists of two parts: A
nonlinear memoryless element f(-) and a moving average type
linear subsystem with disturbance as presented in Fig. 1.
By u and y;, we denote the system input and output, respec-
tively, and by z;, the observation

2k = Yk + &k (1)

where &, is the observation noise. {y} and {vy} are related by
the linear system as follows:

yrpr = Y djvr—; do=1 v; £ f(u;). (@)

J=0

Because of its importance in engineering applications (see,
e.g., [9], [10], and [21] among others), the Hammerstein system,
in particular, its identification issue has been an active research
topic for many years. When identifying the system presented in
Fig. 1, the only available information is the sequence {uy, 2 },
where {uy} is designed by users for identification purpose.
Based on {uy,z;} we want to identify both the nonlinear
function f(-) and the linear system with v, and y; as its
input and output, respectively. This problem differs from those
considered in [6], [16] for ARMAX systems. First of all, here
a nonlinearity f(-) is involved. Even for the linear part, the
identification problem is distinguished from that discussed in
[6] and [16], because here the input {v} for the linear system
is unavailable.
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Fig. 1. Hammerstein system.

For characterizing the nonlinearity, both parametric [2]-[4],
[8], [15], [18]-[20] and nonparametric [1], [12]-[14], [17] ap-
proaches are used, but almost all existing identification methods
are nonrecursive and almost no result is on convergence with
probability one with only a few possible exceptions to be ad-
dressed later on.

In the parametric approach, the nonlinearity is often consid-
ered as a polynomial with unknown coefficients [2], [18], [19]
and, hence, the system can be written in a linear regression form
with respect to coefficients of the linear subsystem and products
of coefficients in both the polynomial and the linear subsystem.
Therefore, identification methods developed for ARMAX sys-
tems are possible to be applied to this case. Besides the polyno-
mial type of nonlinearity, other types of parametric nonlinearity
are also discussed, e.g., linear functions with dead zone in [20],
the multilayer feedforward neural network in [3], etc.

In [14], a nonparametric nonlinear function f(-) is consid-
ered. An approximating polynomial is constructed and shown to
converge to f(-) in probability and in the mean square sense in a
finite interval as the sample size n increases. However, for each
n the whole input sequence {ux,k = 1,...,n} has to be rede-
fined with distribution different from that for n — 1, and hence
the approximating polynomial has to be reconstructed at each
step without recursion. In [17], the nonlinear function f(-) mul-
tiplied by the input density is expanded to the series of Legendre
polynomials and the identification problem is reduced to esti-
mating coefficients of the first N(n) terms in the series. Since
the number N (n) of parameters to be estimated increases with
n, the identification method is nonrecursive too. In the most re-
cent paper [1] dealing with frequency domain identification, in-
stead of white noise, the sinusoidal inputs are applied to a con-
tinuous-time Hammerstein system, and the nonlinear function is
expanded to a Fourier series. As in [17], the nonlinearity iden-
tification reduces to estimating coefficients in the Fourier ex-
pansion. The estimates are nonrecursive, and the convergence
in probability is proved.

As previously mentioned, up until now there have been only
a few papers on recursive and pathwise convergent algorithms
for identifying the Hammerstein system; [2] and [12] are pos-
sibly among them. In [2], the nonlinearity is parameterized by
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a polynomial with unknown coefficients and the extended least
squares (ELS) algorithm is used to estimate: 1) coefficients of
the polynomial; 2) coefficients of the auto-regression part of the
linear subsystem; and 3) products of coefficients contained in
both the polynomial and the moving average part of the linear
subsystem. In order to finally obtain estimates for coefficients of
the moving average part the authors apply the LS method again.
The algorithm presented there is recursive, but it seems that the
authors aim at showing unbiasedness (see [2, eq. (21)]) rather
than strong consistency of the estimate. For strong consistency
of ELS we refer to [6], which shows that conditions listed in [2,
Th. 2] are not sufficient even ignoring the second application of
LS in [2].

