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Fig. 3. Error convergence using periodic adaptation (constant b).

Fig. 4. Error convergence using hybrid adaptation.

First, we try a typical adaptive control using differential updating
law, like the one shown in (5). Fig. 1 shows the maximum tracking
error over each period. By virtue of the rapid time-varying nature, the
tracking error does not converge.

Then we apply the new adaptive method. Fig. 2 shows the maximum
tracking error over each period. We can clearly see the effectiveness,
as the tracking error has been reduced to less than 4% after 50 periods.

Next, let b = 3 be an unknown constant. Still using the same periodic
adaptation law, the result is shown in Fig. 3. The result is more or less
the same as the preceding case.

Finally, assume that we know a priori that b is an unknown constant,
the hybrid adaptation law is adopted and the result is shown in Fig. 4.
The performance improvement is immediately obvious.

V. CONCLUSION

To recap, in this note we proposed a new adaptive control approach
characterized by periodic parameter adaptation, which complements
the existing adaptive control characterized by instantaneous adaptation.
By virtue of the periodic adaptation, the new approach is applicable
to periodic parameters which can be rapidly time-varying. The only
prior knowledge needed in the periodic adaptation is the periodicity. A
hybrid differential-periodic adaptation scheme is also proposed when
more of the parameter knowledge is available. The validity of the new
approach is confirmed through theoretical analysis and numerical sim-
ulations.
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Output Tracking for Nonlinear Stochastic Systems by
Iterative Learning Control

Han-Fu Chen and Hai-Tao Fang

Abstract—An iterative learning control (ILC) algorithm, which in
essence is a stochastic approximation algorithm, is proposed for output
tracking for nonlinear stochastic systems with unknown dynamics and
unknown noise statistics. The nonlinear function of the system dynamics is
allowed to grow up as fast as a polynomial of any degree, but the system is
linear with respect to control. It is proved that the ILC generated by the al-
gorithm a.s. converges to the optimal one at each time [0 1 . . . ]
and the output tracking error is asymptotically minimized in the mean
square sense as the number of iterates tends to infinity, although the con-
vergence rate is rather slow. The only information used in the algorithm is
the noisy observation of the system output and the reference signal ( ).
When the system state equation is free of noise and the system output is
realizable, then the exact state tracking is asymptotically achieved and the
tracking error is purely due to the observation noise.

Index Terms—Almost sure (a.s.) convergence, iterative learning control,
nonlinear stochastic system, output tracking, stochastic approximation.

I. INTRODUCTION

For control systems, where the same task is performed repeatedly,
the system inputs and outputs of previous cycles may be used to
improve control performance. This is the motivation to use iterative
learning control (ILC), which was first introduced in [2] for robot
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control. The idea of ILC has naturally attracted a growing attention
from researchers in the area of systems and control [8], [9], [11], [14]
among others, and people try to apply ILC not only to robots but also
to other systems such as, speed control of servomotors [13], extruders
[17], etc.

Various important issues such as robustness, stability, reinitialization
errors, and convergence among others have been addressed in the afore-
mentioned papers. As concerns performance indexes, not only tracking
error but also quadratic criteria are discussed [1], [16]. However, con-
trol systems considered in previous papers are deterministic in essence,
assuming the boundedness of possibly existing uncertainties, distur-
bances, and measurement errors. In addition, rather restrictive condi-
tions are imposed to guarantee a satisfactory control performance, for
example, the global Lipschitz condition is imposed on the nonlinear
dynamics in [8], and the desired trajectory for state is assumed to be
given in [14].

There are only a few papers that consider ILC for stochastic systems
taking the random nature of systems into account. In [6], the pole as-
signment problems is solved by learning for single input–single output
linear stochastic systems. In [18] and [19], the ILC algorithms leading
the tracking error tending to zero in the mean square sense are proposed
for linear stochastic systems.

In [5] for the system considered in [18] and [19], a stochastic ap-
proximation (SA) based ILC algorithm is proposed, and is proved to
be convergent to the optimal control under conditions much weaker
than those used in [18] and [19].

