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Mendel and Washburn results [5].  When 922 # I and wz(i) # 0 an 
algorithm similar to, but computationally simpler than Tanaka’s results 
~ 7 1 .  

CONCLUSIONS 

A new multistage approach to linear estimation has been developed. 
The  optimal estimation problem  is  decomposed into two or more stages. 
The first stage is a Kalman filter with  nominal  values of process noise 
variance and initial state variance. The  second stage Kalman filter, which 
contains  any remaining process noise  and initial state uncertainty, has a 
new system matrix  and  uses  the innovations from the first stage Kalman 
filter as measurements. The  two  filters  are combined  to provide the 
overall optimal estimate. 
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Optimal  Adaptive LQG Control for Systems  with  Finite 
State  Process  Parameters 

P. E.   CANES AND H. F. CHEN 

Abstract-The situation where a totally  observed  process yr is gener- 
ated by a stochastic differential equation whose  parameters evolve on a 
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finite set { 1, . . . N) according to a stochastic differential equation is 
considered.  The optimal control law is sought with  respect to quadratic 
loss functions on y, and  the control u,. The  auxiliary P.D.E. technique of 
Hijab 161 is used together  with a nonlinear filter to obtain tbe solution 
whose  existence  depends upon that of a smooth solution to the  auxiliary 
P.D.E. and  strong solutions to the  system S.D.E. under  the  given  control 
inputs. 

I. INTRODUCTION AND PROBLEM STATEMENT 

Consider the situation where  one wishes  to  design a regulator for  a 
system  but one has  only inexact knowledge  of  the system parameters. This 
is  commonly referred to as a parameter adaptive control problem. The 
solutions to date to this problem may  be  broadly classified as 1) stabilizing 
adaptive regulators for deterministic systems, 2) asymptotically stabiliz- 
ing and optimizing adaptive regulators for stochastic systems, and 3) 
optimal adaptive regulators for stochastic systems. 

As a result of the recent intense research activity, there is  now a vast 
literature on  these topics. (See, e.g., the proceedings of the WAC 
workshop [7l for a representative set of current papers in this area.) Most 
of the work  on adaptive control concerns systems with constant unknown 
parameters; this is with the exception of the results of  Xie  and Evans [5 ] ,  
Caines 111, Caines and Chen 121, and  Chen and Caines [3], [4].  The first 
reference falls in category 1) and the other  three in categories 2) and 3). 

There is strong practical motivation to obtain adaptive control results 
for systems whose parameters vary in some deterministic or stochastic 
manner since one of the primary reasons for using adaptive controllers is 
the fact that control system parameters often drift from their initial values. 

This paper is concerned with adaptive control problems in category 3) 
in the case  where the system parameters evolve randomly. Chen  and 
Caines [4] is the  only other work  we  know  of  in this area. 

For the case of constant unknown parameters, the optimal adaptive 
control problems of category 3) have often been  called  dual control 
problems. 

A solution of the optimal adaptive control problem  for linear systems 
with quadratic loss function was presented by Hijab [6]. He uses a 
dynamic  programming formulation and  assumes the existence of a smooth 
solution to an auxiliary partial differential equation. He also implicity 
requires that all of the candidate controls and the resulting optimal control 
generate a strong solution to the system equations. 
Now the adaptive regulators in classes 1) and 2) typically generate 

parameter estimates via some  recursive estimation scheme which  can at 
best be asymptotically consistent (see, e.g., [3]). However, the optimal 
adaptive regulators of Hijab [6], Chen  and Caines [4], and that presented 
in  this paper require the exact solution of a set of filtering equations for the 
joint vector of the process yr  and the parameter vector Or. (We distinguish 
between  the “state” process y ,  and the parameter process 0, by the 
property that the controls only influence the  former process. Of course,  a 
true state process for the system  must be equivalent to the joint quantity 
Or, O r ) . )  

The contribution of this paper is  as follows: we consider the situation 
where  a totally observed process y ,  is generated by a stochastic differential 
equation into which the control ur enters linearly and for which the 
parameters evolve on a finite set { 1, * . -, according to a stochastic 
differential equation. We take quadratic loss functions of yr and ur and 
then we seek the optimal control law minimizing the expected loss over a 
time interval IO, TJ. We  use the technique of Hijab [6]  which  employs  the 
solution to  an auxiliary partial differential equation to complete the square 
in  an expression for the total cost-to-go. In this paper this  is  used  in 
combination with  the appropriate nonlinear filter  for Or (see [8] and [9]) in 
order to  obtain  the desired optimal adaptive LQG control. The  main result 
of this paper may  be  viewed as  a verification theorem, and an interesting 
problem is to  find nontrivial examples  for which a function S satisfying 
(1)-(3) in Section III exists. 