In [12], the author based on stochastic approximation has
nicely presented identification algorithms for both nonlinear and
linear parts in a recursive way and has proved their convergence
in the mean squares sense. However, there are some problems
that remain unsolved. To be specific, instead of estimating the
impulse response & (7)(= ¢T A*~1b), and the value m(u) of the
unknown function mn(+) (i.e., f(+) in the notation of this paper) at
an arbitrary point u, the author of [12] actually estimates k(%)
and am(u) + v, respectively, where 3 = E[ugm(uo)]/Eul,
a = cT'b,and v = ¢’ AEx with ¢, b, A, and = given by the
state representation of the linear system

Xpi1 = AX, +bm(uyn)  yn =’ X,
We see that (3 depends on the correlation between the input and
output of the nonlinearity, and o and y depend on the unknown
state representation of the linear system. Consequently, coeffi-
cients a, 3, and ~ are unknown, and based on the algorithms
given by [12] one can still not completely identify the Hammer-
stein system unless to assume some of them to be known.

Concerning the system discussed in the paper it is noticed
that considering the finite order 7 is a restriction, which is not
imposed in [12], [13], and [17], but any stable linear system
with constant coefficients can be expressed as a moving average
process of infinite order, and, hence, (2) with sufficiently large r
gives a good approximation. It is also noticed that the observa-
tion noise £, may not be zero mean. In contrast to K¢, = 0 as
required in the previous works, we allow E¢; # 0 but require
Ef k — 0

The purpose of this paper is to identify the Hammerstein
system in a recursive way and to provide almost surely conver-
gent estimates. More precisely, f(u) forany u, d;, i =1,...,7,
as well as E f (u,) and Fuyvy, are to be strongly consistently es-
timated. We share the idea proposed in [12] of using stochastic
approximation with kernels for identifying Hammerstein sys-
tems, but the algorithms and the analysis method used here
differ from those given in [12]. The algorithms are now trun-
cated at expanding bounds and a sample-path based TS (trajec-
tory-subsequence) method is applied for analyzing convergence
of estimates with probability one.

The rest of the paper is arranged as follows. In Section II, the
algorithms are described and conditions to be used are listed. In
Section III, strong consistency of estimates for coefficients in
the linear system is proved, while strong consistency of the esti-
mate for f(u) is shown in Section IV. Two numerical examples
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are presented in Section V. Some concluding remarks are given
in Section VI.

II. ESTIMATION ALGORITHMS

Let the SISO Hammerstein system under consideration be
presented by Fig. 1 with observation and linear part given by
(1) and (2), respectively. For any fixed u € R, it is required
to estimate f( ), Ef(ug), Eugf(ur), and the coefficients d;,
1 = 1,...,r of the linear system (2).

We now define system input {uy} and the kernel function to
be used in the identification algorithms. Let {uy, } be a sequence
of bounded independent and identically distributed (iid) random
variables |ug| < ¢1, Vi = 1,2,..., with Euy = 0 and with
density p(-), where ¢; > 0 is a constant ¢; # |u| and and p(-)
is continuous at u with p(u) > 0. Let {uy, } be also independent
of the observation noise {&}.

The kernel function wy, to be used for estimating f(u) is de-
fined as follows:

wp, & L o=/ 3)
by,

where b, = 1/k° with § € (0,1/2).
It is clear that

B, :bi e~ (=0)/b0 ()

—cy

/Wmuwk Py (2 NGO
4 u—f——) dt — /7p(u
\/— cl+u /bk \/5 k—oo

4)
and
E(Vbywy)’
1 2
= e~ 2 E=0/0) () das
by,

1 2(c1—u) /by .
=/ (o
—2(c14u) /by

2
—x

bkf ™
+3>ﬁ;;f%W)

)

Remark 1: Inlieuof e we may take any other measurable
function K (-) satisfying the following conditions:

/ |K(z)|dz < oo and / K?(z)dz < o0

to serve as the kernel function.

