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Stability and Instability of Limit Points for Stochastic
Approximation Algorithms

Hai-Tao Fang and Han-Fu Cherellow, IEEE

~ Abstractitis shown that the limit points of a stochastic approx- - (ODE) method consists in connecting properties of (3) with the
imation (SA) algorithm compose a connected set. Conditions are convergence analysis of SA algorithms. Under certain condi-
given to guarantee the uniqueness of the limit point for a given ini- tions onf(-) and{e, }, the convergence dfz,,} and estimation

tial value. Examples are provided wherein{z,,} of SA algorithm - - S .
converges to a limitz independent of initiil vglues, butz is un-  €rror bounds are established in [13] for the equilibrium being

stable for the differential equation # = f(x) with a nonnegative asymptotically stable and exponentially asymptotically stable,

Lyapunov function. Finally, sufficient conditions are given for sta- respectively. On the other hand, if a equilibrignof (3) is un-

bility of & = f(x) atz if {,. } tends toz for any initial values.  stable and iff(-) is the gradient of some functiah(-) whose
Index Terms—Pathwise convergent, stable/instable limit point, extreme is sought for, them may be a saddle point df(-),

stochastic approximation. which has to be avoided in the optimization problem. Further, if

an equilibrium of (3) is unstable, then a finite precision imple-

mentation of an SA algorithm might not converge, even though

theoretical convergence is guaranteed.

T HE stochastic approximation (SA) algorithm The topics of this paper include general conditions;gn

and{e¢,} to guarantee the convergence {af,, } itself and to

establish the relationship between the convergenée of and

Ynt1 =f(2n) + enta ()  the stability of an equilibrium of (3). o

. . In order to remove the commonly used conditions, such as the

proposed by Robbins and Monro [1] is used to search the rog(%towth rate restriction orf(-) or the boundedness assumption

A .
setJ = {«: f(x) = 0} based on the observatiofig, }, where [2], [6], [7] on {z,.}, the algori : :

. ; : ; L [2]): 16 nts gorithm with randomly varying
{en} is the observation noise. SA methods are widely apph% ncations is defined in Section II. The connectedness of its

in systems identification [2], adaptive control [3], optimization it hqints is also proven there. In Section Ill, it is shown that,

neural_networks [4], and other fie_Ids [5]. In the CONVErgenGe , pointZ € J exists that is dominantly stable andzifis a
analysis [6]-[10] of «,, }, most published results are concerne it point of {x,.}, thenz,, must tend taz. Sections IV and

with d(wn, J) — 0, i._e., the distance betwegm,, ; and.J tends , giseyss the converse problem: is the limit{of, } a stable
to zero. Example given n [11] shows that the convergence Qauilibrium of (3)? At first glance, iz, } with an arbitrary
d(xy,, J) to zero does notimply the convergence(of, } itself.  ;iia| yalue converges ta, then (3) must be stable af which

In_ rr?zny ap]p I'Cat'(_)ns of SA, Towever, pegple ﬁre not satisfig@, 1t intuition from ODE tells us. For SA, however, because of
wit (a?"’ J) — 0; they are also interested in t '€ CONVEIYeNnGfie noise, the picture is different from ODE. Examples presented
‘?f {an} |tse_lf. Forthe convergence f{ﬁ"}’the su_fhment condi- j, section IV show thafz,, }, with an arbitrary initial value,

tions are given for the one-dimensional case (i{¢.): R — R) converges to a limit unstable for (3). In Section V a reasonable

in [11] and for the multidimensional F:ase in [12]. ~condition is proposed to ensufeto be a stable equilibrium of
Under the boundedness assumptio{ op}, the asymptotic (3) if ;. — 7.

part of the interpolating function ofx,, } with interpolating

. INTRODUCTION

-Tn—l—l =Tp + anyn—l—l (1)

length{a, } satisfies [2], [6] the following ordinary differential Il. THE ALGORITHM AND ITS LIMIT POINTS
equation:
q To avoid restrictive conditions ofy -) the randomly truncated
= f(x). (3) version of (1) and (2) is considered in [8]-[10] and is described
as follows.

