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Convergence Rates of Continuous-Time Stochastic ELS 
Parameter Estimation 

HAN-FU CHEN AND JOHN  B. MOORE 

Abslrucf-Discrete-time convergence rates for extended least squares 
(ELS) algorithms  are generalized to the continuous-time case. An 
essential difference in the estimation is the  appropriate prefiltering, while 
in the  theory,  the existence of solutions of the stochastic equations is a 
concern. 

I. INTRODUCTION 

Least squares (LS) estimation of continuous-time stochastic signal 
models with additive "white" noise is considered in [I]-[3]. Ergodicity 
assumptions are involved in the theory of [I]. In [2], [3] ergodicity is  not 
assumed and convergence rates are given. In [l]  there is a conjecture that 
corresponding convergence rates for extended least-squares algorithms in 
the colored noise case cannot be obtained. Some of the foundations are 
laid for such results in [2], [3]. In [4], ELS estimation is prescribed for 
signal models with appropriate prefiltering, including possibly the 
domination of certain noise signals by additive noise. Also, a weighting 
coefficient selection scheme is built into the  ELS estimation to improve 
convergence properties and avoid finite escape times. The theory of [I]- 
[4] relies on Martingale convergence  theorems. 

Here, we generalize the work of [6] which gives rates of convergence 
for the discrete-time stochastic colored noise case to the continuous-time 
framework. A key ingredient is the prefiltering in the estimation, and for 
the theory,  a key issue is the possibility of the existence of finite escape 
times on sample paths. 

11. PROBLEM STATEMENT 

Consider the dynamic system described by the following multivariable 
stochastic integral equation: 

A ( S ) y , = B ( S ) u , + C ( S ) V ,  (2.1) 

where A ( S ) ,  B ( S ) ,  and C(S) are matrix polynomials in the integral 
operator S as 

A ( S ) = I + A , S + ' . . + A p S p ,  B(S)=B,S+B,S* 

+ . . . +  B p ,  c(S)=I+c,s+~.~+c,S'. 

Without loss of generality, C(S) can be "minimum phase" in that C(s) 
is full rank in Re s > 0 with s the Laplace transform variable. For 
subsequent theory, we impose the stronger condition that 

C ( S )  is strictly  minimum phase, in that 

C(s) is ful l  rank in  Re s20. (2.2) 

Note that Sx, = !;xi dX, S'x, = 1; 1; xA dX dr.  Here u, satisfies 

W( S)  ur = w, (2.3) 

where ( w, , F,) is a Wiener process, with F, a family of nondecrcasing u- 
algebras, and W ( S )  = I + W , S  + . . . + WrSr such that 

C(S)  W - ' ( S )  - - I IS strictly  positive real. 1 .  
2 (2.4) 

In [4], it is shown how such signal models can arise from plants, with 
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the following transfer function description under zero initial conditions 

p P ( s ) = [ A P ( S ) J - ' B P ( s ) u P ( S ) + [ A P ( s ) ] ~ I C P ( S ) ~ ~ , ~ ( S )  

where y; are the outputs, uf the inputs, w f  the noise disturbances, and 
Ap(s)  Bp(s),  CP(s) are polynomials in s. By filtering yf, uf through 
asymptotically stable filters with transfer function W-'(s- l )  to yield y,, 
u, then the model for this system can be expressed in the form  (2.1)-(2.3). 
Also in [4], it is shown that by adding appropriate disturbances at the plant 
output, the model has the form (2.1)-(2.3) with (2.4) satisfied. Details are 
not repeated here. 

Let  us consider the estimation of the parameters A ;, B,,  Ci on the basis 
of past measurements, {y7, u,: T 5 t } .  where 

u, is F, - measurable  and  locally  bounded in L2.  (That  is 

First, let us denote 

O ' = [ - A ,   ' . ' - A p  B, . . '  B 4 C I  ." C,] 

( d p ) T = [ J ' J S J ' J  . . '  SP-'Y:  . . .  Sq-Iufu: . . .  S r - l , ; : ]  (2.6) 

so that the model (2.1) can be written as 

y l = s O r q + . , .  (2.7) 

The ELS based estimation of 0, yielding estimates 0, involves the 
stochastic differential equation 

dB, = P,o, W(  S)( dp! - 0 r, Bo arbitrary 

P I = (  s' @,@'dT+a-'I  a & dimension of 4, (2.8) 1 - I  

where 

+:=[yTSy: ... SP-ly: ... S O - I u T  ;T . . .  Sr-I;:] 

