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IV. CONCLUSION

The sliding-mode control of nonlinear uncertain systems with un-
modeled first-order actuator dynamics has been considered. A 2-SMC
scheme with adaptive switching rule has been proposed, and its ef-
fectiveness has been shown for a class of systems encompassing non
zero-input-stable (ZIS) systems and non-BIBS stable plants. The pro-
posed algorithm is easy to implement and therefore suited to being used
in practice; it is also effective in counteracting the transient peaking
phenomenon.
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Stability of Adaptively Stabilized Stochastic Systems

Han-Fu Chen, Xian-Bing Cao, and Hai-Tao Fang

Abstract—Stochastic adaptive stabilization usually leads to the bounded-
ness of the average of squared output of the stabilized system, but gives no
conclusion on stability of the resulting system. This note proves that adap-
tively stabilized stochastic system in its steady state is truly stable in the
conventional sense.

Index Terms—Adaptive stabilization, ARMA, stability.

I. INTRODUCTION

Adaptive control for ARMAX systems has extensively been studied
in the literature. Normally, in addition to conclusions concerning per-
formance indices, the resulting systems are adaptively stabilized in the
sense that the average of squared input and output is bounded, i.e.,

lim sup
n!1

1

n

n

k=1

(kukk
2 + kykk

2) <1 (1)

whereuk andyk denote the system input and output, respectively (see,
e.g., [1]–[3]).

In particular, for stochastic adaptive stabilization the following
single-input–single-output (SISO) system is considered in [4]–[6]
among others:

A
0(z)yk = B

0(z)uk + C
0(z)wk (2)

whereA0(z); B0(z) andC0(z) are polynomials in backward shift op-
eratorz: zyk = yk�1 with unknown coefficients, andfwkg is a se-
quence of martingale differences or independent random variables.

It is normally assumed that polynomialsA0(z) andB0(z) are co-
prime, but both may be unstable. The problem of adaptive stabilization
is to design feedback control so that the closed-loop system is stabilized
in the sense of (1). As a matter of fact, (2) is adaptively stabilized in
[4]–[6], and the resulting system given in [5] and [6] in a finite number
of steps becomes an ARMA system with constant coefficients

A(z)yk = C(z)wk: (3)

Although

lim sup
n!1

1

n

n

k=1

y
2

k <1

for (3), it is not clear ifA(z) is stable. We sayA(z) is stable if all roots
of A(z) are outside the closed unit disk, i.e.,A(z) 6= 0; 8 z: jzj � 1.

Just recently, it was shown in [7] that for the steady-state system (3),
after adaptive stabilization,A(z) 6= 0; 8 z: jzj < 1. However, the
possibility of having roots on the unit circle is not excluded in [7]. To
prove thatA(z) is truly stable is the topic of this note.
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II. M AIN RESULT

Let

A(z)yk = C(z)wk; yk = wk = 0 for k � 0 (4)

be a one-dimensional (1-D) ARMA process, where

A(z) = 1 + a1z + � � �+ apz
p
; ap 6= 0

C(z) = 1 + c1z + � � �+ crz
r
; cr 6= 0: (5)

Assume

lim sup
n!1

1

n

n

k=1

y
2
k <1: (6)

Problem: Under which conditions isA(z) stable, i.e.,A(z) 6= 0;
8 z: jzj � 1?

To this problem, a partial answer is given in [7]. For convenience
of reading we present this result here as a lemma, and prove it in the
Appendix.

Lemma 1: For ARMA process (4) assumefwk; Fkg is a martingale
difference sequence with

sup
k

E w
2
k+1jFk <1 a.s.

and (6) holds. ThenA(z) has no zeros inside the open unit disk, i.e.,
A(z) 6= 0; 8 z: jzj < 1.

The gap between the complete answer to our problem and Lemma 1
is to show thatA(z) 6= 0; 8 z: jzj = 1. For this we will use the law
of iterated logarithm given by Wittmann, which is formulated here as
Lemma 2. For its proof we refer to [8].