It turns out that the stability or instability of the equilibriums of - considerf(-): R — R®. Let {M,, } be a sequence of pos-

(3) are of crucial importance for the behavior of the SA algqtve numbers strictly diverging tec. Let z* € R¢. Consider

rithms (1), (2). The essence of the ordinary differential equatiqn. 1 generated by the following algorithm truncated at ran-
domly varying bounds:
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The following conditions are needed:

Al) f(-)is measurable and locally bounded,;
A2) a, > 0,a, — 0and) .7 a, = oc;

A3) a continuously differentiable function (not necessarily

being nonnegative)(-): RY — R such that

sup — fT(x)va(z) <O

A>d(z,J)>56

®)

foranyA > ¢ > 0 andwv(J) 2 {v(z): z € J}

is nowhere dense, whetg(-) denotes the gradient of

u();
A4) for any convergent subsequengs,, }

m(ng,t)

21111_1)1 liiisolip T Z a;eiq1| =0, Vit e [0, T,
i=ny
wherem(n, T') = max{m: > .~ a; < T}.

T,
Remark 1: If 3°°°, a;e;41 converges, then A4) is obviously

satisfied.
Remark 2: Itis worth noting that for the convergencefof,, }

a mild constraint exists op* stated below in Proposition 1. For

example, iff(x) = sin x, thencos « may serve as(x) in A3)
and any:* is satisfactory except® = 2k, k = 0,£1, 42, ---.

If the noise effect is not strong, then, converges to that root
of sin z, which is the closest to*.

In what follows,w denotes a point in the underlying prob-

ability space. Then, for a fixed and a fixed initial valuez,
the algorithm (4)—(7) defines a trajectafy,, (w, o) }. For sim-
plicity of notations, we always suppre§s, zo) and writex,,
instead ofx,,(w, xo). The noise,, may depend not only oa,
but also on the trajectory up to time— 1 with x,,_; included.

Proposition 1: Assume A1)—-A3) hold and thag, exists such
thatv(z*) < inf)z)=c, v(x) and||z*|| < co. Let{x,} be de-
fined by (4)—(7) for some initial valuey. If A4) holds for a
given trajectory, then for this trajectory

nEI_ir_loo d(xy,, J) = 0.

The proof is given in [8], but for convenience, we attach it i
the Appendix. If.J is a singletor? and if f(-) is continuous at
2%, then the converse is also true; i.ex,,“— x°” implies A4).
Under the assumptions of Proposition 1, several conditions
proven to be equivalent to A4) in [14]. We now show that lim

points of {x,,} compose a connected set under the conditio

required in Proposition 1.

Proposition 2: Assume conditions of Proposition 1 are sati
fied. Then, for fixedz, andw, a connected subsét c J exists
such that

d(z,, J*) — 0

n——4oc

where J denotes the closure of and {z,,} is generated by
(4)-(7).
Proof: Denote byJ* the set of limit points of{z,}.
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Takep := 3 1d(.J}, .J}). Becausel(z,,, .J*) =0 aniN
exists such that
x, € B(JY, p)UB(J3, p), Vn > No
whereB(A, p) denotes the-neighborhood of set. Define

ng = inf{n > Ny, d(z,, J7) < p}
my = inf{n > ny, d(z,, J3) < p}
i1 = inf{n > my, d(z,, J7) < p}.
Itis clear thatn; < oo, n; < oo, VI > 0 and

Lny—1 ¢ B(Jf’ p)' (9)

By Proposition 1,{xz,} is bounded, and after a finite time,
the algorithm (4)—(7) becomes the one without truncations.
Without loss of generality, it may be assumed th@,tl

T, € B(JT, p),

- .Z"{,
—4o0

—1 — x5. By (9), it follows that||z] — z3|| > p.
On the other hand, by A1) and A4)

||'Tnz - ‘Tnz—ln < Qpn,—1 SUP ”f(‘TN)H + ||anz—1€nz|| — 0.
n>0

The obtained contradiction shows thétis connected. O

I1l. D OMINANT STABILITY

Under the conditions of Proposition 1, although the distance
between|{z,,} and./ tends to zero{x,, } may still not converge,

if Jis notasingleton. This resultis becaysg, } may still walk
about inJ even though the sequenge,,, » > m} is contained

in J starting from somen, which means thad(z,, J) = 0,

¥n > m. Let us take the example given in [11], where

x, z<0
flx)= {O, z€[0,1], J=]0, 1]
z—1, =z>1

ag = 1, a; = 1, cey Qon = o = Qon+tl_1 — \/1/2”,
e1 =160 = =1, eanp1 = - = egui1 = (=1)"71/1/2n,

