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and

G
�
=

1 0 � � � 0

0 �a(2)2 � � � �a(2)�

0 �a(2)3 0

...
...

0 �a(2)� 0 � � � 0

and recursively defining�-dimensional

xk
�
= [xk; 1 � � � xk; � ]T

by

xk+1 = Dxk +HTC(z)wk+1 (33)

whereH = [1 0 � � � 0]
�

, we have

xk = G[�k �k�1 � � � �k��+1]T

and hence

lim sup
n!1

1

n

n

i=1

kxik2 <1 a.s.

From (33), we have

D�(k+1)xk+1 = x0 +

k+1

i=1

D�iHTC(z)wi (34)

wherex0 is a deterministic vector defined by initial valuesy0; y�1;
. . . ; y�p. The right-hand side of (34) converges a.s. to a nonzero
random vector.

On the other side, however,fkxkk=
p
kg is a bounded sequence. This

means that

D�(k+1)xk+1 � c�k+1
kxk+1kp
k + 1

p
k + 1 �!

k!1
0 a.s.

where� 2 (0; 1) andc is a constant.
The obtained contradiction shows that no root ofA(z) can be

explosive.
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Adaptive Regulator for Discrete-Time Nonlinear
Nonparametric Systems

Han-Fu Chen and Qian Wang

Abstract—A direct adaptive regulator for nonlinear nonparametric sys-
tems with measurement corrupted by noise is proposed. Under reasonable
conditions the state of the closed-loop system is adaptively regulated so that
it converges to zero as time tends to infinity. An illustrative example, being
an affine nonlinear system, with all imposed conditions satisfied is given.
The method of proof is based on stochastic approximation techniques.

Index Terms—Adaptive regulator, nonlinear nonparametric systems,
stochastic approximation.

I. INTRODUCTION

For most of practical systems the linear model is merely an approx-
imation to the true system dynamics. This probably is the reason why
much research attention has been paid to the nonlinear systems for re-
cent years. Various typical nonlinear models are considered in litera-
ture, for example, the nonlinear ARX model is considered in [12], bi-
linear model in [14] and the Hammerstein model in [17]. The common
feature for all these models is that the system is parameterized and the
parameters linearly enter the models. Therefore, when the parameters
are unknown in these models, they may recursively be estimated by
conventional methods, for example, the least-squares (LS) method, and
the parameter estimates may be used to form adaptive controls [7], [6],
[15], [13], [8], [9]. Although parameterization of system uncertainties
simplifies forming adaptive control laws, it is not an easy task to ana-
lyze the resulting nonlinear adaptive control systems (see [12]).

To design and to analyze adaptive control for nonparametric non-
linear systems in a random environment is the topic of the present note.
To the authors’ knowledge this is the first attempt to make a rigorous
analysis for this difficult problem. As a first step, we have to restrict
ourselves to consider the relatively simple case, adaptive regulation,
rather than the general adaptive control problem. The purpose of regu-
lation is to control a system in order its state or output to reach a desired
value. Since the system is unknown, one may intend to realize regu-
lation adaptively. The resulting adaptive control system is then called
adaptive regulator. Even for this rather simple task, we have to impose
rather restrictive but reasonable conditions on the nonlinear dynamics
of the system. The system state is observed with additive noise. By
noticing the inherent connection between adaptive regulation and the
problem of searching zero of an unknown nonlinear function, we will
apply the stochastic approximation method to propose an adaptive reg-
ulator and prove the regulation error asymptotically tending to zero.

To solve the stated problem under general conditions is beyond the
target of this note. This note aims at stimulating research on nonlinear
stochastic adaptive control, pointing out the possibility of shifting
from the parametrization framework to more natural nonparametric
approach. It is worth noting that stochastic approximation only serves
as a tool to solve the stated problem rather than a research topic in this
note.
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This note is presented as follows. The adaptive regulator is defined
and the conditions to be used are listed in Section II, and the main
results are given in Section III where an example of nonlinear systems
satisfying all conditions imposed in Theorem 1 is presented too. Some
concluding remarks are given in the last section.

II. A DAPTIVE REGULATOR

Consider the following nonlinear nonparametric system:

xk+1 = f(xk; uk) (1)

wherexk 2 n is the system state,uk 2 n is the control input,
f(�; �): n� n ! n is an unknown nonlinear function with(0; u0)
being the unknown equilibrium pair for System (1).