We impose the following conditions.

Al) The nonlinear function f(-) is measurable, locally
bounded, and continuous at .
The observation noise {{} is a sequence of mutu-
ally independent random variables with F ¢}, 2 0 and

A2)

supy, B& < oo.
In what follows, denote

E¢& 2 v and & =&, — B
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To consistently estimate {d;}, conditions Al) and
A2) are sufficient. It is worth noting that no assumption
is made on the structure of f(-).
In order to uniquely define f(u) and Evy, we need
a condition to guarantee that the response of the linear
subsystem to a nonzero constant input is nonzero.
A3) Z;ZO d; # 0.

In what follows, 14 always denotes the indicator of a set A:
1= { é, ifweA

otherwise
for example, if X and Y are two random variables, then [ [(X>Y]
equals 1 for those w for which X (w) > Y (w), and zero,
otherwise.

For estimating d;, 2 = 1,...,r and Fuyv; we define the sto-
chastic approximation algorithms with expanding truncations,
shown in (6)—(7) at the bottom of the page, with an initial value
0o(i),i =0,1,...,r, where ar = 1/k and { M}, } is a sequence
of increasing real numbers diverging to infinity

My >0 Mgy > My VE, and Mkk—> 0.

It is worth noting that 0 (0) is used to estimate p 2 Fuyvy,
while 0 (7),7 =1, ...,r are used to estimate pd;, i = 1,...,7,
respectively.

We explain the algorithm (6)—(7). The truncations at ex-
panding bounds applied in (6) are used to prevent the estimates
from diverging to infinity. o (7) is the number of truncations
occurred up-to time k. When calculating 6,41 (7) the truncation
bound is M,, (;). If a truncation has actually happened, then
together with pulling back the algorithm to zero the truncation
bound is extended from My, (;) to M, ;)41 for the next step.
As to be pointed out in Remark 4, the truncation of the algo-
rithm ceases in a finite time and, hence, only a finite number
of {M}} is used in the algorithm. Therefore, the asymptotic
convergence rate of (i) should not depend on the selection

We now define algorithms for estimating f(u) and E f (u1)

- Vo= (Vk—2k41): if [ve—ar(Ve—zr41)| < My,
ak 0, otherwise

®)
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k—1
=Y ipmayy-zpoi>a, ) M0 =0 ®)
j=1

with an initial value ~g, and (10)—(11), as shown at the bottom
of the page, with an initial value p9(u), where wy, is the kernel
given by (3), ar = 1/k, by = 1/k® with § € (0,1/2), and
{ M.} may be any sequence of positive and increasing real num-
bers diverging to infinity, not necessarily to be the same as that
used in (6)—(7).

Both (8)—(9) and (10)—(11) are also stochastic approxima-
tion algorithms with expanding truncations. The estimate {~}
defined by (8)(9) is used to estimate F f(u) Z;:o d;, while
{pr(u)} defined by (10)(11) is for estimating

u)+ Y d;Ef(u).
j=1

It is worth pointing out that we cannot expect a fast rate of con-
vergence from all algorithms (6)—(7), (8)—(9), and (10)—(11),
since the asymptotic rate of stochastic approximation algo-
rithms is not faster than O(1/v/k). To be more precise, if the
stochastic approximation algorithm converges to the root z° of
a regression function h(-) with step-size equal to 1/k, then the
rate of convergence is o(1/k®) as k — oo for any 6 € (0,1/2)
such that H + §I remains stable, where H is the Hessian of
h(-) at 2°. For details, we refer to [5, Secs. 3.1 and 3.2].