Then,Z;‘:0 a;¢;4+1 changes from one to zero and then from

Bero to one, and this process repeats forever with decreasing

2% 4+m—1
=0
0,1,---.Itis clear thati(x,, J) = 0, and all conditions

stepsizes. Takey = 0. Then,zony, = >, Ai€it1,

m = U,
%r‘f)—A4) are satisfied, bufz,,} is dense in [0, 1]. This phe-

nomenon hints that for convergence{of,,} the stability-like

ns

condition A3) is not enough; a stronger stability is needed.
Definition 1: A point z € J is called dominantly stable

Sfor f(), ifaédy > 0 and a positive measurable functief):

(0, +00) — (0, +00) exist satisfying the following condition
thatc(x) at the intervalé, éo] is bounded from below by a pos-
itive constant for any € (0, &) such that

fr(@) (@ —7) < =l =z f ()] (10)

forall z € B(z, éo).

Remark 3: The dominant stability implies stability. To see

Assume the converse: i.el} is disconnected. In other words,this, it suffices to take(x) = ||= — Z||? as the Lyapunov func-

closed sets/; and J5 exist such that/*
a(Jy,J3) > 0.

Jyu Jy and

tion. The dominant stability af, however, is not necessary for
asymptotic stability.
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Remark 4: Equation (10) holds for any € .J, whatever is.
Therefore, all interior points of are dominantly stable fof(-).
Further, for a boundary poiatof .J to be dominantly stable for
f(-), it suffices to verify (10) forr € B(Z, 8p) N J° with small
bo, i.€., allz that are close t@ and outside/.

Theorem 1:Assume A1)-A3) hold. If for a givenv,
>i2 ., aigi41 is convergent and a limit poirt of {x,} gen-
erated by (4)—(7) is dominantly stable fgk-), then for this
trajectory,a:nnj_oof.

Proof: For anys € (0, 60/3), define
no = inf{n > 0, z,, € B(T, 6)}
nuzmﬂn>m¢%63@g&\B@J&
h:mqn>mh%¢B@J®\Ma®}
ni41 = inf{n > 1;, z, € B(Z, 6)}.
It is clear thatn is well defined, because,,, — 7 andz,,, €

B(z, §) for anyk greater than somi,. If forany é > 0, m; =
+oo for somei, thenz,, —J; T by arbitrariness of. Therefore,

for proving the theorem it suffices to show that, for any smaII

6 > 0, anVy exists such that/h; < +o0” implies “l; = n; 41"
if m; > NO

Assumel; is large enough so that the truncations no longer
exist in (4)—(7). It then follows that

||‘Tl7' - EHQ = ||‘Tl7' — L1+ T -1 — EHQ
=aj 1 |f (@) + 207 1 (21, -1)er,
+ 2a1, 1 fT(@1,—1) (T, -1 — )

+ ||‘Tli—1 — T+ ay (11)

Notice that for any: € B(z, 26)\B(Z, 6), c(||z —T||) > 1 >
0 and|| f(z)|| is bounded by A1), and hence by (10)

apllf@? + 207 f7(@)ensr + 200 f7 (@) (v — 7)
< an|l F@)[(@nll £ (@) + [|12aneniall = 2¢([|z —=)))
<0 (12)

Vn > Ni, for someNy, becaus{jc’o_1 apen41 IS CONvergent
anda,, — 0. Combining (11) and (12) leads to

n——4oo

||$li _fH2 < ||-le-71 — T+ ay

for m; > Ni.
Further

lzt,—1 — T+ ay,

= |lzt,-1 — 2i—2 + 2p,—2 + T+ ay,

= |lar,—of(x1,—2) + x1,—2 — T+ a1, —2€1,—1 + ay,

The similar treatment yields

||$l7'—1 — T+ a6, ||2

< a2 =T+ ag,—2e, -1 + ay,

415

Inductively, it then follows that

;-1

-7+ E Ak €1

k= rn7

lzr, = Z|* < ||,

;-1

dpopaees

k=m,;

%mei _fH2

-1 2

k=m;
2) +

+ ll€m,
where the elementary inequality

+ 1505, 1 (1f(@m,-0)I*

15 ¢2
50

o+ 92 < (1 + a) el + ( Va0

1
=) i,

is used. Because||f(zm,—1)|| is bounded, ||Zk'_m
arer+1]| — 0 and||am,—16m. || —J; 0, an N, exists such that
(2amde pte o)

||z, — T2 < Vm; > Na.