In this note, an SA-based ILC algorithm is proposed for nonlinear
stochastic systems, where the nonlinear functions are allowed to grow
up as fast as polynomials of any degree. The algorithm converges to
the optimal control, although the rate is rather slow, and the long run
average of the output tracking errors is minimized as the number of
iterates increases. For the case where the state equation is free of noise,
the exact state tracking is asymptotically achieved and the asymptotic
output tracking error is caused purely by the observation noise.

In Section II, the problem is stated, and the optimal control mini-
mizing the output tracking error in the mean square sense for each time
t 2 [0; 1; . . . ; N ] is found. The ILC algorithm is defined in Section III,
while its convergence to the optimal one is proved in Section IV, where
the exact state tracking is also shown when the state equation is free of
noise. A brief conclusion is given in Section V.

II. OPTIMAL CONTROL

Consider the discrete-time nonlinear stochastic system described by
the following difference equations:

x(t+ 1; k) = f(t; x(t; k)) +B(t; x(t; k))u(t; k)

+ w(t+ 1; k) (1)

y(t+ 1; k) =C(t+ 1)x(t+ 1; k) + v(t+ 1; k) (2)

where t and k denote time and iteration index, respectively, and
x(t; k) 2 p, u(t; k) 2 r , w(t; k) 2 p, and y(t; k) 2 q ,
8 t 2 [0; . . . ; N ] for some positive integer N . Here, x(t; k),
u(t; k), and y(t; k) are the system state, input (control), and output,
respectively, while w(t; k) and v(t; k) denote the system noise and
observation noise, respectively.

Let fyd(t)g, t 2 [0; . . . ; N ], be the desired output trajectory. We
want the difference between y(t; k) and yd(t) in the long run average
sense to be minimized as k ! 1, 8 t 2 [0; . . . ; N ].

Let fFkg be a family of increasing �-algebras such that
x(t; k), y(t; k), w(t; k), and v(t; k) all are Fk-measurable,
8 t 2 [0; 1; . . . ; N ], and Fk is independent of fw(t; l); v(t; l); l =

k + i; i = 1; 2; . . . ; 8 t 2 [0; 1; . . . ; N ]g, where for convenience of
writing w(0; l) is defined as w(0; l) x(0; l)� Ex(0; l).

The control u(t; k) should iteratively be defined by observations up
to but not including the present iterate.

Define the set of admissible controls as follows:

U = u(t; k) 2 Fk�1; sup
k

u(t; k) <1 a:s:;

t = 0; 1; . . . ; N � 1; k = 0; 1; 2; . . . : (3)

The control objective is to find fu0(t; k); k = 0; 1; . . .g 2 U such that

inf
fu(t;j);j=0;1;...g2U

J(t+ 1; fu(t; j); j = 0; 1; . . .g)

= J(t+ 1; fu0(t; k); k = 0; 1; . . .g) (4)

where

J(t+ 1; fu(t; j); j = 0; 1; . . .g)

lim sup
n!1

1

n

n

k=1

ky(t+ 1; k)� yd(t+ 1)k2:(5)

The following conditions will be needed.

A1) For any t 2 [0; . . . ; N ], f(t; x) andB(t; x) are continuous in
x, and there are real numbers l, c, and b such that kf(t; x)k+
kB(t; x)k � ckxkl+b as kxk ! 18 t 2 [0; . . . ; N ], where
kAk =

ij
jaij j2 with aij being the elements of a matrix

A.
A2) q � r and for any x 2 p and t 2 [0; . . . ; N ]

P (t; x) B
T (t; x)CT (t+ 1)C(t+ 1)B(t; x) (6)

is positive definite.
A3) For any t 2 [0; . . . ; N ], both sequences of random vectors

fw(t; k); k = 1; 2; . . .g and fv(t; k); k = 1; 2; . . .g
are i.i.d. and mutually independent with zero mean and
Ekw(t; k)km < 1, Ekv(t; k)k2(1+) < 1 for any integer
m > 0 and some  2 (0; 1]. The covariance matrices
Ew(t; k)w(t; k)T Rw

t and Ev(t; k)v(t; k)T Rv
t are

unknown 8 k = 1; 2; . . ..
A4) fx(0; k); k = 1; 2; . . .g is a sequence of i.i.d. random vectors,

independent of both fw(t; k); t 2 [1; . . . ; N ]; k = 1; 2; . . .g
and fv(t; k); t 2 [0; . . . ; N ]; k = 1; 2; . . .g with
Ekx(0; k)km < 1 for any integer m > 0. The co-
variance matrix Rx