The system statexk can be observed with noise

yk+1 = xk+1 + "k+1 (2)

where"k+1 2 n is the measurement noise and may depend onuk.
The purpose of adaptive regulation is to define adaptive control

based on measurements in order the system state to reach the desired
one. Without loss of generality, we may assume the specified state the
system is regulated to is zero.

The adaptive control is given according to the following recursive
algorithm:

uk+1 = (uk � akyk+1)I[ku �a y k<2b] (3)

whereb is specified in A1) given below and the step sizefaig is non-
increasing with

ai > 0; ai ! 0;

1

i=1

ai =1: (4)

The system composed of (1)–(4) is the adaptive regulator to be con-
sidered in this note.

We need the following conditions.

A1)The upper boundb for u0 is known, i.e.,ku0k < b, andu0 is a
robust stabilizing control in the sense that for anydk ���!

k!1
0

the statexk tends to zero for the following system:

xk+1 = f(xk; u
0) + dk:

A2)System (1) is BIBS stable, i.e., for any bounded input, the system
state is also bounded.

A3)f(x; �) is continuous for boundedx, i.e., for anya > 0

sup
kxk�a

kf(x; u+�u)� f(x; u)k ����!
k�uk!0

0:

A4)System (1) is strictly input passive[21; 22], i.e., there are� and
� > 0 such that for any inputfuig

n

i=1

u
�
i xi+1 � �

n

i=1

kuik
2 + �; 8n: (5)

A5)The noise sequencef"ig satisfies

lim
T!0

lim sup
k!1

1

T

m(n ; t)

i=n

ai"i+1 = 0; 8 t 2 [0; T ] (6)

along any convergent subsequencefun g, wherefaig is the
step size used in (3) andm(n; T ) is the integer-valued function
defined by

m(k; T )
�
= max m:

m

i=k

ai � T : (7)

Remark 1: If the noisef�ig is independent offuig, then A5) is
equivalent to

lim
T�!0

lim sup
n�!1

1

T

m(n; t)

i=n

ai�i+1 = 0; 8 t 2 [0; T ]: (8)

In the case where�i+1 depends on the past controlfuj ; j � ig, A5)
is easier to be verified in comparison with (8). Further, if1

i=1 ai�i+1

< 1, then (6) is clearly satisfied. This is the case if(�i; Fi) is a
martingale difference sequence withsupi(Ek�i+1k

2jFi) < 1 and
if 1

i=1 a
2
i < 1.

III. M AIN RESULTS

In this section, we intend to show that the adaptive control given
by (3) reaches the goal of regulation, i.e., it regulates the system state
tending to the desired state, zero. As a matter of fact, we have the fol-
lowing result.

Theorem 1: Suppose A1)–A5) hold. Then the adaptive regulator
(1)–(4) has the desired properties:

uk ! u
0
; xk ! 0; k !1 (9)

at sample paths where A5) is satisfied.
Proof: Before proceeding to the proof, we first note that the al-

gorithm (3) defininguk is nothing else but a projected stochastic ap-
proximation algorithm [10], [11], [1], [4].

Assume A1)–A5) hold. We complete the proof by four steps.
Step 1: Let un be a convergent subsequence offukg defined by

(3) such thatun ���!
i!1

u, andkuk < 2b. We show that

um+1 =um � amym+1 (10)

kum+1 � un k � ct; 8m: ni � m � m(ni; t);

8 t 2 [0; T ] (11)

for sufficiently largei and small enoughT , wherec is a constant to be
specified later on.

Since system (1) is BIBS, fromkukk < 2b it follows that there is
a > 0 such thatkxkk � a, 8 k.

By A5) for largei and smallT > 0,

m

j=n

aj"j+1 � at; 8m: ni � m � m(ni; t); 8 t 2 [0; T ]:

This implies that

m

j=n

ajyj+1 =

m

j=n

aj(xj+1 + "j+1)

� a

m

j=n

aj +

m

j=n

aj"j+1 � 2at;

8m: ni � m � m(ni; t):

Let i be large enough such that

kun � uk < 1
2
(2b� kuk)

and letT be small enough such that

aT < 1
4
(2b� kuk):

Then we have

kun � an yn +1k � kun � uk+ kuk+ kan yn +1k < 2b

and hence there is no truncation in (3) fork = ni, i.e., (10) holds for
m = ni. Therefore

kun +1 � un k = kan yn +1k � 2at
�
= ct:
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Thus, we have shown that (10) and (11) hold form = ni.
Assume (10) and (11) are true for allm: m � k, ni � k <

m(ni; t). We now show that they are true form = k + 1 too.
Since

kuk+1 � ak+1yk+2k

= un �

k+1

j=n

ajyj+1

� kun � uk+ kuk+

k+1

j=n

ajyj+1 < 2b

from the algorithm (3) it follows thatuk+2 = uk+1 � ak+1yk+2, or
(10) holds form = k + 1.