Lemma 2: Let a sequence of independent random variablesf�ng
satisfy the following conditions:

1)

lim
n!1

s
2
n = 1;

2)

lim sup
n!1

s2n+1

s2n
<1;

3)

1

k=1

2s2k log log s
2
k
�
=2

E [j�kj
 ] <1;

for 
: 2 < 
 � 3, where

s
2
n =

n

k=1

E(�2k):

Then

lim sup
n!1

1

(2s2n log log s2n)1=2

n

k=1

�k = 1 a.s.

Theorem 1: Assume (6) and the following conditions for ARMA
process (4):

A1) fwkg is a sequence of independent random variables with zero
mean,supkE(jwkj
) < 1 for some
: 2 < 
 � 3, and
lim infk!1E(w2k) = 2�2 > 0;

A2) A(z) andC(z) are coprime.
Then,A(z) is stable, i.e., all roots ofA(z) are outside the closed-unit
disk.

The proof of the theorem is given in Sections III and IV. It is worth
noting that the converse conclusion is a well-known fact, i.e., for (4),
if A1) holds, then stability ofA(z) implies (6).

III. PROOF OFTHEOREM: DISTINCT EIGENVALUES CASE

By Lemma 1, we need only to prove thatA(z) 6= 0; 8z with jzj = 1.
Set

A
�
=

�a1 1 0 � � � 0

�a2 0 1 � � � 0
...

...
...

. . .
...

�ap�1 0 0 � � � 1

�ap 0 0 � � � 0

H
�
= [1 0 � � � 0

p

]; xk
�
= x

1
k x

2
k � � � xpk

T
: (7)

Then we present (4) in the state-space form as follows:

xk+1 = Axk +H
T
C(z)wk+1; yk = Hxk: (8)

Sincex1k = yk, by (6) we have

lim sup
n!1

1

n

n

k=1

x
1
k
2
<1:

From (7) and (8), we seexpk+1 = �apx1k; xik+1 = �aix1k + xi+1k ,
for i: 1 < i < p, and hence

lim sup
n!1

1

n

n

k=1

x
i
k

2

<1; 8 i; 1 � i � p

i.e.,

lim sup
n!1

1

n

n

k=1

kxkk2 <1: (9)

Since eigenvalues ofA are reciprocals of roots ofA(z) (see, for ex-
ample, [9, Lemma 2.5, p. 45]), by Lemma 1 we only need to prove that
no eigenvalue ofA is on the unit circle.

Assume the theorem is not true;A has at least one eigenvalue on
the unit circle. Without loss of generality, we may assume that�1 =
ej�; � 2 [0; 2�); j =

p�1 .
We first prove the theorem for the simple case, where allp eigen-

values ofA are distinct. In this caseA can be diagonized: there exists
an invertible matrixP such thatP�1AP = diag(�1; �2; . . . ; �p),
where�1; . . . ; �p are eigenvalues ofA anddiag(�1; . . . ; �p) de-
notes the diagonal matrix with diagonal elements�1; . . . ; �p.

From (8), we obtain that

P
�1
xk+1 =diag(�1; �2; . . . ; �p)P

�1
xk

+ P
�1
H

T
C(z)wk+1: (10)

Define

�k+1 = �
1
k+1 �

2
k+1 � � � �pk+1

T �
= P

�1
xk+1

d = [d1 d2 � � � dp]T �
= P

�1
H

T
: (11)

Sincey0 = y�1 = � � � = y�p+1 = 0, we havex0 = 0, and hence
�0 = 0. From (10) and (11), it follows that:

�
1
k+1 =�1�

1
k + d1C(z)wk+1 = � � �

=

k+1

i=1

d1�
k+1�i
1 C(z)wi: (12)
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Noticingwk = 0 for k � 0 and settingc0 = 1 we have

�
1
k

= d1�
k
1

k

i=1

�
�i
1 C(z)wi=d1�

k
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s=0
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i=1
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�i�s
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k
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cs�
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s=0
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i=k�r+1

�
�i�s
1 cswi

= d1�
k
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1

k�r

i=1

�
�i
1 wi+d1�

k
1

r�1

s=0

k�s

i=k�r+1

�
�i�s
1 cswi

= d1�
k
1C �

�1
1

�

k�r

i=1

�
�i
1 wi+

1

C ��11

k

i=k�r+1

�
�i
1

k�i

s=0

�
�s
1 cs wi :