0 of fx(0; k)g is unknown.
If A1), A2), and A4) hold, then the vector u0(t) is well-defined for

t = 0:

u
0(t) =�[EP (t; x0(t; k))]�1

� E[BT (t; x0(t; k))CT (t+ 1)f(t; x0(t; k))]

�E[BT (t; x0(t; k))]CT (t+ 1)yd(t+ 1) (7)

which is optimal in the sense that

EkC(t+ 1)[f(t; x0(t; k)) +B(t; x0(t; k))u0(t)]�yd(t+ 1)k

=min
u
EkC(t+ 1)[f(t; x0(t; k)) +B(t; x0(t; k))u]�yd(t+ 1)k:

(8)
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Set x0(0; k) � x(0; k) and define

x
0(1; k) = f(0; x0(0; k)) +B(0; x0(0; k))u0(0) + w(1; k): (9)

Since both fx0(0; k) = x(0; k)g and fw(1; k)g are sequences of i.i.d.
random vectors and they are mutually independent, fx0(1; k)g is a se-
quence of i.i.d. random vectors and x0(1; k) is independent of Fk�1.

Inductively, assume that fx0(t; k)g is a sequence of i.i.d. random
vectors and that x0(t; k) 2 Fk but x0(t; k) is independent of Fk�1.
Then, under A1), A2), and A4), the deterministic vector u0(t) given
by (7) is well defined and (8) takes place. Denote

x
0(t+ 1; k) = f(t; x0(t; k)) +B(t; x0(t; k))u0(t)

+ w(t+ 1; k) (10)

x(t+ 1; k) = f(t; x(t; k)) +B(t; x(t; k))u(t; k)

+ w(t+ 1; k) (11)

"(t; k) =x(t; k)� x
0(t; k) (12)

and

�u(t; k) = u(t; k)� u
0(t) (13)

t = 0; 1; . . . ; N , k = 1; 2; . . ..
It is clear that fx0(t+ 1; k)g is a sequence of i.i.d. random vectors,

and x0(t+ 1; k) 2 Fk but x0(t+ 1; k) is independent of Fk�1.
By A1), A3), and A4), inductively, it is seen that

Ekx0(t; k)km < 1 8m > 0 8 t 2 [0; 1; . . . ; N ]

8 k = 1; 2; . . . : (14)

Therefore, by induction, from (7) and (8) the vectors
u0(0); u0(1); . . . ; u0(N � 1) are well defined, but they are not
available because f(�; �), B(�; �), and C(�) are unknown.
Theorem 1: Assume A1)–A4) hold. Then, fu0(t)g defined by (7)

is optimal for the performance index (4). Further, any fu(t; k); k =
0; 1; 2; . . .g 2 U with �u(t; k) !

k!1

0 a.s., 8 t = 0; 1; . . . ; N � 1 is

also optimal, where �u(t; k) is given by (13).
Instead of the detailed proof, we only outline the key points.
First, it is shown that

E (k"(t; k)kmjFk�1) !
k!1

0 a:s: 8m > 0 (15)

if �u(s; k) !
k!1

0 a.s., 8 s = 0; . . . ; t � 1, t 2 [1; 2; . . . ; N ]. This

is done by induction by noticing that for the initial step "(1; k) =
B(0; x0(0; k))�u(0; k)

E(k"(1; k)km j Fk�1)

� k�u(0; k)kmE(kB(0; x0(0; k))km)