In the formulation of an adaptive control law it is important to note  what 
a priori information is required for its implementation. The optimal 
control law derived in this paper is a function  of  the parameters A,, Dr, Fr 
and the functions h ( . ,  a ,  l) ,  - . - ,  h ( . ,  e ,  N), B. ( l ) ,  -.., B.(N) 
appearing in the stochastic differential equations ( l ) ,  (3) below. If one 
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wishes to relax  this requiredprion' information,  one is forced to use some 
further level of adaptation,  and so on. 

An open  problem is the asymptotic  behavior  of  the  optimal  control  law 
as  the terminal time tends to infinity. 

We  now  come to  the precise  formulation  of the problem. 
Let ( Q ,  5, P)  be a  probability  space  with an associated  nondecreasing 

sequence of a-algebras 5, C 5. The stochastic  system is observed as an 
m-dimensional vector y, subject to a  stochastic  differential  equation 

dYr = W ' r ,  t , W t  + B,(eOu& + F&r, Elboll < 03 (1) 

where (w,, 5,) is an f-dimensional Wiener process, u, is an r-dimensional 
control  process, and the paraneter 0, is a random process taking values  in 
theabstractset0 = 11, . - - , w .  

(Note  that in (1) h and B are assumed to be known Bore1 measurable 
functions  such  that 

h : Imx lxO+Rm 

and 

whenever this exists, where y ;  is a  deterministic  reference  signal and 

Q o > O ,  QI 2 0 ,  Qz>O.  

II. THE INFINITESIMAL GENERATOR ASSOCIATED WITH THE 
SYSTEM 

By using the nonlinear  filtering  equation for (3), (6) (see [SI, [9]), 

(2) where (#,,, 59 is the Wiener  process  given by 

where (m,, 5,) is a square  integrable  martingale  with  quadratic  variation 
matrix (m, w),. It is always the case that (m, w), has  a  derivative  process 
D, d/dr (m, w), (see [S, Theorem 5.31) but  we shall assume in addition  that 
D, is  a  deterministic  process.  Observe  that if D, # 0, then 0, and m, are, in 
general,  dependent  processes. 

We  remark  that  if Or is a  finite  state  Markov  process  with  stationary 
transition  probabilities, ix., (dp,/dt) = Ap,, where pr = E@(O,), then (3) is 
satisfied  with D, 3 0 and A, a  constant ma&. 

Introducing  the  notation 

H,Wr, 0 = thCVt, t ,  1) . * * hCvr, f, N)1 (4) 

Hz(Ur. r)= [Bt(l)ur . . * Br(N)ud (5) 

we  can  rewrite (1) as 

dyr = [HI@,, 0 + H2(u,, t)lI1Ye,)dt + Fdw,. (6) 

and  (12), (13) are seen to  form a  system  of  (state  plus  observation) 
diffusion  equations  with  completely  observed state Dr. The  joint process 
@,, y,) has  the  infinitesimal generator L defined by 

where  for Sy) the partial  differential  operations  act  only onf, and  where 
(a/aD,) and (Way,) denote the N and m component columns of partial 
differential operators with  entries (a/@:) and (Wad), respectively,  and 
(a2/a@*) and (a2/a@, ay,) are  the corresponding  and  matrices  of  second- 
order partial  differential operators 

Concerning the matrix  coefficients  we  assume  that A,, F, are Gt=G:(@J+G:($.,, Y3,  
deterministic, 

l l ~ s l l ~ ~ ~ o , ~ , l l F I 1 2 ~ ~ ~ ~ , n , ~ ~ ~ s ~ .  s > o  
and  that there are constants kl ,  k2, k3 such  that 

IlDIll <kl> W E  to, n 
I I H l c V r >  0ll + IIYrll) (7) 

1l~r1(611 <k3, VtEtO, TI, 1 <i<N. (8) 

The  set 21 of admissible  closed-loop  controls  consists  of {u,} under 

1) u, is (g u(ys, s < I})-measurable;  and 

The problem is to find the control (u;)  E 'u for  which 

which (6)  has  a  strong  solution  and for which 

2) SUPO<r<TEIIYtllZ < m. 

