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The Strong Consistency of the  Stochastic  Gradient 
Algorithm of Adaptive  Control 

H. F. CHEN AND P. E. CAINES 

Abstract-By me of the  technique of Chen [5] sufficient conditions are 
established for the strong consistency of the stochastic gradient (SG) 
algorithm for “ 0  ARMAX stochastic systems  without monitoring. 
This result is then  used  in conjunction with  the  method of disturbed 
adaptive controls introduced  in [I], [2]. Hence it is shown that  the SG 
algorithm  generates  strongly consistent parameter estimates while  it is 
operating  as a part of the SG algorithm of adaptive control of Goodwin, 
Ramadge, and Caines [6].  

I. INTRODUCTION 

The stochastic gradient (SG) algorithm is probably the simplest method 
of parameter estimation for linear stochastic systems. It was used  in [6] 
for the adaptive tracking control problem and later on  in [2] for the 
adaptive tracking problem where disturbed controls were used for 
purposes of identification as explained below. In these papers the strong 
consistency of the SG algorithm was not established. In [4] the strong 
consistency of the estimates generated by the quasi-least-squares (QLS) 
method was proved for  the case of a system subject to feedback control 
without monitoring. 

In this note, by use of the technique given in [5] ,  we first establish 
sufficient conditions for the strong consistency of the SG algorithm for 
MIMO stochastic systems without monitoring and then apply the method 
involving continually disturbed controls which was introduced in [ 11 and 
developed in [7] and [2]. Continually disturbing a system’s control input 
provides a technique for ensuring that certain processes of regression 
vectors have the persistency of excitation property which is frequently 
required in recursive identification schemes (see,  e.g., [9]). 

The ordinary differential equation method and the associated hypothe- 
ses used in this paper should be compared to those (involving monitoring) 
used to obtain the related results of [S, Theorem I]. Concerning proof 
techniques, we also remark that the stochastic Lyapunov-or super 
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martingale-method used in the basic f i s t  lemma below is fundamend to 
the consistency proofs of [IO] and [3], [4] and to all of the references of 
this note concerned with stochastic adaptive control. 

It will be shown that the SG algorithm used  in [7] and [2] does in fact 
generate strongly consistent estimates. Hence, it is not necessary to 
introduce a second algorithm in order to generate consistent estimates, as 
in [2], where the approximate maximum likelihood (AML) algorithm of 
[lo] was used  in addition to the SG algorithm. 

We consider the MIMO system 

y n + A f l n - l +  ... +AgLV. -p=BI~n-I+  ... + B q ~ n - q  

+w,+C,w, - l+  . * .  +C,w,-, (1) 

where ynr u,,, and w,, are m-, I-, and m-dimensional, respectively, and y ,  
= 0, uj = 0, wk = 0 for all i < 0, j < 0, k < 0. 

Let 5, be a family of nondecreasing o-algebras; assume that w, and u, 
are S,-measurable and that 

E(w./S,-1)=0, E(llw,112/S.-I)<kdb-l, O<€Cl  (2) 

where k, is a positive constant and r, is defined below in (10). 
Ai, B,, Ck, i = 1 ,  e . . ,  p ,  j = 1 ,  e - . ,  q, k = 1,  e . . ,  rare the 

unknown matrix coefficients to be estimated. 
Let us write 

A ( z ) = I + A ] z +  ... +A$‘ 

B(z)=E,+BZt+ ... +B&q-’ 
C(z)=I+C1z+ . .-  +C$ 

where z denotes the unit backward shift operator. 
We shall adopt the following notation: 

e ‘ = [ - A l ,  e . - ,  -Ap, B I ,  ..., Eq, C , ,  C,] mu(rnp+iq+rnr) 

d);=Iv;,Y;-I, ..., Y L , + l ,  u;, . . . I  G q + l  

~ ; - + ; - ~ e ~ - ~ ,  . . - , Y ; - ~ + ~ - + ; - L I  
@~=~; ,y; - I” -y ; -PT* ,  u;.-.u;-,+,, w;.’.w;_,+,J 

where en is the estimate for 0 given by the SG algorithm 

e . , l = e n + - w + l - ~ ; e n ) ,  d)n 

rn 

with - I and 0, deterministic and arbitrarily chosen. 
The difference between the SG algorithm and the QLS algorithm lies in 

the fact that the residual term y:, - 6;- ,On- in the SG algorithm is 
replaced by the term y; - 4;- in the QLS algorithm; in other words, 
the a priori prediction error is replaced by the a posteriori prediction 
error. 