! 0 a:s: 8m > 0

and by A1) "(1; k) is continuous with respect to x0(0; k) and �u(0; k).
Second, expressing the tracking error at time t = 0

y(1; k)� yd(1) = �(1; k) + C(1)

�B(0; x(0; k))�u(0; k) + '(1; k) (16)

where '(1; k) and �(1; k) are the values of the following functions
evaluated at t = 0:

'(t+ 1; k) C(t+ 1)w(t+ 1; k) + v(t+ 1; k)

(17)

�(t+ 1; k) C(t+ 1)[f(t; x0(t; k))

+B(t; x0(t; k))u0(t)]� yd(t+ 1)

(18)

we find that

lim sup
n!1

1

n

n

k=1

ky(1; k)� yd(1)k
2

= tr(C(1)Rw

1 C
T (1) +R

v

1) + lim sup
n!1

1

n

n

k=1

k�(1; k)k2

+ lim sup
n!1

1

n

n

k=1

kC(1)B(0;x(0; k))�u(0; k)k2 (19)

the minimum of which is achieved when �u(0; k) !
k!1

0 a.s., i.e.,

u(0; k) !
k!1

u0(0) a.s.

Finally, the proof is completed by induction.
By (15), it follows that

lim sup
n!1

1

n

n

k=1

ky(t+ 1; k)� yd(t+ 1)k2

= lim sup
n!1

1

n

n

k=1

k�y0u(t+ 1; k)k2 (20)

where

�y
0

u(t+ 1; k) = �(t+ 1; k) + C(t+ 1)

�B(t; x0(t; k))�u(t; k) + '(t+ 1; k): (21)

From (20) and (21), it is concluded that u(t; k) 2 U with
�u(t; k) !

k!1

0 is optimal.

Remark 1: Since u0(t) is deterministic, the minimum (4) has no
change if U is restricted to

U
0 = fu(t; k) � u(t)

being deterministic and independent of kg:

If u(t; k) � u(t) in (1), then we write

lim sup
n!1

1

n

n

k=1

ky(t+ 1; k)� yd(t+ 1)k J(t+ 1; u(t))

and the problem is reduced to optimizing J(t + 1; u(t)) with respect
to u(t), if all u(s; k), s = 0; . . . ; t � 1, are optimal, i.e., u(s; k) =
u0(s) + �u(s; k) with �u(s; k) !

k!1

0 a.s., s = 0; . . . ; t� 1.

From (20) and (21) it follows that

J(t+ 1; u(t)) = tr(C(t+ 1)Rw

t+1C
T (t+ 1) +R

v

t+1)

+ lim sup
n!1

1

n

n

k=1

k�(t+ 1; k)k2: (22)
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III. ILC

We now define the ILC algorithm to generate the control sequence
fu(t; k); k = 1; 2; . . .g for each t 2 [0; . . . ; N ] such that the perfor-
mance (4) is minimized. The ILC algorithm to be defined in essence is
a Kiefer–Wolfowitz (KW) algorithm with expanding truncations and
with randomized differences [7], [20]. Applying random directions in
the KW algorithm was first introduced in [15] and later was reintro-
duced and called as SPSA in [20], which has caused a series of subse-
quent works, e.g., [10] among others. As concerns the method of con-
vergence analysis, in contrast to [20] where the ODE method is used,
here we apply the one that is presented in [4] and called the trajec-
tory-subsequence (TS) method.

To generate u(t; k) we will use the tool vector sequences
f�k(t); k = 1; 2; . . .g, t = 0; . . . ; N , where �k(t) =
(�1

k(t); . . . ;�
r
k(t))

T is an r-dimensional random vector satis-
fying the following conditions.

1) All components �i
k(t), k = 1; 2; . . . ; t = 0; 1; . . . ; N ,

i = 1; . . . ; r are mutually independent and identically dis-
tributed random variables such that

�i
k(t) < d1

1

�i
k(t)

< d2 E
1

�i
k(t)

= 0 (23)

for any k = 0; 1; . . . ; t = 0; . . . ; N , i = 1; . . . ; r, where d1 and
d2 are positive constants.