G : ' = [ D r - ~ f ~ : ) H ; ] ( F , F , 3 - " .  

Set 
4;= w;y;1 

and  denote  by ai, I < i <  N and bo, 1 < i< N, 1 < j< N, respectively, the 
column  vectors and  the elements  of the two matrices  indicated  below 
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We  note  that ai and bg do not  depend  explicitly on the  control u. 3) S(t, y, p )  is the unique strong solution of the following  differential 
Noting  that equation 

where 

III. OPTLkiAL CONTROL 

The optimal  stochastic  control  problem  is  solved by the dynamic 
programming approach.  The main  assumption  for this is the  existence of a 
function S(t, y, p )  defined on [0, r ]  X .2ffl X RjV and  taking  values in R 
such that: 

1) S(t,  y. p )  is continuously  differentiable  in t and  twice  continuously 
differentiable in y and p ,  

2) there are constants k4, kg,  and k6 such  that 

(1 8) 

with 

s(t, Y ,  p)lr=r=Lv-Y?)'QoCv-Y?), (19) 

where  the  indicated  matrix inverse is assumed to exist on [0, X R m  X 
2 p  and where G ' b ,  JJ) is obtained from Gr& withBr, qr, Yr replaced 
by p ,  q, y, respectively. 

Using this auxiliary  function S we are now in a  position to solve  the 
problem  stated in Section I. 

By Ito's  formula  we  find  that  up to  some stopping time s, 0 < s Q T 

where M(s) is a  zero-mean  local  martingale. 

S(s, Y*, a s )  

By (18): (20) it follows  that 
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by the continuity  of y,. 

that 
Finally,  letting D exhaust Rm we have s --f Tin (21)  and  we  conclude 

EJ(u) 

Notice  that ES (0, yo, bo) is independent  of the  control, and so the 
control 

makes EJ reach its minimum. 
Theorem: If there exists  a  function s(t, y ,  p )  satisfying  conditions  1)- 

3) given  above and if the system (1 l) ,  (13),  with u, defined by (23),  has  a 
strong  solution,  then u; given by (23) is the optimal control and 

Proof. The only  part  of the proof  that  remains to be  given is to show 
that { u;} is  admissible. It is clear  that u; is 5{-measurable,  hence the only 
thing to verify is that  under u: we  have 

Further, from (6)-(8), llytl12 may  be  estimated  by 

and  hence by the Bellman-Gromwall  lemma 

From this we have 
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The Strong Consistency of the  Stochastic  Gradient 
Algorithm of Adaptive  Control 

H. F. CHEN AND P. E. CAINES 

Abstract-By me of the  technique of Chen [5] sufficient conditions are 
established for the strong consistency of the stochastic gradient (SG) 
algorithm for “ 0  ARMAX stochastic systems  without monitoring. 
This result is then  used  in conjunction with  the  method of disturbed 
adaptive controls introduced  in [I], [2]. Hence it is shown that  the SG 
algorithm  generates  strongly consistent parameter estimates while  it is 
operating  as a part of the  SG  algorithm of adaptive control of Goodwin, 
Ramadge, and Caines [6].  

I. INTRODUCTION 

The stochastic  gradient (SG) algorithm is probably  the  simplest  method 
of  parameter  estimation for linear  stochastic  systems. It was  used  in [6] 
for the adaptive  tracking  control  problem  and  later on  in [2] for the 
adaptive  tracking  problem  where  disturbed  controls  were  used  for 
purposes of identification as explained  below. In these  papers  the  strong 
consistency of the SG algorithm  was  not  established. In [4] the  strong 
consistency of the estimates  generated  by  the  quasi-least-squares (QLS) 
method  was  proved for  the case of  a  system  subject to feedback  control 
without  monitoring. 