Remark 2: The sequences {ay } and {b;,} may be more gen-
eral. As a matter of fact, any sequences of positive real numbers
satisfying the following conditions (12)—(13) work well:

oo
E ap = 00

oo 2
—‘—>0 and Z—k < oo. (13)
k=1

ar >0 a — 0 (12)

b >0 bkk—>0

III. STRONGLY CONSISTENT ESTIMATES
FOR {d;}, Eujvi, AND Evq

In this section, we prove that estimates given by (6), (7), and
(8), (9) are strongly consistent, i.e., we recursively derive con-
sistent estimates for coefficients of the linear system, the cor-

o 0k(i) = ar(0k(2) — urzry14i), iF|0k(i) — ar(0k(7) — urzry14i)| < Mo, i)
Or1(d) = {0, otherwise ©)
k—1
ok (1) = ZI[|€j(i)—aj(9]-(i)fujzj+1+i)|>Maj(i)]: oo(i) =0 )
=1
pe(w) — agwi(pe(w) — zr41), i |pe(w) — arwie(pr () = 2k41)| < My ()
i () = { 0, otherwise (10)
k-1
Ak(u) = D Ty (wy=ajw; (uy () =z5)|> M )]s Ao(w) =0 (1

<.
Il
-
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relation between input and output of the nonlinearity, and the
expectation of the output of nonlinearity.

To be precise, we have the following theorems.

Theorem 1: Assume Al) and A2) hold. Then 6y(i), ¢ =

0,1,...,r, defined by (6)—(7) are strongly consistent
01.(0 ) — P = E(uyf(u1))(= Euyvr) ass (14)
and
0r(1) — pd; as., 1=1,...,7 (15)

k—o0

Remark 3: In order to obtain consistent estimates for
d;, the sequence {uy} should be selected such that p # 0.
This can be done, since f(-) is not identically zero. Then,
Hk(i)/ek(o)k:odi a.s. Therefore, 6(0) should be monitored:

If 0;(0) approaches to zero, then the distribution of {uy}
should be modified accordingly.
Theorem 2: Assume A1)-A3) hold and p # 0. Then

” —1
k <Z 9k(i)> kjo’oEf(Ul)(:
1=0

where 6j(i) and v, are defined by (6)—(7) and (8)-(9),
respectively.

The proof of these theorems is based on a general conver-
gence theorem (GCT) for stochastic approximation algorithms
with expanding truncations. For its proof, we refer to [5, Th.
2.2.1] or to [11, App.]. For convenience in reading this paper,
let us formulate GCT for the special case where the root z° of
g(+) is single: g(z°) = 0.

We need the following conditions.

Cl)

C2) Thereis a cc;ﬁci)nuously differentiable function v(-) :
R' — R such that

Evy) as.  (16)

ap > 0,a;, — 0,and Y, ar = oo.

sup  g" (x)vg(z) <0
s<|lz—z0[|<A

for any A > ¢ > 0, where v, () denotes the gradient
of v(+). Further, z* used in (18) is such that

v(z*) < inf w(x) for some ¢y > 0 and ||z*|| < co.

i
llzll=co
C3) For the sample path w under consideration

Z ;€41 = 0

i=ny

VT, € [0,T] (17)

1 li —
im 131_)5;1)p T

for any n, such that z,, converges, where
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We explain these conditions. C1) is an ordinary selection
of the step-size. The first part of C2) means that the product
g7 (x)v,(z) should be negative in-between two spheres cen-
tered at 2.° with any positive radiuses. For C3) to hold, either of
the following conditions ekk—> Oor Z r—1 Ok€k+1 1s sufficient.

In this case, (17) is satisfied along the whole sequence {x,,},
but in many applications before establishing the convergence of
{zn}, (17) may be verified along any convergent subsequences
of {z,,} rather than along the whole sequence. This can be seen
from the proof of Theorem 3 to be given later on. C4) is very
general without any growth rate restriction.

General Convergence Theorem (GCT for the Special Case
of Single Root): Assume C1), C2), and C4) hold. Let {x} be
given by the following algorithm:

| ertarypsr, i ||zgtaryr1] < My,

e { T*, otherwise (18)
k—1

Ok = ZIHIwﬁaiyiH\bMaJ o0=0 (19)
i=1

Ye+1 = g(.’L‘k) + €k+1- (20)

Then z;, — 2 for those w where C3 holds.