s,
ThIS process means that= ;. O
Remark 5: The convergence aof,, is also considered in [15],
but under different conditions. We now make a comparison be-
tween conditions used here and in [15]. First, [15, Theorem 2]
requires a condition called A-stability, which implies the bound-
edness of z,, }, while here (Theorem 1) does not make any
priori assumption oqz,,}. Second, concerning the noiée }
[15] requires that it can be decomposed into a syre: e, +7,,
suchthafy";° a;e;+1 < oo andr,, — 0. Obviously, this de-
composition implies A4). Furtherrrin_o)?(é, [15] requires an addi-
tional condition (see [15, (10)] for the casg = 0)

oo
2 .
E ap E aiCit1| + @y + aplrpra| | < 00

P i=p

which, however, is rather difficult to check. Third, both [15] and
this paper require some attractivenesgah [15] Condition B)
is used, and here the dominant stability is applied.

Example 1: Consider (4)—(7) with

f(x) = =VL(z)
where
2 1\2
L(x):{uun D2 if [ > 1
0, otherwise

i.e., (4)—(7) is used for seeking the extremaldf:) based on
the noisy observations

Ynt1 = —VL(zp) + Ent1-

Then, all points of/ = {z € R, ||z|| < 1} are dominantly
stable forf(-).
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As mentioned before, it suffices to show thataWith ||z|| = It is easy to check thaf;(x), ¢ = 1, 2, 3, 4 are mutually
1 are dominantly stable fof(-). For anyz with ||z|| > 1, itis orthogonalJ = {(0, 0, 0), (£1, 0, 0)} an d

seen that

-2 0 0
af1(x)
F@)e -7 = = 2] - Da” (= - 7) o ={ 000
) @=(£1,0,0) 00 0
= —||f(= )” 1 0 0
]l dfi(x) 01 o
= — z)|| ||z — || cos L(z, x — T =
[f@)llle == cos £(z, =~ ) s F B
where/(z, x — z) denotes the angle between the vectoed 5 0O 0 0
z — . Itis clear that fs(x) —lo 1 0
3 F
. / >0 T o=(41,0,0) 0 0 0
mn cos(z,x —=
lz—=||=6, ||=||>1 df2(x) _ dfs(x)
for all small enougt$ > 0. This process verifies that all points 9% |a=(41,00,00,0 9% lz=(00.0)
in J are dominantly stable fof(-). _ 0fulw) _o.
Al) and A3) are automatically satisfied in this example, be- AT | o(41,0,0),(0,0,0)
causeL(z) may serve as(x) in A3). L
Therefore, if A2) holds and 5>, ase;41 is convergent for Therefo_re, all three pomt_s idd are unstable for (3).
some trajectory, then for this trajectofy:,,} given by (4)—(7) ~ Consider the SA algorithm
converges to a point belonging toJ. Yns1 = [(@n) + Enst
Remark 6: If the results given in [12] are applied to Example Trgl = Tn + Gnlpit (13)

1, then for convergence dfr,,} one needs to impose rather B _ _
restrictive conditions ofe,, } and to haves,, = ¢/n +o(1/n). With a, = a/n, « < 1/4. Lete, be i.i.d. and uniformly dis-
tributed in[—1,1]. By [12] =,, — {(%1, 0, 0), (0, 0, 0)}, and
IV. INSTABILITY OF THE LIMIT the results in [16] show that

In this section, three examples ¢f-) and {e,,} are given. P{z, — {(-1,0,0),(0,0,0)}} =0.
For each of them, the corresponding stochastic approximation
algorithm converges to a limit independent of initial value, Hence, for anyo € R®, «, — (1, 0, 0) a.e. In other words,
butz is not stable for (3). In the first example, the stability- likdhe limit of {x,,} is unstable.

condition A3) is not satisfied, and for the remaining examples, We might say that this phenomenon might be caused by the
A3) is satisfied withu(-) even nonnegative. nonexistence of a stable attractor for (3). The following two ex-

and amples show that even though a stable attractor for (3) exists,

A
Example 2: Letx = (21, 22, z3)7. Here, we use, x2, ]
e 1z} may still converge to a unstabie