2) The sequence f�k(t)g is independent of fw(t; k) and
v(t; k) t 2 [0; . . . ; N ]; k = 0; 1; 2; . . .g.

Define the r-dimensional vector

��k(t) =
1

�1
k(t)

; . . . ;
1

�r
k(t)

T

; t = 0; . . . ; N; k = 0; 1; . . . :

(24)

Let fakg, fckg, and fMkg be sequences of positive real numbers
satisfying the following conditions: ak !

k!1
0, 1

k=0 ak = 1,

ck !
k!1

0, 1
k=0(ak=ck)

1+ < 1, and Mk+1 > Mk ,

8 k = 0; 1; 2; . . ., Mk !
k!1

1, where  is the one given in

A3).
For any t 2 [0; . . . ; N ] and k = 1; 2; . . ., we denote the output

tracking error by

�y(t; k) = y(t; k)� yd(t)

where y(t; k) is the observation given by (2).
For any t 2 [0; . . . ; N ] the initial value u(t; 0) is arbitrarily given.

The control at an odd number of iterates is defined to equal its value of
the last iterate disturbed by a small random vector ck�k(t), i.e.,

u(t; 2k + 1) u(t; 2k) + ck�k(t): (25)

The controlu(t; 2k) at an even number of iterates is recursively defined
by

�u(t; 2(k+ 1)) =u(t; 2k)� ak
��k(t)

ck

� (k�y(t+ 1; 2k + 1)k2

� k�y(t+ 1; 2k)k2) (26)

u(t; 2(k+ 1)) = �u(t; 2(k+ 1))

� Ifk�u(t;2(k+1))k�M g (27)

and

�k(t) =

k�1

l=1

Ifk�u(t;2(l+1))k>M g; �0(t) = 0: (28)

The algorithm (26)–(28), together with (25), defines the ILC u(t; k),
k = 0; 1; 2; . . ., t 2 [0; . . . ; N ] to be applied to (1) as system input.

Although the randomized differences are used here like in [7], results
obtained in [7] cannot be applied to the present case. This is because
the main effort in the convergence analysis in [7] is devoted to dealing
with the approximation error caused by replacing the gradient of the
objective function with its finite difference, while here the main con-
cern is the observation noise

z(t; k) k�y(t+ 1; k)k2 � F (t; u(t; k)) (29)

where

F (t; u(t; k)) = (u0(t)� u(t; k))T

�EP (t; x0(t; x))(u0(t)� u(t; k)):

IV. CONVERGENCE OF ILC ALGORITHM

We need only to show that u(t; k) !
k!1

u0(t) a.s. 8 t 2 [0; . . . ; N ],

where u0(t) is given by (7).
Theorem 2: Assume A1)–A4) hold and fyd(t); t = 1; . . . ; Ng is

the desired output. Then, u(t; k) defined by (25)–(28) converges to the
optimal control u0(t) a.s. as k ! 1 for any t 2 [0; . . . ; N ].

Proof: The proof is completed by three steps.

1) We first transform the algorithm (25)–(28) into a Rob-
bins–Monro algorithm with expanding truncations

�u(t; 2(k+ 1)) =u(t; 2k)� ak 2E[P (t; x0(t; k))]

� (u(t; 2k)� u0(t))

+

3

i=1

�i(t; k + 1)

(30)

u(t; 2(k+ 1)) = �u(t; 2(k+ 1))Ifk�u(t;2(k+1))k�M g

(31)

�k(t) =

k�1

l=1

Ifk�u(t;2(l+1))k>M g

(32)

where f�i(t; k); i = 1; 2; 3g are treated as noise terms

�1(t; k + 1) =2( ��k(t)�
T
k (t)� I)E[P (t; x0(t; k)]

� [u(t; 2k)� u0(t)] (33)

�2(t; k + 1) = ck�
T
k (t)E[P (t; x0(t; k)]�k(t) ��k(t) (34)