Remark 4 Tn the proof of GCT [5] it is shown that the
number of truncations for each sample path w where C3) holds
is finite and, hence, only a finite number ( which may depend
on w) of { M}, } is used in the algorithm. Therefore, the selection
of { M.} asymptotically should not effect the convergence rate
of { Tk } .

Proof of Theorem 1: We rewrite (6) as shown in (21) at the
bottom of the page, where

€t1(i) = —upzpq14i + dip, 1=0,1,...,7  (22)

The linear function ¢(9) () £ —(z—d;p) in (21) corresponds to
the regression function g(z) in GCT. The root z°(i) of g(* )( -)is
unique 2°(7) = pd;,i = 0,1, ..., 7. Itis clear that |2 — z°(7) |?
may serve as the Lyapunov function required in C2). The fixed
point z* in (18) is now equal to zero in (21). Thus, condi-
tions C1), C2), and C4) are satisfied. Therefore, the assertion
of Theorem 1 follows from GCT if we can show that

m(n t)

E ajejr1(i

=0 Vtelo,T],

lim lim Sup —
T—0 npnooo

i=0,1,....r (23)

For (23), it suffices to show that

m m(n,t) r
m(k,T) = max < m : Z a; <T %i_% hrrlisogp T Z a;u; Z dsVjtims+Tjt1+i T Ej+it1
= = o
C4) g(-) is measurable and locally bounded. =0 (24
9k+1(i) — {gk(L) — ak(ak(i) - dip) - ak€k+1(i), if |9k(t) - ak(ﬂk(z) — dlp) - ak6k+1( )| < Mo-k( ) (21)

otherwise
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and
m(n,t)
%igl liTILn_)S;;p T Z aj(ujd;v; —dip) =0 Yt € [0,T].
j=n
(25)

Notice that {ujr]-+i+1,j = 1,2,.. .}, {u]'fj+i+1,j =
1,2,...}, and {u;jv; — p} are sequences of mutually indepen-
dent random variables with zero mean and bounded second
moments. Therefore, [7]

E ajU;Tj i1 < 00 &S, E a;u;€ir1 <00 a.s.
j=1 j=1

and ) a;(ujv; - p)
j=1

and for (24) and (25), it suffices to show

< 00 a.s.

m(n,t) r
hmhmsu— a;u; dsvivi_s | =0Vt €[0,T
n_)oop z;l gt SZ:O Jti [ ]-

s#£1

(26)
Rewriting Zm(n ) aju; Z Od vjti—s as the sum of two
terms
m(n t) m n t)
Z a;u; Zd Viyi—s — Bvy) + Z a;u; Zd Evy

s;ﬁz s;ﬁz

27
and noticing that {u; (vj+i—s — Ev1)} is a martingale difference
sequence whatever ¢ > s or ¢ < s and both {u;} and {v;} are
bounded, we see that [7]

oo r
Z a;u; Z ds('Uj-i—i—s - E’Ul) < 00 a.s..
=1 s=0

s#1

By this and by noticing Z]oil aju; < oo a.s., the sum given

in (26) tends to zero as n — oo. Thus, we have shown that

both (24) and (25) are true, which in turn implies (23), and the

theorem follows from GCT. O
Proof of Theorem 2: We first show that

Te = 2; d;i B f(u1). (28)
o

We write (18) as (29), as shown at the bottom of the page,
where
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Since in (29) the regression function is linear, similar to
Theorem 1, for (28) we need only to prove

m(n,t)

fim limsup 72 Z a;ojp1=0  Vte[0,7]. (3l
j=n
Since 3207, as )i dj(vs—j — Ef(u1)) < oo as. and