x3 to denote the components efjust for simplicity with th

hope that they will not be confused with the estimafes}. ~ Example 3:Let f(z) = sinz, a, = 1/(n +1),n > 0,
Let £(-): R2 — R3 be defined as follows: e1 = —(z +sinz), &, = 0,Vi > 1. For anyzg € R, t ke
= ||lzo|| + 1. It is clear that A1)-A4) hold with)(z) =
flx) = fi(@) + fo(2) + fa(z) + fulz) cos x, and{kn /2, k = £1, £2, - - -} are stable attractors of (3).
However,z,, — 0 for anyzo € R and zero is not stable for
where 7). nee
B In this exampleg; strongly depends om and thus is rather
hile) =1 _2”“7”2 ) special. In the following exampldg,, } is general, a stable at-
Ja(@) = ([|#]]")a3(zs, 0, —21)" tractor for (3) exists, and A1)-A4) hold with(-) even nonneg-
f(@) =([l2l)wa(2, —21, 0)" ative.
—z122 (23 — x3) Example 4: Let
Jalw) =y(l|=]*)a3 | x5 (aFws + a3 + a3) —a, <0
—x2 (2] + 23 + 23) f(z)=q = 0<z<3
. . . —z+1, > %
wherey(t) isaC?([0, +00), [0, +00)) decreasing function sat- _
isfying It is straightforward to check that
1, t<2 43, 7<0
P(t) =19 4 = 241 <1
0, t>3 v(x) ?+35, 0<z<3

(x—-12 z>1
ande(t) is aC?(R, R) increasing function satisfying o
satisfies A3). Take:,, = 1/(n+1),n > 0,57 = —1,¢, =

) = -2, t< -2 pn < 0,¥n > 1, where{p, } is a sequence of mutually inde-
v = t, t>—1. pendent random variables such t@ﬁ‘;o AnpPry1 < +00 aS.
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Then,J = {0, 1} with 1 being a stable attractor for (3) and alas||x|| — oo andx™ f(z) > 0 Vz: ||z|| > K for someK > 0,
Al)-A4) are satisfied. Tak&f, = ||zo|| + 1. Then, by Proposi- thenz™ F,,(z)/||xz|| — oo foralln > 0 and AO) is satisfied.
tion 1 and by the fact that, < 0, it follows thatz,, — 0 a.s. llzl| o0

n—oo Theorem 2: Assume A1)-A4) hold and that, exists such

Zero, however, is unstable fgi(.). thatv(z*) < inf), =, v(z) and|lz*|| < ¢, and for a givenw
AO0) holds. If{x,,} defined by (4)—(6) and (14) with any initial

V. STABILITY OF THE LIMIT value zo converges to a limi independent of, thenz be-

In Examples 3 and 4, A1)-A4) are satisfied, afd,} |0ngs to the unique stable set of (3).
converges to a limit, which is independent of initial value ~ Proof: Becauses(z*) < inf),)=, v(z) and||z*|| < co,
and unstable. This strange phenomenon happens becdbsghe continuity ofu(x), & exists with[|2[ < o such that
Fo(2n) A T + anf(@n) + anenti as a function of,, is v(a%) = minj)<, v(z). Thus,v, (&) = 0. By A.3) and the
singular for somes, n = 0, 1, -- - in the sense that it restricts SONtinuity of f (), fT(a:)vAx(a:) < Oforanyx forwhich f () #
the algorithm in a certain set iR?. Therefore, in order for 0- TUS, we must havg(i) = 0, i.e.& € J. Denote byJ, the
the limit of {x,,} to be stable, certain regularity conditions offonnected component dfthat contains:. We know that(/o)
Fy(x,) and some restrictions on noises are unavoidable. 1S & connected set and.J) is nowhere dense. TheriJo) is a

In what follows, we specify the noisg, 1 (-, -) in observa- constant. By the Lyapunov Theoreth, is a stable set; i.e., any
tion x belongs taJy is stable.

Let A;, be the connected component of € R, v(z) <
Ynt1 = [(zn) + ent1(w, zp) v(&) 4+ h, h > 0} such thatd;, contains.Jy. By the continuity
) ) J of v(x) for an arbitrary smalll > 0, ho > hy > 0 exist
asa Borelfunctlon_deflned on the product spgice R“, where ¢, thatho < 6, An, C B(Jo,6) and the distance between
{¥ denotes the basic probability space and set the interval[v(z) + h1, v(2) + h2] and the set(J) is posi-
F.(z)=z+anf(z) + anepy1(w, ). (14) tive;i.e., d([v(2) + hi,v(2) + ho],v(J)) > 0. For the given
w, we show that am exists such that,,(w, z¢) € Ay, for
anyn > ng wheneverr,, (w, ro) € Ay, for somezry € R%.
Here, the trajectorie§e,, (w, o)} are considered for the same
fixed w, but with different initial values. We first note that with
w fixed, for anyng by A0) z¢ exists such that,, (w, zo) €
Ay, . By arbitrary smallness af > 0, from this it follows that