(13)

Let

gi =

cos(i�); 1 � i � k � r

Re
��i1

C ��11

k�i

s=0

cs�
�s
1 ; k � r + 1 � i � k

(14)

whereRe(z) denotes the real part ofz. Then, we have that

j�1kj
2 � jd1j

2j�1j
2kjC �

�1
1 j2

k

i=1

giwi

2

= jd1j
2
C �

�1
1

2
k

i=1

giwi

2

: (15)

By A1) fgiwig is a sequence of independent random variables with
zero mean, and

s
2
n
�
=

n

k=1

E(gkwk)
2 =

n

i=1

g
2
kE w

2
k

=

n�r

k=1

cos2(k�)E w
2
k +

n

k=n�r+1

g
2
kE w

2
k : (16)

Since

lim inf
k!1

E w
2
k = 2�2 > 0

there isk0 such thatE(w2
k) � �2; 8 k � k0.

Noticing that

2 sin�

n

k=1

cos(2k�) =

n

k=1

[sin(2k + 1)�� sin(2k� 1)�]

= (sin(2n+ 1)�� sin�)

we have

s
2
n ��

2

n�r

k=k

cos2(k�) =
�2

2

n�r

k=k

(1 + cos(2k�))

=

�2

2
(n� r � k0 + 1)(1 + o(1)); � 6= 0,

�2(n� r � k0 + 1); � = 0

(17)

where byo(1) we mean a quantity tending to zero asn ! 1. There-
fore, we haves2n ! 1, asn ! 1. Further, paying attention to the
boundedness offgig andfE(w2

k)g from (16), (17) it is easy to see

lim
n!1

s2n+1

s2n
= 1:

Since by A1) and the boundedness offgkg

sup
k

Ejgkwkj


<1

for some
 2 (2; 3], by (17) it follows that:

1

k=1

2s2n log log s
2
n
�
=2

E [jgkwkj

 ] <1:

Consequently, by Lemma 2 there exists a subsequencefnkg, which
may depend on sample path, such that

lim
k!1

1

2s2n log log s2n
1=2

n

i=1

giwi = 1 a.s. (18)

i.e.,

n

i=1

giwi � �
2
nk log log

�2

2
nk

1=2

(1 + o(1)) a.s. (19)

where and hereafter byo(1) we mean a quantity which tends to zero as
k ! 1. From (15) and (19), we obtain

�
1
n

2
� jd1j

2
C �

�1
1

2
�
2
nk log log

�2

2
nk

� (1 + o(1)) a.s. (20)

Since�k+1 = P�1xk+1, we immediately obtain thatkxk+1k2 �
�mink�k+1k

2; 8 k, where�min > 0 denotes the minimum eigenvalue
of the positive definite matrixP �P .

From (20) it follows that

1

nk

n

i=1

kxik
2 �

1

nk
kxn k2 �

1

nk
�min �

1
n

2

� jd1j
2
C �

�1
1

2
�min�

2 log log
�2

2
nk

� (1 + o(1)): (21)

We now proved1 6= 0. Writing P�1 in the form of column vec-
tors pi; i = 1; . . . ; p, i.e.,P�1 = [p1 p2 � � � pp], we haved =
P�1HT = p1.

On the other hand, since

P
�1
A = diag(�1; �2; . . . ; �p)P

�1

we have

A
T (P�1)� = (P�1)�diag �1; �2; . . . ; �p (22)

where� denotes the conjugate transpose operation and�i denotes the
complex conjugate of�i.

Let q1 = [b1 b2 � � � bp]
T be the first column of(P�1)�. Then from

(22) we haveAT q1 = �1q1.
Notice thatb1, serving as the left-upper corner element of(P�1)�,

can be derived fromd = P�1HT by taking transpose and complex
conjugate. This yields thatd1 = b1.
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Assume the converse:d1 = 0. Then fromAT q1 = �1q1, we have
b2 = 0; . . . ; bp = 0, i.e.,q1 = 0. This contradicts the invertibility of
P . The obtained contradiction showsd1 6= 0. Since��11 is the root of
A(z), by A2),C(��11 ) 6= 0. Consequently, the right-hand side of (21)
tends to infinity a.s. ask ! 1, or

lim sup
n!1

1

n

n

k=1

kxkk
2 =1 a.s.