> asésy1 < 00 as., (31) follows from Efkk—> 0 by A2).
Thus, by GCT we have shown (28).
Since 3 7_, d; # 0 by A3), we have
-1
Vi ZO d; k:oEf(ul) a.s (32)
By Theorem 1, we have (A;(0)) " Yoo bk (z)k? > icodj
a.s., which incorporating with (32) yields the assertion of the
theorem. O

IV. STRONGLY CONSISTENT ESTIMATE FOR f(u)

We now proceed to estimate the value of the nonlinear func-
tion at any fixed point u. We have the following theorem.
Theorem 3: Assume Al) and A2) hold. Then

uk(u)k::ou(u) £ f(u) + z:l d;Ef(u1) as (33)
=
Further, if in addition, A3) holds, then
2 Ox(i) e
pie () — 2 — f(u) as. 34)

JZT: gk( ) k—oo0

where 0y (7), &, and p(u) are defined by (6)—(7), (8)—(9), and
(10)—(11), respectively.

To prove the theorem, we start with a lemma.

Lemma 1: Assume A1) and A2) hold. Then, there is 2y with
Py = 1 such that for any fixed sample path w € Qg if p,,, (1)
is a convergent subsequence of { iz () }: fin, (v )k—> f(u), then

for all large enough & and sufficiently small 7" > 0

/LS+1(U) = ,U,S(U) - asws(.u's(u) - Zs—‘,—l) (35)
and
st (w) = pony (W)l < €T, 8 = ng, g + 1, ,m(ng, T)
(36)

where c¢ is a constant independent of k£ but may depend on
sample path w.
Proof: Define

bhp1 = 21 — Y d; Ef (w). 30) Pr; = (I—apwy) ... (1—ajw;),  k>j, @5 =1
< (37)
eyt = 4 Ve G (% - EO djEf(U1)> + ardry1, if |y — ax (% - ];] diEf(u1) — 5k+1> < M,, (29)

0,

otherwise
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By (4), (5), and the fact that )~ | a} /by < oo, we have Combining (40), (42), and (43), we arrive at
Z \/7% Vb Ew;) < 0 as. (3g) Dot (W) Z Do jrr0wizjp1 = pim, (u) + O(T)
J=nk
- s € [ng,...,m(ng,T)]. (44)
since {/bjw;} is a sequence of mutually independent random  This means that ., (u) with s varying in [ng, ..., m(ng, T)] is
variables with bounded second moments. Consequently iterated according to
° ° a; s (u) = ps(u) — asws(ps(u) — 2o41)
s — Sbws — /b Ews
_Z @;jW; Z /b; (V/bjw; i ;) and the left-hand side of (44) is nothing else but psy1(u).
j=nu j=ng

R Let N denote the exceptional set where at least one of (38)

+ Z a;Ew; = O(T) Vs € [n, ...,m(neT)] (39) and (41) does not hold. Then, we may take €2g = QN Tt is
clear P}y = 1. The lemma is proved. O

Proof of Theorem 3: We first prove (33). For this, we
rewrite (10) as (45), as shown at the bottom of the page, where

Jj=ny
as k — oo and T' — 0. This implies that

S

log (Ds,nk = O( Z ajwj) ek+1(u) =
j=nu wi(pr (1) = Zpg1) — Vap(w) (s Zd Ef(u))

and
4
oy =1+ O(T) Vs € [ ,m(ng, T)]  (40) (46)
The linear function
ask — ooand T — 0.

Denoting E|¢;| £ ¢;, we have Vp(u) Zd Ef(u1)) 47)
Z w;|éj41| — Bwjcjir) < 00 a.s. 1) corresponds to the regression functlon g(x) in GCT. The root of
= T o the linear function (47) is f(u) + Z§=1 d; E f(u1). Therefore,

d the conclusion (33) follows from GCT if we can show that there

an is 1 with Py = 1 such that for any sample path w € ; we
s s have
Y Cinagwibin| < Y ajwléinl 1 ™)
j=mn j=ng hm lim sup T Z ajejy1(u) =0 VI, € [0,T] (48)
T—0 k—oo

s J=ng

= Z aj(wil&jta| — Fwjcjy1) for any {n} such that j,,, (u) converges: j,, (u )k—> a(u).
/ Zm's Let us first define the exceptional set. By the convergence
+ Z a;Ewjcii1 = O(T) theorem for martingale difference sequences [7] all series listed

j=n here are convergent, a.s.
=ny

Vs € [ng,...,m(ng, T)] (42) Zaﬂ ~ Buj) <oco as.  (49)
ask — ooand T — 0.