Let us introduce the following conditions.
A0) For a givenw, F,(z) is a surjection for anyn =
0,1,---.
A4') For anyw andn, e, (w, ) € C(R%, R%) and for any
w, z € R andé > 0,

o mn, t) d(x,. Jo) — 0.Thereforez € Jo, which meang is stable. If
A lm o tes[lépﬂ Z aigi(@ 2:))| =0 (15 5nother stable sel) existed such that) N Jo = , then by the
eneBlz, eyl T same argumernt would belong toJ. The contradiction shows
whereB(z, §) denotes the ball with radiuscentered the uniqueness of the stable set.
atz. We now prove the existenceof such that:,, (w, zg) € Ay,

Remark 7: A4') is equivalent to the following condition: For for anyn > no if xn, (w, zo) € Ay, . Wefirst show that, for any
anyw and any compact sét C R¢ w,z € R*¥andé > 0,¢ > 0,71 > 0, andny exist such that,

m(n,t) for anyn > nr if .Tn(xo) S B(-T, 5), then

1
7lﬂim0 lim — sup Z a;gi+1(w, z;)|| = 0. |zm (o) — zn(zo)|| < a1l
- Pl TT| i=n VT e (0, T1], Vm:n<m <m(n, T) (16)

Remark 8: If ¢; does not depend ary_;, then (15) is equiv- where, and hereaftet,, (w, zo) is written asz, (xo) for sim-
alent to condition A4). Condition A4) is applied to the case iplicity.
which the initial value of{x, } is arbitrary but fixed. In this  Note that
case a convergent subsequefieg, } is automatically located Zml@0) — xn(wo)
in a compact set. Theorem 2, however, will consider the casein =~ . _, " i
which the initial value arbitrarily varies, and heneg for any _ a; Flz:(z0)) + aei(w. m(z)). (17
fixed n may be any point ilt¢. If z,, in A4’) were not restricted ; S (@i(wo)) Z eenw, 2i(zo). (A7)
to a compact set [i.e., withe!;, € B(z, 6)" removed in (15)], =q; anvas _ / '

. " ’ >0, letc = max —— . By A4'), suffi-

then the resulting condition would be too strong. Therefore, t0 Y €= WA, B (e, M +5) |F(v)]. By A%)

put“z, € B(z, §)”in (15) is to make the condition reasonableCieNtly smallli < M/3candny existsuch thatforany > ny

i=n

Remark 9: If F,,(-) is continuous and i&™ F(z)/||z|| — oo e
as||z|| — oo, thenF,(-) is a surjection by [17, Theorem 3.3]. Z aigip1(w, zi(zo))|| < T,

Using this property, we can show tha} (-) is a surjection for
alarge class of (-). To see this, let,, be free ofz. In the case VI e[0, ], Ym:n <m < m(n, T).
in which the growth rate dff f(x)|| is not faster than linearly as If z; € B(z, M + &) forn < i < m — 1, Vn, then (16) imme-
|lz|| — oo, then{a,,} can be selected such that A2) holds andiately follows by setting;; = 2¢. Assumer; ¢ B(xz, M + 6)
a:TFn(a:)/Ha:H” ”—> oo for all » > 0. Hence, AQ) holds. In the for somei: n < ¢ < m. Letiy > n be the first one. Then

— 00

case in which the growth rate ff (z)|| is faster than linearly |5 (x0) — Tnlxo)|| > M. (18)
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By (17), however sufficient largeN if 7" is small enough, and its left-hand side
is nonnegative by (20) and the selectionigf. The obtained

40 (20) = (o)l contradiction shows that, for any,, an N exists such that

in—1

ig—1 X
< Z ail| f(zi(zo))|| + Oz: a;igiy1(w, xz(xo))H (o) € An, foranyn > N'if zx(zo) € Ap,. =
< ENJF <M = VI. CONCLUDING REMARKS
which is contradictory with (18). Thusy; € B(z, § + M), In this paper, we have given conditions to guarantee the
Vi < m, and (16) is verified. uniqueness of the limit point of the SA algorithm. The limit,

Assume the assertion above is not true; i.e., for Anyz) however, may be unstable, as shown by examples. Sufficient

exists such that y (z) € Ay, andzy (zd) ¢ Ay, for some cond@t@ons are also given for stability of the limit. All of these

N’ > N.SupposeV < ky < Ky < N’ anday, (ad) € F:oncﬂnons are reasqnable, but may not be the vyeakest ones. It

A, o, @) e A(;Lz: wi(ad) € A, \An,, i.e.,0(#) +hy < is ofhmterest tq consider the p033|b|.ll.ty of weakenlng (_:ondltlons

w(zi(@))) < 0(@) + he Vi, kn < i < K. Because in Theorem 2 if we ext.end.the stgplllty notion of a point so that
it has attraction domain with positive Lebesgue measure.