Hence

kuk+2 � un k =

k+1

j=n

ajyj+1 � 2at
�
= ct

and (11) is true form = k + 1 indeed.
By mathematical induction, the assertions (10) and (11) have been

proved.
Step 2: We now show that for any convergent subsequencefun g,

un �! u 6= u0 there is a� > 0 such that

lim inf
k�!1

1

T

m(n ; T )

i=n

ai(ui � u
0)�xi+1 � � (12)

for all small enoughT > 0. By A4), (5) is satisfied for anyui, so it
holds withui replaced byui � u0

i

j=n

(uj � u
0)�xi+1

� �

i

j=n

kuj � u
0k2 + �

= �

i

i=n

ku� u
0 + (ui � u)k2 + �

= �

i

i=n

ku� u
0k2 + 2�

i

i=n

(u� u
0)�(ui � u)

+ �

i

i=n

kui � uk2 + �: (13)

Let us restricti in (13) tofnk; nk + 1; . . . ; m(nk; T )g.
Then for smallT and largek, from (11) and (13) it follows that:

1

i� nk + 1

i

j=n

(uj � u
0)�xi+1

� �ku� u
0k2 � 4�ku� u

0kcT � �4T 2 +
�

i� nk + 1

for i 2 [nk; . . . ; m(nk; T )].
This implies that there exist a� > 0 and a sufficiently largei0, which

may depend onu but is independent ofk, such that

1

i� nk + 1

i

j=n

(uj � u
0)�xi+1 > �

8 i 2 [nk + i0; nk + i0 + 1; . . . ; m(nk; T )g (14)

for all sufficiently largek and small enoughT > 0.

Set

Sn ; i =

i

j=n

(uj � u
0)�xj+1; Sn ;n �1 = 0:

Using a partial summation, by (14) we have

m(n ; T )

i=n

ai(ui � u
0)�xi+1

=

m(n ; T )

i=n

ai(Sn ; i � Sn ; i�1)

= am(n ; T )Sn ;m(n ; T ) +

m(n ; T )�1

i=n

(ai � ai+1)Sn ; i

> am(n ; T )�(m(nk; T )� nk + 1) (15)

+

n +i �1

i=n

(ai � ai+1)Sn ; i

+

m(n ; T )�1

i=n +i

(ai � ai+1)�(i� nk + 1): (16)

Sincekuik < 2b, kxik < a, it is seen that

n +i �1

i=n

(ai � ai+1)Sn ; i

�

n +i �1

i=n

(ai � ai+1)i0(2b+ ku0k)a

= i0(2b+ ku0k)a(an � an +i ) �!
k�!1

0:

Then, (15) implies that

m(n ; T )

i=n

ai(ui � u
0)�xi+1

> am(n ; T )(�(m(nk; T )� nk + 1)� �(m(nk; T )� nk))

+ an +i �(i0 + 1) + �

m(n ; T )�1

i=n +i +1

ai + o(1)

= �am(n ; T ) + an +i �(i0 + 1) + �

m(n ; T )�1

i=n +i +1

ai + o(1)

�!
k�!1

�T:

This proves (12).
Step 3: DefineV (u) = ku � u0k2. We show thatV (uk) cannot

cross a nonempty interval infinitely many times.
Notice that

V (0) = ku0k2 < b
2
< inf
kuk=2b

ku� u
0k2 = inf

kuk=2b
V (u):

Assume the contrary, i.e., there are two subsequencesfum g andful g
and a nonempty interval[�1; �2] such that�2 > �1 > 0,V (um ) � �1,
�1 < V (uk) < �2 for k: mi < k < li, andV (ul ) � �2.

Without loss of generality we may assumeum ���!
i!1

u. From Step

1, for sufficiently largei and small enoughT , we have

kum +1 � um k � ct

which tends to zero asi!1 andT ! 0, and henceum +1 ���!
i!1

u.