Since wj is positive, from (39) and the boundedness of {v;},

it follows that > aj(jw; — Bw;| — Blw; — Fw;|) <oo as.  (50)

=1
Z <I’s,j+1ajwjyj+1 Z b, JH1a; Wy Zdlv] 1 Zajwjéjﬂ <00 as. (51)
J=ny J=ng ‘
7=1
=0 Z ajw; | =O(T). (43) Zaj w;v; — Bwjvj) <oo as.  (52)
Jj=ng j=1

( () — ap/mp(u)
(1) = £t i T
_ . o if e (u) — apv/mp(u) | pr(u) — f(u) = >0 diEf(ur) — arepqr(u) || < My, (u
i (u) = ¢ ;djEf(ul)> ik () ( )(M (u) = f(u) ]; (u1) +1( )) (w)
—agert1(u)) )
\ 0 otherwise

)

(45)



CHEN: PATHWISE CONVERGENCE OF RECURSIVE IDENTIFICATION ALGORITHMS

and
Zaj(wjvj_s — EBw;Ev;) < o0 as., s=1,2,...,7.
j=1
(53)

Noticing that {r;} is bounded and deterministic and, hence,
Z;ol 2r2/bj < oc. Thus, we have

Zaﬂ"]-i-l

Denote by 91 the set where (41) and (49)—(54) are conver-
gent. Then, P2y = 1 and 1 C 2y where €2 is defined in
Lemma 1.

Let w € ; be fixed, and let (u,,, (v)) be a convergent sub-
sequence: fi,, (u)k? ().

We write e41(u) ?goiven by (46) as a sum

— Ew;) < o0 ass.. (54)

erpr(u) = el (u) + e} (u) + e (u) + e, (55)
where

e (u) = (wi — V/7p(u)) s () (56)

el (u) = — (wrvr — vap(u) f(u)) (57)

61(21( )=— ('wkzdlvk 1 — Vrp(u ZdlE'Ul) (58)
(4)

€pp1 = — Wkt1- (59)
We now show
m(ny,Th)
%i_n)lolilrcrisogpf Z a]egﬁl( ) =0, 1=1,2,3,4
o VT € [0,T] (60)

4 _ (4
where egﬁl(u) = 35'421-
follows immediately.
For : = 1, we have

If this is done, then the desired (48)

m(nk.,Tk)
> ajp(u)(w; — Vrp(u))
Jj=ni
m(ng,Ty)
N apuj(u)(w; — Ew;)
Jj=ng
m(nk,Tk.)
+ D au(w)(Buy — vap(u)
J=nk
m(nk,Tk.)
= D ai(pi(w) — p(w)(w; — Bwy)
Jj=ni
m(ny,Ty)
+ a(u) Z aj(w; — Ew;)
J=ng
m(nk,Tk.)
+ Y ap(u)(Bw; — vap(u).  (61)
J=ng

On the right-hand side of (61), the second term tends to zero as
k — oo by (49), the last term tends to zero as k — oo by (4)
and (36), while the first term can be estimated as follows.
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By (36) and iy, (u)k—> A(u), we have
m(nk,Tk)
S a5 (w) = filw) (w; — Euw;)
J=nk
m(nk,Tk)
=0(T) Y aj(|lwj—Ew;|—Elwj— Ew;|+ E|w; — Ew;|)
J=ng
and by (50) and (4), it follows that
m(nk,Tk)
A limsup 75 a;j(pj(u) — () (w; — Ew;)
J="nk
1 m(nk,Tk)
= :,11121011’13l)sol<1>p TO( ) Z a;Elw; — Ewj]|
J=ng
m(nk,Tk)
= lim hglsogp 0(1) Z a;Ew; = 0. (62)
j=ng

Thus, we have shown (60) for 7 = 1. We now show (60) for
1= 2.