�3(t; k + 1) =
��k(t)

ck
[z(t; 2k + 1)� z(t; 2k)]: (35)

Since ck !
k!1

0 and �k and ��k are bounded, it is clear that

�2(t; k + 1)! 0 a:s::
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As Fk , introduced in Section II, we take

F2k =�fw(t; l); v(t; l); l � 2k

�m(t);m � k; t = 0; . . . ; Ng (36)

F2k+1 =�fw(t; l); v(t; l); l � 2k + 1; �m(t);m � k

t = 0; . . . ; Ng: (37)

It is clear that u(t; k) is Fk�1-measurable. Let us denote F2k+1

by Gk+1. Then u(t; 2k) is Gk-measurable, and

E(�1(t; k + 1)jGk) = 0: (38)

By the martingale convergence theorem (MCT) it follows that
for any fixed D > 0

1

k=0

ak�1(t; k + 1)Ifku(t;2k)k<Dg <1: (39)

To prove u(t; k) !
k!1

u0(t) a.s., by [3, Th. 1] or [4, Th. 2.3.1],

we need only to verify that for any D > 0

lim
T!0

lim sup
n!1

1

T

m(n;T )

k=n

ak(�3(t; k + 1))Ifku(t;2kgk<Dg = 0 a:s:

(40)
where m(n; T ) maxfm : m

k=n ak < Tg.
2) The proof of the theorem is completed by verifying (40) induc-

tively. Let us first prove (40) for t = 0.
Setting

Q(1; k) =P (0; x(0; k))�EP (0; x(0; k)) (41)

�k(1) = k�(1; 2k + 1) + '(1; 2k + 1)k2

� k�(1;2k) + '(1; 2k)k2 (42)

h2k(1) =BT (0; x(0; 2k))CT (1)[�(1; 2k) + '(1; 2k)]

+
1

2
Q(1; 2k)�u(0; 2k) (43)

h2k+1(1) =BT (0; x(0; 2k + 1))CT (1)

� [�(1; 2k + 1) + '(1; 2k + 1)]

+
1

2
Q(1; 2k + 1)�u(0;2k) (44)

we have

z(0; 2k + 1)� z(0; 2k)

= �k(1) + 2�uT (0; 2k)(h2k+1(1)� h2k(1))

+ c2k�
T
k (0)Q(1;2k + 1)�k(0) + ck�

T
k (0)

� (2h2k+1(1) +Q(1; 2k + 1)�u(0;2k)): (45)

It can be shown that f�3(0; k + 1);Gk+1g is a martingale dif-
ference sequence. By A1), the divergence rate of kf(0; x)k +
kB(0; x)k as kxk ! 1 is not faster than a polynomial, and
hence by A3) and A4) we have

sup
k

E �3(0; k + 1)Ifku(0;2kgk<Dg
1+

jGk <1 8D > 0:

(46)

Since 1
k=0 a1��k =ck

1+
< 1 implies

1
k=0 (ak=ck)

1+ < 1, by MCT we have

1

k=0

ak(�3(0; k + 1))Ifku(0;2kgk<Dg <1; a:s:

8 i = 1; . . . ; r, which verifies (40) for t = 0.
3) Inductively, we now assume u(s; k) � u0(s) !

k!1
0 a.s., s =

0; 1; . . . ; t� 1. We proceed to verify (40) for t.
Let

�y0u(t+ 1; k) C(t+ 1) f t; x0(t; k)

+B(t; x0(t; k))u(t; k)

+ '(t+ 1; k)� yd(t+ 1) (47)

~z(t+ 1; 2k + 1) = k�y0u(t+ 1; 2k + 1)k2

� F (t; u(t; 2k) + ck�k(t))

and

~z(t+ 1; 2k) = k�y0u(t+ 1; 2k)k2 � F (t; u(t; 2k)):

It can be shown that for any D > 0 and i = 1; . . . ; r

1

k=0

ak (~z(t+ 1; 2k + 1)� ~z(t+ 1; 2k))

ck�i
k(t)

�Ifku(t;2kgk<Dg <1; a:s: (48)