;,=Y;-s(e:o,). (2.9) 

Notice the presence of W ( S )  and that tr p t  ' = 1 .  
Assumption I :  The solution of (2.8) exists for almost all sample paths 

w E II up to an escape time. (2.10) 
Let us define for each w 

(2.11) 

When u is finite, it denotes a finite escape time of the process 0,. With the 
above defmitions and assumption, we now claim that with  the w-  
dependent indicator function which is unity for t < u and zero otherwise, 
then 

I,,,,! E F, (2.12) 

u is a Markov  time  (2.13) 

The result (2.13) follows since [t < u] = [u 5 t]' where c denotes the 
complement so that [ t 2 u] E F,, or equivalently u is a Markov time [ 5 ] .  
The result (2.14) follows from the property (2.1 l ) ,  noting that P: 5 
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Py2P@:/2 5 (tr i jo)p~.  It now proves convenient to consider the 
following modified form of (2.8): 

dO,=I,,,,,P,d, W(S)(dyr-OTQrdt)T, Oo arbitrary 

.=( j ~ I , , < c l d 7 @ ~ d ~ + a - ' I  , a=dimensionof d,. (2.8)' 
) - I  

Remarks: 
1) Should Q, in (2.8)' be independent of O r ,  then (2.1 l)-(214) hold 

and we could conclude that 0, exists for all t as the unique strong solution 
of 

&=Bo+ [' Z1,,~]PhdhW(S)(dyh-O:dh dA)r. 

Since here  for C ( S )  # I ,  Q, is 0, dependent, (2.8) is highly nonlinear, 
and  we cannot conclude the same properties for Or without a formidable 
analysis of the nature of the nonlinearities. Assumption (2.10) in essence 
is that 0, of (2.8)' exists for all t as the unique strong solution of (2.15). 

2) In the  case C ( S )  = I ,  the "white" noise case, 6, = 4: is 
independent of u r ,  G, and hence of 0,. Moreover, under (2.5) from (2. lo), 
u = 03 and there is no finite escape time almost surely. Then I , rco l  = I 
and (2.8) is a linear stochastic differential equation with a unique strong 
solution for all t .  

3) For the  case W ( S )  = I, the condition (2.4) can only be satisfied 
with C ( S )  = I (in contrast to the discrete-time case). See  also 121. 

"0 
(2.15) 

m. MAIN RESULTS 

Lemma 3.1: Consider the plant (signal model) (2.1)-(2.3) [or (2.6), 
(2.91, under conditions (2.4), (2.5). Consider also  the ELS estimation 
scheme (2.8)-(2.10).  Then there are constants E > 0 and k ,  > 0 such that 

jb V:gh-~(g:gA+f,TfX)]   dX+kl  2 0 for t < u  (3.1) 

where, denoting 0, = 0 - O r ,  rS, = u, - G, 

gr=B:b,, SJr=[C(S)- w(S)IC,+, Sgt. (3 4 
1 

Moreover, under condition (2.2), for  some k2, k; ,  with 6, = 6; - Q, 

j' ll&Il'dX 5 kl  1: IIgAl12 dX+k3. (3.3) 

Proof: Simple manipulations yield for t < u 

dCr= -OT&dt-g,dt, or C(S)G,= -Sg ,  

d& = F& dt - Gg, dt (3.4) 

where 6: = [O . . . Oc: . . . S- I-T u/ 1 and 

F=diag [O, I -'f ... ;$, G T = [ O . . . o  I ...o]. 

Also, 

A= - [ a s ) -  w ( S ) l C - 1 ( s ) g , + j g f  
1 

= [ W ( S ) C - ' ( S ) - -  I g,. 2 I 1  (3.5) 

Now (3.1) follows from (3.5) and application of the strict positive real 
condition (2.4). Also from  (3.4) we see that 4, are the states of a linear 
system with characteristic equation det C(s-')  = 0, so that result (3:3) 
follows under (2.2). 

Lemma 3.2: With the definition of Pr in (2.8) ' and u in (2.1  l), 

[' I[A<,]6[PAdA dX=ln  (det P ; ' ) + a  In a (3 5 )  

Proof: From (2.8) 

det  P,:L,=det P;' det (I+Zl,,.IP,d,Q:dt) 

=det P,-'(l  + I l , , , l d ~ P , ~ , d t )  

so that 

and the result (3.6) follows. 
Lemma 3.3: Let the measurable process M, be adapted to F, and define 

Then for all 7 > 0, as t -+ T 

s: M A  dwh=O[q:" I n 1 . 2 + T  (qr + e)]  a.s. (3.7) 

Proof: As for u in (2.13): Tis  a Markov time and I [ , ,  T ,  E F,. NOW 
for all t 

Let  us define 

(3.9) 

and recall that under (3.8): via Martingale convergence, [4] 

lim x ,=x  a.s. (3.10) 
I - =  

for  some random variable x. Also, applying the It6 formula [5] 

" I  

nr 

o(1) as t-+m if q,+m 
0(1) as 1-03 otherwise. 