Set 
s,,=e-e,, (1  1) 

t n = ~ n - ~ n - e ; - l d n - l .  (12) 

and 

Then we have 

~ ( Z ) ( Y , - W , - ~ ~ - ~ + . - , ) = { ( Y ~ - C ( Z ) W , )  

+ ( c ( z ) - z ) ( ~ ~ - e ; ~ l ~ ~ - , ) ~ - e ~ - l + ~ - l  
- = e ~ ~ ~ ~ l - e ~ ~ l ~ ~ ~ l = e ~ ~ l ~ ~ ~ l ,  

hence 
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and 
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Using the now standard martingale convergence techniques (see, e.g., 151 
or 161) we  may establish the following basic lemma. 

- Lemma I :  For the system and algorithm (l)-(lO), if c(Z) 
strictly positive real, then 

and 

Set 

F =  

G =  \- 

, r > O  

r > O  

(1 8) 

r = 0. 

It is easy to  see that there exists a random mrdimensional vector rl0 

depending on the initial values of {ti} such that 

E.=@., I~.-I=FT,+C'~LO~. (19) 

In other words, (qn} is the state process of a realization of  the {En} 
process. Clearly 

From this and (14) we see that 

J 
Now we list some conditions that we shall refer to later on. 
1)Either r = 0, or r > 0 with C(z) - fI strictly positive real and 

2 )  There exist random variables (Y > 0, 0 > 0, and T > 0 such that 
with the zeros of det C(z) lying outside the closed unit disk. 

where 

(This condition first appeared in [3].) 
3) There exists a random variable y, 0 < y < 03 such that ~ ~ ~ l v ~ ' ,  < 

y, for all n > 0 where v g x  and v g n ,  are maximum and minimum 
eigenvalues of N, 2 X:ll #Y4y7 + l/dI, d = mp + iq + mr. 

4)  There exists a random variable y, 0 < y < a) such that vnmaxlvnmin Q 
y. for all R > 0 where vk and vk are maximum and minimum 
eigenvalues of Xy=,G,+; + l/dI, d = mp + lq + mr. 
5) BI is of full rank and the zeros of B,+ B(z) (BF denotes the 

pseudoinverse of B , )  are outside the closed unit disk. 
6) B ; A (z) and B ; B(z) are left coprime and B A,  and B ; Bq are of 

full rank. 
The next two items specify alternative adaptive control laws. 

7) The %,-measurable control u, is selected such that 

-y* n " -  n + l  (25) * 

where yz is a bounded deterministic sequence. 
8) The S:,-measurable control u, is selected such that 

e;+, =y:+ I + un (26) 

with u, an %,-measurable disturbance sequence. (This is the so-called 
continually disturbed control law which was introduced in 111.) 

Lemma 2: For the SG algorithm, under the conditions of Lemma 1, 
Conditions 3) and 4) are equivalent on [w:r, --f 031 and each of them 
implies Condition 2). 

Proof: This fact is proved in [5] as Theorem 2, but 5; and 6; in that 
paper should be understood to be defined by ( 7 )  and (12) above. 0 

Theorem I: For the system and algorithm in (1)-(lo), if Conditions 1) 
and 2) are satisfied, then for almost all w E [w:rn -, a)] 

e, + e. 
"-m 

Proof: Since the zeros of det C(z) lie outside the closed unit disk for 
r > 0, there exist constants p E (0, 1) and k3 > 0 such that for both the r 
= 0 and the r > 0 cases llF'll Q k3pi. 

Comparing (30) to (48) of [5] we find that the quantities l/rJand 8;&, 
respectively, of the present note correspond to a,RJ and 6;A14i of that 
paper; in that paper ~~(Y,R;~~ is estimated by k7/r, and instead of (15) above 
we have 

With such a correspondence the analysis from 151 completely fits the 
present m e  foro E [ w r ,  -, a)]. To be precise, we  first introduce some 
notation by setting 

and we also denote the last two terms in (21) by J,+ I and H,,  
respectively. This yields 

8 , , + l = g o + E  S , G . - I . , + J ~ + , + H ~ - I .  (27) 
i = O  

We now introduce two interpolating functions X ( t )  and x(() for any 

1) the linear interpolation 
given matrix sequence { X ; } .  These are given by the following: 
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2) the constant interpolation 

X(Co=Xn, t E [t", &+I). 

Let GZi denote the linear interpolation of {G,,i} with the interpolating 
length {p,} for t 3 ti whenever i is f i x e d .  When t = tk, then G;k,i = Gk,i. 
Now for fixed t denote by G& the constant interpolation for the sequence 
{G;,}  on [O, t] with interpolating length {Si}. 

By the use of these two interpolations, the  sum in (38) for e,+ I turn into 
an integral of the function C y ,  when it appears in the formula for the 
interpolating function e(t). To be specific, we have 

lim @ , l l e i - e " l l  =o. 
m ( r + n k + a )  

X - s o  
i = m ( r + n r )  

From (31),  (32) it is easy to conclude that 

(33) 

!Jt is worth remarking that until this point all results have been obtained 
without invoking Condition 2)]. 