From the continuity ofV (�), it follows that:

V (um )! V (u) � �1; and V (um +1)! V (u) � �1
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which implyV (u) = �1. SinceV (u0) = 0, we conclude thatu 6= u0.
By the Taylor’s expansion and by (10) we have

V um(m ;T )+1 � V (um )

= �V �
u (~u)

m(m ;T )

j=m

aj(f(xj ; uj) + "j+1)

= �V �
u (~u)

m(m ;T )

j=m

aj"j+1 �

m(m ;T )

j=m

ajV
�
u (uj)xj+1

+

m(m ;T )

j=m

aj(Vu(uj)� Vu(~u))
�xj+1; (17)

wherek~u � um k � cT . By noting (11), (5), the continuity ofVu(�)
and the boundedness ofxk, we see that the last term in (16) is the order
of o(T ) asT ! 0, and by A5) the first term on the right-hand side of
(17) is also the order ofo(T ). From (12), it follows that there exists an
" > 0 such that

�

m(m ;T )

j=m

ajV
�
u (uj)xj � �"T (18)

for sufficiently smallT .
Hence fori large enough andT small enough we have

V um(m ;T )+1 � V (um ) � �
"

2
T (19)

and hence

lim sup
i!1

V um(m ;T )+1 � �1 �
"

2
T: (20)

It follows from (11) that:

max
m �m�m(m ;T )+1

kV (um)� V (um )k ���!
T!0

0

which implies thatV (um(m ;T )+1) 2 [�1; �2] for smallT . However,
this contradicts (20). The contradiction proves thatV (uk) cannot cross
a nonempty interval infinitely often (i.o.). As a consequence, the algo-
rithm (3) will cease to truncate after a finite number of times, because
V (0) = ku0k2 < b2 < infkuk=2b ku� u0k2 = infkuk=2b V (u).

Step 4: Denotev1
�
= lim infn!1 V (un) � lim supn!1 V (un)

�
= v2.

If v1 < v2, thenV (un)will cross some interval[�1; �2] with �1 > 0
infinitely many times. From Step 3, this is impossible. So,v1 = v2, or
V (un) converges.

If uk does not converge tou0, then there is a convergent subsequence
fun g such thatun ���!

k!1
u 6= u0. Replacingmi in Step 3 bynk,

we again have (17)–(19). SinceV (un) converges, taking limit in both
sides of (19) we arrive at0 � �("=2)T , which is impossible. Hence,
un ! u0.

Write (1) asxk+1 = f(xk; u
0) + f(xk; uk) � f(xk; u

0). By
A3) and the boundedness offxkg we havedk

�
= f(xk; uk) �

f(xk; u
0) ���!

k!1
0, and by A1), we concludexk ! 0.

Remark 2: It is easy to see that A5) is also necessary if A1–A4
and (9) hold. This is because for largek the observation noise can be
expressed as

�k+1 =
uk+1 � uk

ak
+ f(xk; uk)

and hence
m(n ; T )

i=n

ai�i+1 =

m(n ; T )

i=n

(ui+1 � ui) +

m(n ; T )

i=n

aif(xi; ui)

which tends to zero by (9).

Theorem 1 remains valid if Condition A4) is replaced by the weaker
condition either (12) or (14), because in the proof we only use (12)
which in turn is implied by (14). We formulate this as Theorem 2.

Theorem 2: Suppose that System (1) satisfies A1), A2), A3), and
A5), and for any convergent subsequencefun g, un ! u 6= u0 one
of the following conditions is fulfilled:

i) there is a� > 0 such that (12) holds for all small enoughT > 0;
ii) there exist a� > 0 and a sufficiently largei0, which may depend

on u but is independent ofk, such that (14) holds for alli 2
[nk + i0; . . . ; m(nk; T )] if k is sufficiently large andT > 0 is
small enough.

Then (9) holds at sample paths where A5) is satisfied.
Remark 3: The quadraticV (�) can be replaced by a continu-

ously differentiable functionV (�): Rn�!R such thatV (u0) = 0,
and V (0) < infkuk=2b V (u). Then, Theorem 2 remains valid if
(uj � u0)� in (12) and (14) is replaced byV �

u (uj), whereVu denotes
the gradient ofV .