We have
1m(nk,Tk)
T Z a;(w;v; — Vmp(u) f(u))
J=nk
'm(nk,Tk)
T Z j(wjv; — Bw;juv;)
J=nk
m(n;\,T;\
r 2 ([ e e
j=np (&1 J

— Vap(w)f(u).

Similar to (4), it is shown that
T ) )2
| e e ) fade — Van() fw).
—c1 7]

Consequently, the last term in (63) tends to zero as k — oo,
while the first term on the right-hand side of (63) also tends to
zero by (52). This proves (60) for : = 2.

We now show (60) for : = 3. By (4), it suffices to show

(63)

m(nk,Tk) T T
lim limsup — a; | w; divi_i—Fw; diEv

=0 (64)
but which is a consequence of (53).
Finally, for (60) for : = 4 by (51), we need only to show
m(nk ,Tk.)
lim i —
1m lim sup T

T—0 koo

By (54), we have
m(ny,T)
Z AjW;5Tj+1
J=ng
m(ng,Ty)

:hmohmsupT Z a;(w;

k—oo P
=N
m(ng,T)
= hm lim sup T E a;Ew;r;q

T—0 koo

QjW;Tj41 = 0. (65)

Jj=ng
lim li —
im lim sup

T—-0 p—co

— Ewj + Ewj)rjn

Jj=ng
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which tends to zero by (4) and r; — 0 by A2.
J—00

Thus, we have shown (48), and at same time completed the
proof of (33).

Putting consistent estimates obtained in Theorems 1 and 2
into (33) leads to (34).

V. EXAMPLES

We now give two numerical examples demonstrating how the
nonparameterized unknown nonlinear function f(u) is approx-
imated by the estimate given by the left-hand side of (34). In
both examples, we take

vk = f(ur)
by =k~ /4

Y = vk — 0.5v 1 2k = Yk + &k

ap = k34
{ur} to be a sequence of iid random variables uniformly dis-
tributed over [—2, 2], and assume &;, € N'(0,0.1).

Example 1: f(u) = sign(u)y/|u|

Example 2: f(u) = u® + (1/4)u® — 3/4

In both Figs. 2 and 3, the solid line is the true function f(u)
and the dashed line represents the estimate of f(u). The estimate
is derived in the following way: the interval [—1.5, 1.5] where
the function is defined on is equally divided into 100 subinter-
vals, and at each endpoint u of subintervals f(u) is estimated
by the left-hand side of (34). The dashed line corresponds to the
estimate for f(u) at & = 1000.

For the linear part, there is only one parameter d; = —0.5 to
be estimated. At k = 1000, the estimates for d; are —0.4962
and —0.4578 for examples 1 and 2, respectively.

The numerical simulation justifies the strong consistency the-
oretically proved in Sections III and I'V.

VI. CONCLUDING REMARKS

In this paper, new algorithms are proposed for identifying
Hammerstein systems. We note the following properties of the
obtained results, which are justified by numerical simulation.

1) The estimates are recursive and, thus, they are updated

after receiving new data uy, and z;41 for each k.
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ii) The estimates are convergent to the true values with prob-
ability one.

iii) No structure assumption is made on the nonlinearity
Q2

iv) Not only f(u) and coefficients of the linear system but
also E f(uy) and the correlation Fuy f(uy) between the
input and output of the nonlinear part are strongly consis-
tently estimated.

For further research it is natural to consider more general
linear subsystems, e.g., general ARMAX systems. The multi-
dimensional systems and correlated observation noises are also
of interest to consider.
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