This contradicts (9) and proves the theorem for the case of distinct
eigenvalues ofA.

IV. PROOF OFTHEOREM: GENERAL CASE

We now prove the Theorem for the general case whereA has at
least one eigenvalue with multiplicity greater than one. Without loss
of generality, let�1 = ej� be the eigenvalue ofA with multiplicity
s1 > 1, and let the order of the first block in its Jordan form ber1. Let
P be invertible such that

P
�1
DP = diag(J1; . . . ; Jd) (23)

whereJ1; J2; . . . ; Jd are Jordan blocks.
Similar to (10) we have

P
�1
xk+1 = diag(J1; . . . ; Jd)P

�1
xk + P

�1
H

T
C(z)wk+1: (24)

Using the notations as those introduced in (11), we then have

�
r

k+1 =�1�
r

k + dr C(z)wk+1 = � � �

=

k+1

i=1

dr �
k+1�i
1 C(z)wi

= dr �
k+1
1

k+1

i=1

�
�i
1 C(z)wi:

Comparing (25) with (12), we are convinced of that (25) implies

lim sup
n!1

1

n

n

k=1

kxkk
2 =1 (25)

if we can show thatdr 6= 0. So, to complete the proof it suffices to
showdr 6= 0.

Corresponding to (22), we now have

A
T (P�1)� = (P�1)�diag(J�1 ; J

�

2 ; . . . ; J
�

d ): (26)

Let qr = [b1 � � � br � � � bp]
T be ther1th column of(P�1)�. From

(26), it follows that:AT qr = �1qr .
The elementb1 located at the first row andr1th column of(P�1)�

can also be derived fromd = P�1HT . Consequently, we haveb1 =
dr .

Assume the converse:dr = 0. Thenb1 = 0, and we have that
b2 = 0; . . . ; bp = 0, i.e.,qr = 0. This contradicts the invertibility of
P . Therefore,dr 6= 0.

V. CONCLUSION

The purpose of stochastic adaptive control may be to optimize some
performance index, but the basic requirement which should always
be met, is to stabilize the system in the sense that the average of
squared output is bounded. An adaptively controlled ARMAX system
normally is nonlinear and time-varying, but the closed-loop adaptive
control system may tend to a steady-state system if adaptive control

is successfully designed. The closed-loop system in its steady state
form is an ARMA system. We have shown in this paper that for the
1-D ARMA system, the boundedness of average of the squared output
implies stability of the system indeed. So, the result of the paper may
be used to judge if the steady state closed-loop system is stable or not.
Extension of the result to multidimensional systems is of interest.

APPENDIX

PROOF OFLEMMA 1

Assume the converse, i.e.,A(z) has explosive root(s).
Let us factorize

A(z)A(z) =A1(z)A2(z) (27)

A1(z) = 1 + a
(1)
1 z + � � �+ a

(1)
� z

� (28)

A2(z) = 1 + a
(2)
1 z + � � �+ a

(2)
� z

� (29)

where�+� = p, all roots ofA1(z) are outside or on the unit circle and
all roots ofA2(z) are inside the unit circle. By the converse assumption
ja
(2)
� j 6= 0 with � � 1.
Define thep � p matrixM

M
�
=

1 a
(1)
1 � � � a

(1)
� 0 � � � 0

0 1 a
(1)
1 � � � a

(1)
� � � � o

...
. . .

. . .

0 � � � 0 1 a
(1)
1 � � � a

(1)
�

1 a
(2)
1 � � � a

(2)
� � � � 0

0
. . .

...
. . .

. . .

0 � � � 0 1 a
(2)
1 � � � a

(2)
�

(30)

which is nonsingular becauseA1(z) andA2(z) are coprime.
Define thep-dimensional vector�k by

�k
�
= [yk; . . . ; yk�p+1]

T

and

M�k = [�k; �k�1; . . . ; �k��+1; �k; �k�1; . . . ; �k��+1]
T

(31)

whereA2(z)�k = C(z)wk; A1(z)�k = C(z)wk.
From (6), it follows that:

lim sup
n!1

1

n

n

i=1

�
2
i <1; lim sup

n!1

1

n

n

i=1

�
2
i <1 a.s. (32)

Setting

D
�
=

�a
(2)
1 1 0 � � � 0

... 0
. . .