The result (3.7) follows. 

estimation scheme (2.8)'-(2.10), then as t -+ u 
Theorem 3.1: For the signal mcdellconditions (2.1)-(2.7) and ELS 

(3.12a) 

where P: is given from (2.8) ' with a, replacing 6,. Moreover, on the set 

* O  . . .  
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then there is almost surely no finite escape time (u = 00). 

M'(S)dC:] so that from (2.8)', (3.2), (3.4) 
Proof: i) From (2.3), TV(s)dv^J = W(S) (du ,  - d17,)~ = [dw, - 

de,= -l,,<o,P,$, [ig,dt+f,dt+dw, 1' (3.14) 

where the inequality follows from application of (3.1), under (2.4). 
Integrating and reorganizing gives, with tAu denoting min ( t ,  u) 

Now applying Lemma 3.3, as t + u, the last integral is dominated by the 
second last integral so that the square bracketed form becomes negative if 
j; IlgAllz dh = a and is of O(1)  if I; J(gxllz dA < m. Noting this and 
applying Lemma 3.2, as t - u (3.15) leads to 

=0(1)+ln (det P,-I) a.s. (3.16) 

In tr P; ' -a  In 1.7 s In det P,' a In tr P;'. (3.17) 

Notingthat Il8,IIZ [XmJ',-l]-l tr 0:P;'O,, then (3.16), (3.17) lead to 
(3.12a). 

ii) From  (3.16), as t -+ u 

Further, for any x E R" with llxll = 1, we know that for t < u 

Selecting x so that the  first integral on the right-hand side is h,,,,n(Pz-l)~ 
then the right-hand side is not less than &,,in(Py)-l. Hence, for t < u and 
applying (3.18) 

Amin  (f'y)V' s 2 {L," (P; ' )+O [In X,, (PI)- ']  

Thus, as r + u and applying (3.19) 

Application of (3.19), (3.20) in (3.12a) gives the result (3.12b). 
iii) Now on the set Hi of (3.13), from (3.12) 11 0, I( does not diverge to 

00. ConsequentIy, the system generating dl can be viewed as a linear time- 
varying system with parameters 8 ,  0, which do not diverge to m on H. 
Thus, under (2.5) 6, can grow no faster than exponentially and there is 
then no finite escape time on H.  

Corollary 3.  I :  Consider the plant (signal model) (2.1) with C ( S  ) = I ,  
(2.3) with W ( S )  = I, so that uI is a Wiener process (and trivially (2.29, 
(2.4) are satisfied). Then 4, = 4: and on the least squares estimation of 0 
via (2.8),  (2.9) under (2.5)  (2.10),  there is almost surely no finite escape 
time, so u = 00 and = 1. Moreover,  there is almost sure 
convergence of the parameter estimates 8, given from (with p, = P,) 

Proof: Since 6, = 6: is derived from a linear time-invariant system 
with parameters 0, 6: can grow  no faster than exponentially under (2.5): 
and there is no finite escape  time. The result (3.21) now follows from an 
application of Theorem 3.1. 

Remarks: 
1) Under a plant stability assumption there is no finite escape time for 

6: and hmX(P:)-l 5 O ( t ) .  With u,, u, suitably exciting so that 
h,,,in(P:)-l 2 O ( t ) ,  then (3.18), (3.21) become 

(1e-o,112=0(r-1 In t )  as t - w .  (3.22) 

2)  The result of Lemma 3.3 is perhaps of independent interest to any 
ELS stochastic analysis. 

IV. CONCLUSION 

Convergence (and divergence) rates for ELS estimation of a class of 
linear continuous-time stochastic signal models have been demonstrated. 
Assuming the nonlinear stochastic differential equations involved have 
solutions which exist up until (sample path dependent) finite escape times, 
conditions are derived which exclude the existence of finite escape times. 

The material of this note complements derivations of a companion 
paper which employ weighting coefficient selections to avoid finite escape 
times, and gives global convergence rates for continuous-time ELS based 
stochastic adaptive control [4]. 
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