In this note, by use of the  technique  given in [5] ,  we first establish 
sufficient  conditions  for  the strong consistency  of  the SG algorithm  for 
MIMO stochastic  systems  without  monitoring  and  then  apply  the  method 
involving  continually  disturbed  controls  which  was  introduced  in [ 11 and 
developed  in [7] and [2]. Continually  disturbing  a  system’s  control  input 
provides a technique for ensuring  that certain processes  of  regression 
vectors  have  the  persistency of excitation  property  which is frequently 
required  in  recursive  identification  schemes (see,  e.g., [9]). 

The ordinary  differential  equation  method  and the associated  hypothe- 
ses used  in  this  paper  should  be  compared to those  (involving  monitoring) 
used to obtain  the  related  results  of [S, Theorem I]. Concerning  proof 
techniques,  we also remark that  the  stochastic  Lyapunov-or  super 
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martingale-method  used  in the basic f i s t  lemma  below is fundamend to 
the  consistency proofs of [IO] and [3], [4] and to all of the references of 
this note  concerned  with  stochastic  adaptive  control. 

It will  be  shown  that the SG algorithm  used  in [7] and [2] does in  fact 
generate  strongly  consistent  estimates.  Hence, it is not  necessary to 
introduce a second  algorithm in order to generate consistent  estimates, as 
in [2], where the approximate  maximum  likelihood (AML) algorithm  of 
[lo] was  used  in  addition to the SG algorithm. 

We consider  the MIMO system 

yn+Af ln - l+  ... +AgLV. -p=BI~n-I+  ... + B q ~ n - q  

+w,+C,w, - l+  . * .  +C,w,-, (1) 

where ynr u,,, and w,, are m-, I-, and m-dimensional,  respectively, and y ,  
= 0, uj = 0, wk = 0 for all i < 0, j < 0, k < 0. 

Let 5, be a  family of nondecreasing  o-algebras;  assume  that w, and u, 
are S,-measurable  and  that 

E(w./S,-1)=0, E(llw,112/S.-I)<kdb-l, O<€Cl  (2) 

where k, is a  positive  constant  and r, is defined  below  in (10). 
Ai, B,, Ck, i = 1 ,  e . . ,  p ,  j = 1 ,  e - . ,  q, k = 1,  e . . ,  rare the 

unknown  matrix  coefficients to be estimated. 
Let  us  write 

A(z )=I+A]z+  ... +A$‘ 

B(z)=E,+BZt+ ... +B&q-’ 
C(z)=I+C1z+ . .-  +C$ 

where z denotes the unit  backward shift operator. 
We  shall  adopt the following  notation: 

e ‘ = [ - A l ,  e . - ,  -Ap, B I ,  ..., Eq, C , ,  C,] mu(rnp+iq+rnr) 

d);=Iv;,Y;-I, ..., Y L , + l ,  u;, . . . I  G q + l  

~ ; - + ; - ~ e ~ - ~ ,  . . - , Y ; - ~ + ~ - + ; - L I  
@~=~; ,y; - I” -y ; -PT* ,  u;.-.u;-,+,, w;.’.w;_,+,J 

where en is the  estimate for 0 given by the SG algorithm 

e . , l = e n + - w + l - ~ ; e n ) ,  d)n 

rn 

with - I and 0, deterministic  and  arbitrarily  chosen. 
The difference  between  the SG algorithm  and  the QLS algorithm lies in 

the fact  that the residual term y:, - 6;- ,On- in the SG algorithm is 
replaced  by the term y; - 4;- in the QLS algorithm;  in  other  words, 
the a priori prediction error is replaced by the a posteriori prediction 
error. 

Set 
s,,=e-e,, (1  1) 

t n = ~ n - ~ n - e ; - l d n - l .  (12) 

and 

Then we have 

~ ( Z ) ( Y , - W , - ~ ~ - ~ + . - , ) = { ( Y ~ - C ( Z ) W , )  

+ ( c ( z ) - z ) ( ~ ~ - e ; ~ l ~ ~ - , ) ~ - e ~ - l + ~ - l  
- = e ~ ~ ~ ~ l - e ~ ~ l ~ ~ ~ l = e ~ ~ l ~ ~ ~ l ,  

hence 

0018-9286/85/0200-0189$01.00 01985 IEEE 