Ty (a:é\) € B(Jo, 8) C {z € R*, ||z]| < co + 6}

a subsequence of {z;,(z))} exists, also denoted APPENDIX

N ; AR
by {z,(zy)} for notational simplicity, such tfatA. Proof of Proposition 1

zpy(zy) — & By the continuity of v(z), v(z) =

R N—=+oo N o In what follows, the analysis is deterministic.
v(Z) —|;Vh1. Hﬁznce,d(x, J) =6 > 0. By (16) and the fact 1) Let{x,, } be a convergent subsequence of,}, z,, —
Ty (2p') — &, we can choose sufficiently small and large 7 ¢ is shown that constants > 0, A > 0 andkz > 0 exist
enoughiV' such that such that, for any: > k7 and7 € [0, A)

7 5 m—+1
J) > =
d(zm (9), J) 2 5 (19) 3 awia| <M, Vming <m < ming, T). (23)
andm(ky, T) < Ky, i.e., i=ny,

We now prove this. It,, = on, V7 > N for someN, then the

V(@) +hr S v (2 (27) < (@) +ho (20) algorithm is bounded and

foranym: kxn < m < m(kn, T). By (16), ¢ exists with the |41
property||¢ — . (z{")]] < e1T such that > awin1| = lemp2—n, |l < 2M,, whenevem;, > N.
V iznk

0 (i 251 (5)) = v (2 (55)
= (@t (20) = 2y () val2)
F (T, 141 (80) = T (20)) 7 (02(€) = 02(2))-
(21)
Becausery, (a:{}")Njoojz, for sufficiently largen, ||€ — Z|| <
2¢1T, by (16) the last term of (21) is(1). Then

Consider the case in whieh, — oc. Assume Al) is not true.
Takec > ||Z||. k. exists such that
lzn l < (c+IZID/2,  VE = ke (24)

TakeT, — 0, T, > 0. By the converse assumption for asy
ks andms : ng, < ms < m(ng,,Ts) exist such that

ms+1
v (@men, 41 (20) = v (2r (20)) Y awia| > (e~ |zl)/2 (25)
mkn,T) i=ng,
= Y aylv(@) + () Without loss of generality, we may assurhe > k,_; > k.,
i=kn Vs > 1and
mkn,T) 1
T N N
= D a7 (@i (a)) v (i (2]) me =it m: | 3 amire| > (- 7)/2p . (26)
i=kn t=ng,
m(kn,T) i
. Then, f ‘nk, <m < m,,f 24) and (26), it foll
n Z T ()i (@, 7) tha?n or anym: nx, < m < m,, from (24) and (26), it follows
i=k;
rn(kN,VT) m
+ Z aif™ (z; (z)))) Ty, + Z a;yit1|| < c. (27)
i=kn =k
X (02(%) = va (2 (wé\))) +o(T). (22) Becauser,, — o, so exists such thadd,, > cVs > so.

By (16) and the continuity ofu,(z), the third term on the Then, from (27), it follows that
right-hand side of (22) is(T"), and by A4), the norm of Tl = T + Gl Vming, <m<m, (28)
the second term on the right-hand side of (22) is al&b) _

asN — oo. Hence, by A3) and (19), some > 0 exists and by (24). (27), and (28| < c hence

such that the right-hand side of (22) is less thaml for all If (x| < ¢, Vo ng, <m < mgyq. (29)
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For anyI’ > 0, we havel, < T andm, +1 < m(ny,, T)if s
is large enough. From condition A4), it follows that

lim @, +16m,42 =0.
S§—00

By (29), we then have

ms ms
[ = wn, | < D0 aillfE)ll 4+ || D aieipa] — 0
i:nks i:nks

and

H-Trns—l—l - -Tnks + arns-l—lyrns—l—QH

+ [|@m, +1Ym, +2| 5—_>>o<>0'

S Hxnls-f—l - xnks
On the other hand, by (26)

mes—l—l = Lny, + ams-l-lyms—l—QH
ms+1
=11 > @i || > (e~ IID/2
i:nks
The obtained contradiction proves (23).
2) ¢; > 0 andkr exist such that

||$n1+1 - xrm” S ClT,

Vm:ng <m <m(ng, T), Yk > kr. (30)

We now prove (30).