Example: Let the nonlinear system be affine

xk+1 = g(xk)(uk � u0)

where the scalar nonlinear functiong(�) is bounded from above and
from below by positive constants:0 < � � g(x) � � < 1, 8x 2
n.
Note that(uj�u0)�xj+1 = g(xj)kuj�u0k2 � �kuj�u0k2, and

hence (14) holds, ifun �! u 6= u0. Assumeb is known:ku0k < b.
Then A1), A2), and A3) are satisfied. Therefore, iff�ig satisfies A5),
thenfukg given by (3) leads touk �! u0 andxk �! 0.

IV. CONCLUSION

This note concerns the adaptive control for general nonlinear non-
parametric systems. Based on stochastic approximation methods we
presented a solution to the adaptive regulation problem under reason-
able conditions on the nonlinear dynamics as well as on the measure-
ment noise. In the further study, it may be of importance to consider
the stochastic dynamic system where the noise may appear not only in
observations but also in the state equation. To weaken the conditions
required in theorems may also be of interest. Our results may serve as
an initial step toward solving the general adaptive control problem.
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Comments on “Parameterization of Stabilizing
Compensators by Using Reduced-Order Observers”

Zhiwei Gao and Daniel W. C. Ho

Abstract—In this note, a counterexample of the above mentioned paper1

is given. It is shown that the parameterization of all proper compensators
internally stabilizing the plant is incomplete. Modified parameterization of
all proper stabilizing compensators is also presented.

Index Terms—Coprime factorization, parameterization, proper stabi-
lizing compensators.

I. INTRODUCTION

A doubly coprime factorization (DCF) plays an important role in
investigating multivariable control problems by the factorization ap-
proach. Recently, Fujimori presented a parameterization of all proper
stabilizing compensators using the DCF related to the minimal-order
observer. However, the proper controller parameterization in the above
paper1 is incomplete as shown.

In this note, the transfer function matrix of the plant is denoted by

G(s) = C(sI �A)�1B +D :=
A B

C D

: (1)

G(s)o := C andG(s)i := B represent the output matrix and the
input matrix ofG(s) respectively. LetC+ denote the closed, complex
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right-half plane, andC+e := C+ f1g. The assumptions and the
remaining symbols are the same as those defined in the paper1. We
now restate Theorems 1 and 2 from the above paper1 as follows.

Theorem 1: The following stable rational function matrices:

Yr Xr

�Nl Dl

=

F TB �HD H

KP Im �KVD KV

�CAP �CB � (sIp � CAV )D sIp � CAV

(2)

Dr �Xl

Nr Yl
=

AK B V

�K Im 0

C �DK D 0

(3)

or

Yr Xr

�Nl Dl

=

AL B � LD L

N 0 0

�C �D Ip

(4)

Dr �Xl

Nr Yl

=

G MAB ML

�J sIm �NAB �NL

CS �DJ CB +D(sIm �NAB) Ip �DNL

(5)

satisfy the Bezout identity

Yr Xr

�Nl Dl

Dr �Xl

Nr Yl
=

Im 0

0 Ip
: (6)

Theorem 2: When using transfer function matrices given in (2) and
(3) or (4) and (5), the set of allproper compensatorsC(s) internally
stabilizingG(s) is parameterized by

C(s) = (Yr �QNl)
�1(Xr +QDl)

= (Xl +DrQ)(Yl �NrQ)
�1 (7)

whereQ 2 RHm�p
2

.
Remark 1: Since some elements in the DCF given by Theorem 1 are

stable but nonproper, the free parameterQ has to be restricted within
the set of strictly proper and stable rational function matrices for ob-
taining resultant stabilizing compensators. It is noted that, the proof of
Theorem 2 in the above mentioned paper1 only proved that the compen-
satorsC(s) in (7) are all compensators for stabilizingG(s), however,
the properness of these compensators was not discussed. Unfortunately,
it will be shown that some of these compensators in (7) cannot be guar-
anteed to be proper even whenQ 2 RHm�p

2
.

II. A COUNTER-EXAMPLE

Consider a controllable and observable system

_x(t) =
0 1

�1 0
x(t) +

0

�1
u(t)

y(t) = ( 1 0 )x(t) + u(t):

(8)

a) We first consider the DCF defined in (2) and (3). ChooseF =
�2 andH = 1. From the restraint conditions of the minimal-
order observer (13) in the above paper1 (or see [1]), we have the
solutions thatT = (2=5; �1=5), V = 1

2
, P = 0

�5
. Find
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