Furthermore, we have

z(t+ 1; 2k + 1)� z(t+ 1; 2k)

= ~z(t+ 1; 2k + 1)� ~z(t+ 1; 2k) + �1(t; k)

+ 2ck�2(t; k) + c2k�3(t; k) (49)

where

�1(t; k) = k�1(t; 2k + 1) + �2(t; 2k + 1)u(t;2k)k2

� k�1(t; 2k) + �2(t; 2k)u(t;2k)k
2

+ 2[�1(t; 2k + 1) + �2(t; 2k + 1)u(t;2k)]T

� ��y0u(t+ 1; 2k + 1)

� 2[�1(t; 2k) + �2(t; 2k)u(t;2k)]
T

� �y0u(t+ 1; 2k)

�2(t; k) = 2�T
k (t) �T2 (t; 2k + 1)[�1(t; 2k + 1)

+ 2��y0u(t+ 1; 2k + 1)]

+BT (t; x0(t; 2k + 1))CT (t+ 1)

� [�1(t; 2k + 1) + �2(t; 2k + 1)u(t;2k)]

�3(t; k) =�T
k (t)�

T
2 (t; 2k + 1)

� [�2(t; 2k + 1) + C(t+ 1)

�B(t; x0(t; 2k + 1))]�k(t):

�1(t; k) =C(t+ 1)[f(t; x(t; k))� f(t; x0(t; k))]

�2(t; k) =C(t+ 1)[B(t; x(t; k))�B(t; x0(t; k))]
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and

��y0
u
(t+ 1; 2k + 1) = �y

0
u
(t+ 1; 2k + 1)

�ckC(t+ 1)B(t; x0(t; 2k + 1))�k(t):

By (48), for verifying (40) for t, it suffices to show that

1

k=1

ak

ck�i
k(t)

�1(t; k)Ifku(t;2k)k<Dg <1 a:s: 8D > 0 (50)

which is not difficult to be shown by using MCT.
Thus, we have verified (40) for t and in themeantime have completed

the induction.
We say that fyd(t)g is a realizable trajectory, if there are fud(t)g

and an initial value xd(0) such that

xd(t+ 1) = f(t; xd(t)) +B(t; xd(t))ud(t) (51)

yd(t+ 1) =C(t+ 1)xd(t+ 1): (52)

Theorem 3: If for (1) and (2) w(i; k) � 0, i 2 [0; N ], 8 k =
0; 1; 2; . . ., fyd(t)g is a realizable trajectory, and A1)-A4) are satisfied,
then the exact state tracking is asymptotically achieved

x(t; k) !
k!1

xd(t); a:s: 8 t 2 [0; N ]

and the output tracking error is purely due to the observation noise

lim
n!1

1

n

n

k=1

k�y(t; k)k2 = trR
v
t+1: (53)

Proof: By A3), we derive the following expression:

ud(t) = [P (t; xd(t))]
�1
B
T (t; xd(t))C

T (t+ 1)

�(yd(t+ 1)� C(t+ 1)f(t; xd(t)))

t = 0; 1; . . . ; N . If w(0; k) � 0, then x(0; k) � xd(0). By (7), we
have u0(0) = ud(0), and hence

x(1; k)� x
0(1; k) !

k!1
0; a:s:

and x0(1; k) � xd(1).
Then, the proof is completed by induction.

V. CONCLUSION

For nonlinear stochastic systems we have proposed a stochastic ap-
proximation based ILC algorithm and have shown its convergence to
the optimal control minimizing the output tracking error in the mean
square sense. The conditions used are quite general: The nonlinear dy-
namics is allowed to grow up as fast as a polynomial of any degree and
no noise statistics are required to be known. The only information used
in the algorithm is the noisy observation of the system output. To the
authors’ knowledge this note provides the first results on a.s. conver-
gence of ILC for nonlinear stochastic systems. The limitation of the
results presented in the note consists in that: 1) as shown by simulation
the convergence speed is rather slow; 2) the system is required to be

linear with respect to control; and 3) conditions on the noise are rather
restrictive. This belongs to further research.