Now by using 2) it follows immediately from (33) that 

B o = O  on [w : r n - w ] ,  

and e(t + nk) --t 0 uniformly in t E [a, b], where [a, b] is any finite 
interval. Since &t,) = 8, it is_easy to see that for any fixed w E [w:r, + 

m] there exists a subsequence Omk + 0 as k .+ m . From here by Lemma 1 
we conclude that tr Opn = limk,, tr OmkOmk = 0, i.e., -7- - 

0, -, 8 VU+ : r.-m]. 0 
"-Eo 

Let {y,*} be a bounded deterministic reference sequence. 
Theorem 2: Assume that for (1)-(10) Conditions 1 ,  5, and 7 )  are 

satisfied, and w satisfies 

where J ( t )  and H(t)  are the linear interpolating function for the sequences 

Notice that since wE[w:rn+m] ,  8(t) is defined for all t > O  and we 
{ Jn} 9 { H n } .  

notice that 

&t,) = e,. (29) 

Define the family of matrix functions {a,&)} by shifting the argument 
of &) to the left as shown by 

B,(t)=B(t+n) taO. (30) 

We now invoke a major technical result of 151; the proof of this lemma 
is valid in the present case subject only to the exchange of the symbols 
mentioned above. 

Lemma 3: Under the conditions of Theorem 1, for any fixed w E [w:r, 
--t m], {8,(t)} is uniformly bounded and equicontinuous. 0 
Hence, azcording to- the Amla-Ascoli theorem, there exists a subse- 
quence (Onk(t)} of {O&)} and a continuous matrix function O ( f )  which is 
the uniform limit of {Onk(t)}  over any finite interval. 

It follows from the proof of the lemma that 

~lB(t + A) - &)[I= Iirn I1Bnk(r + A) - ijnk(t)l/ E lim ~lB(t+ A + nr) 
k-os k-= 

- 
-B(t+nk)(l=O 

and hence 8(t) is a constant matrix so. 
Now we show that eo = 0; for a futed t E [0, 00) we have, by the 

Schwartz inequality, the definition of a and 0 in Condition 2) above and 
the fact that Si Q 1 ,  

(34) 

Then r, --t 00 and 

Proof: Suppose rn < m, then b, + 0, y, + 0, I(, --t 0, and 
hence wi + 0. But, since C(z) is asymptotically stable and (34) holds, this 
is seen to be an event of probability zero and so r, + m a s .  

By 5) there exists constants (which may depend upon w )  such that 

Then using (12),  (34), and 7), it can be shown (as in, e.g., [6]) that 

Notice that for all i E [O, 1, . . e ,  m(t + nk + a) - m(t + nk)] & S 

Consequently, 

and hence via the Kronecker lemma we have 

But by (12) and Condition 7 )  

( v ; - ~ ? ) ( y i - u ~ ) ' - w , w ; ' = E i E ~ + ~ i w ~ + w i ~ i '  

and from this and (34) we obtain (36), while (35) follows from (37). [7 
Now we introduce the continually disturbed controls of Condition 8). uniformly in i E S. Consequently, we assert 
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m o r e m  3: Let { wi) ,  ( v i }  be two mutually  independent  i.i.d. sequences 
with Eu, = Ew, = 0, EwiwJ = R I  > 0, Euiu; = R2 > 0, and let { y ? }  
be a bounded deterministic reference sequence. For the system and 
algorithm (1)-(lo), with 5, P u{wi, ui, i 6 n}; if Conditions l) ,  5 ) ,  6) .  
and 8) are satisfied, then r, -, 03, 

(39) 

and 

Proof: (Sketch) From (12) and Condition 8) we have 

Y n i I = E n + , + Y n * + I + ( W ” + l + u n ) .  (40) 

By the strong law of large numbers we know that l / n  X;==, w,w: “2- 

Consequently, (39) follows immediately. 
To complete the proof it is sufficient to show that Condition 3) holds for 

the regression vector $I; in (8), since then, by Lemma 2, Condition 2)  is 
true  and consequently Theorem 1 may be applied. 

But this follows using the method of analysis contained in [7l and [2] .  0 
Concerning the sequence {y:} ,  we observe that only the boundedness 

property is used and not the existence of the limits limn+- l/n 
E ~ = , y ~ - k y ~ : , ,  for all k, i as assumed in the two papers cited above. 

We also note that the i.i.d: hypotheses on w and u in this theorem were 
only adopted for simplicity and that Theorem 3 holds, with random R > 0 

R , ,  and hence r n  ,zm OD a s .  Recall that (37) and (38) still hold. 

and y < 03, if w and u are taken to be mutually uncorrelated ergodic 
martingale difference sequences as in [7] and [2 ] .  
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