. . .

...
...

...
. . . 0

1

�a
(2)
� 0 � � � 0
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and

G
�
=

1 0 � � � 0

0 �a(2)2 � � � �a(2)�

0 �a(2)3 0

...
...

0 �a(2)� 0 � � � 0

and recursively defining�-dimensional

xk
�
= [xk; 1 � � � xk; � ]T

by

xk+1 = Dxk +HTC(z)wk+1 (33)

whereH = [1 0 � � � 0]
�

, we have

xk = G[�k �k�1 � � � �k��+1]T

and hence

lim sup
n!1

1

n

n

i=1

kxik2 <1 a.s.

From (33), we have

D�(k+1)xk+1 = x0 +

k+1

i=1

D�iHTC(z)wi (34)

wherex0 is a deterministic vector defined by initial valuesy0; y�1;
. . . ; y�p. The right-hand side of (34) converges a.s. to a nonzero
random vector.

On the other side, however,fkxkk=
p
kg is a bounded sequence. This

means that

D�(k+1)xk+1 � c�k+1
kxk+1kp
k + 1

p
k + 1 �!

k!1
0 a.s.

where� 2 (0; 1) andc is a constant.
The obtained contradiction shows that no root ofA(z) can be

explosive.
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Adaptive Regulator for Discrete-Time Nonlinear
Nonparametric Systems

Han-Fu Chen and Qian Wang

Abstract—A direct adaptive regulator for nonlinear nonparametric sys-
tems with measurement corrupted by noise is proposed. Under reasonable
conditions the state of the closed-loop system is adaptively regulated so that
it converges to zero as time tends to infinity. An illustrative example, being
an affine nonlinear system, with all imposed conditions satisfied is given.
The method of proof is based on stochastic approximation techniques.

Index Terms—Adaptive regulator, nonlinear nonparametric systems,
stochastic approximation.

I. INTRODUCTION

For most of practical systems the linear model is merely an approx-
imation to the true system dynamics. This probably is the reason why
much research attention has been paid to the nonlinear systems for re-
cent years. Various typical nonlinear models are considered in litera-
ture, for example, the nonlinear ARX model is considered in [12], bi-
linear model in [14] and the Hammerstein model in [17]. The common
feature for all these models is that the system is parameterized and the
parameters linearly enter the models. Therefore, when the parameters
are unknown in these models, they may recursively be estimated by
conventional methods, for example, the least-squares (LS) method, and
the parameter estimates may be used to form adaptive controls [7], [6],
[15], [13], [8], [9]. Although parameterization of system uncertainties
simplifies forming adaptive control laws, it is not an easy task to ana-
lyze the resulting nonlinear adaptive control systems (see [12]).

To design and to analyze adaptive control for nonparametric non-
linear systems in a random environment is the topic of the present note.
To the authors’ knowledge this is the first attempt to make a rigorous
analysis for this difficult problem. As a first step, we have to restrict
ourselves to consider the relatively simple case, adaptive regulation,
rather than the general adaptive control problem. The purpose of regu-
lation is to control a system in order its state or output to reach a desired
value. Since the system is unknown, one may intend to realize regu-
lation adaptively. The resulting adaptive control system is then called
adaptive regulator. Even for this rather simple task, we have to impose
rather restrictive but reasonable conditions on the nonlinear dynamics
of the system. The system state is observed with additive noise. By
noticing the inherent connection between adaptive regulation and the
problem of searching zero of an unknown nonlinear function, we will
apply the stochastic approximation method to propose an adaptive reg-
ulator and prove the regulation error asymptotically tending to zero.

To solve the stated problem under general conditions is beyond the
target of this note. This note aims at stimulating research on nonlinear
stochastic adaptive control, pointing out the possibility of shifting
from the parametrization framework to more natural nonparametric
approach. It is worth noting that stochastic approximation only serves
as a tool to solve the stated problem rather than a research topic in this
note.
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