REFERENCES

[1] N. Amann, D. H. Owens, and E. Rogers, “Iterative learning control for
discrete-time system with exponential rate of convergence,” IEE Proc.
Control Theory Applications, vol. 143, no. 2, pp. 217–224, 1996.

[2] S. Arimoto, S. Karamura, and F. Miyazaki, “Bettering operation of
robots by learning,” J. Robot. Syst., vol. 1, pp. 123–140, 1984.

[3] H. F. Chen, “Stochastic approximation with state-dependent noise,” Sci.
China (Series E), vol. 43, pp. 531–541, 2000.

[4] , Stochastic Approximation and Its Applications. Dordrecht, The
Netherlands: Kluwer, 2002.

[5] , “Almost surely convergence of iterative learning control for sto-
chastic systems,” Sci. China (Series F), vol. 46, no. 1, pp. 1–13, 2003.

[6] H. F. Chen and X. R. Cao, “Pole assignment of stochastic systems with
unknown coefficients,” Sci. China (Series E), vol. 43, pp. 313–323,
2000.

[7] H. F. Chen, T. E. Duncan, and B. Pasik-Duncan, “A Kiefer–Wolfowitz
algorithm with randomized differences,” IEEE Trans. Automat. Contr.,
vol. 44, pp. 442–453, Mar. 1999.

[8] Y. Chen, C. Wen, Z. Gong, and M. Sun, “An iterative learning controller
with initial state learning,” IEEE Trans. Automat. Contr., vol. 44, pp.
371–376, Mar. 1999.

[9] C. J. Chien, “A discrete iterative learning control for a class of non-
linear time-varying systems,” IEEE Trans. Automat. Contr., vol. 43, pp.
748–752, June 1998.

[10] L. Gerencsér and Z. S. Vágó, “The mathematics of noise-free SPSA,”
in Proc. 40th IEEE Conf. Decision Control, Orlando, FL, 2001, pp.
4400–4405.

[11] D. Gorinevsky, “An approach to parametric nonlinear least square op-
timization and application to task-level learning control,” IEEE Trans.
Automat. Contr., vol. 42, pp. 912–927, July 1997.

[12] R. Horowitz, W. Messner, and J. B. Moore, “Exponential convergence
of a learning controller for robot manipulators,” IEEE Trans. Automat.
Contr., vol. 36, pp. 890–894, June 1991.

[13] Y. H. Kim and I. J. Ha, “A learning approach to precision speed control
of servomotors and its application to VCR,” IEEE Trans. Contr. Syst.
Technol., vol. 7, pp. 466–477, Mar. 1999.

[14] , “Asymptotic state tracking in a class of nonlinear systems via
learning-based inversion,” IEEE Trans. Automat. Contr., vol. 45, pp.
2011–2027, Dec. 2000.

[15] J. Koronacki, “Random-seeking methods for the stochastic uncertained
optinization,” Int. J. Control, vol. 21, pp. 517–527, 1975.

[16] J. H. Lee, K. S. Lee, and W. C. Kim, “Model-based iterative learning
control with quadratic criterion for time-varying linear systems,” Auto-
matica, vol. 36, pp. 641–658, 2000.

[17] M. Pandit and K. H. Buchheit, “Optimizing iterative learning control of
cyclic production process with application to extruders,” IEEE Trans.
Control Syst. Technol., vol. 7, pp. 384–390, Mar. 1999.

[18] S. S. Saab, “A discrete-time stochastic learning control algorithm,” IEEE
Trans. Automat. Contr., vol. 46, pp. 877–887, June 2001.

[19] , “On a discrete-time stochastic learning control algorithm,” IEEE
Trans. Automat. Contr., vol. 46, pp. 1333–1336, Sept. 2001.

[20] J. C. Spall, “Multivariate stochastic approximation using a simultaneous
perturbation gradient approximation,” IEEE Trans. Automat. Contr., vol.
37, pp. 332–341, Feb. 1992.