In the case in whichim,,_,.. ¢,, = o0, kg andecy > 0 exist
such thatMl,, > M + 1+ [|Z||, lzn, || £ 1+ ||Z]], VE > ko.
By (23), we have

Ty, + Z a;Yi+1

=N

SMA+1+|7) £ M,

ny?

VT € (0, A), Vm: ng <m < mng, T),
if & > kr. Consequently

LTm+1 = Tm + AmYm+1
[#mall <M +1+ ||z

I f(@m)ll €3, Vming <m <mlng, T)  (31)
and, hence
Z a; f(z)|| < ecs Z a; < esT. (32)
1=ny 1=ny

This process with Condition A4) leads to (30).

If {o,,} is bounded, theqx,,} is bounded and (32) is still

valid. Hence, we also have (30).
3)i) For any interval [61, 62] with & < 6 and
d([61, b2], v(J)) > 0, the sequence{v(z,)}
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V(@p,+1) > 61 > v(z,,), we havev(z,,) — 6 = v(T)
andd(z, .J) 25> 0. By (30), we may také" small enough

such that
6
d(.’L’nl, J) Z 5, (33)

for all sufficiently largek. Then, & exists with||é—z,,, || < 1T
such that

Vm:ng <m <mng, T)

v (-Trn(nk,T)-I—l) —-v (‘Tnk)
= (xrn(nk, )41 — xnl\»)‘r UW(E)
+ (xnl(nk,T)+l - xnk)T (UW(S) - Uﬂ?(f)) (34)

By (30), (31), and the continuity af,.(-), the last term of (34)
is of o(T") and

v (xrn(nk, T)—l—l) —v (xnk)
m(ng,T)
= Y awiu(®@ +o(T)
=ny
m(ng,T)
D aif (@ va()
1=ny
m(ng,T)
+ D aif (@) (va(T) — valwi)
1=ny
m(ng,T)
+ Z aﬂ}; (f)6i+1 + O(T)
="y
By Conditions A3) and A4), from this it follows that > 0 and
T > 0 exist such that

(35)

v (xnl(nk,T)+l) - U(xn,k) < —aT (36)
for sufficiently largek. This process implies that
limsup v (xm(nhT)_H) <6y —aT.
k—oo
By (30), howevermax,,, <m<m(n,,r) [v(Tm) — v(a:m)|T—>00,

which impliesm(ny,T) + 1 < my, for small enoughl”. This
result means that(z,,(,,, r)+1) € [61, 62), which contradicts
(36).

For ii), let us assume the converse: a convergent subsequence
Ty, 77 T occurs. By the same argument, we arrive at (36). By
assumption, however, the left-hand-side of (36) tends to zero,
which leads to a contradiction.

4) We now showi(zy, .])k—> 0.

By assumptions of Proposition 1, a nonempty interval
[61, 62] exists such tha;, 6] C (v(z™), inf)j,) =, v(z)) and
d([61, 62], v(J)) > 0. If o, — o0, thenx,, starting fromz*,

cgrrl]not cross t[)&b ‘E] d infinir:ely nl;any . timgs will cross the spheréz : ||z|| = co} infinitely many times and,
Vg't s ”xb"k” ounded, ~w e,,:re y crosr?mg hence,v(x,) will cross [61, 6] infinitely often with {xz,, }
[61, 62] by w(@n,), -, v(zm,)" we mean that p,,,qeq We have shown this process is impossible. Therefore,

Ty, ) < 61, 0(Tm, ) = b2, andé; < v(x;) < 2, Vi
nE <t < mg.

iy If v(z,) — & withd(é1,v(J)) > 0, then no conver-

gent subsequence ¢f,,} occurs.

starting from someng, the algorithm (4)—(7) will have no
truncations and«,, } is bounded.

Let v, 2 liminf, oo v(z,) < limsup,_, . v(x,) 2 Vg,
If v = vq, thenv; € v(J) because otherwise a contradiction

We first prove i). Assume the converse: infinitely many crossgitn 3) i) would occur. Ifv; < v, and one ofy; and v»

ingsv(xnk)v:' '7U($mk)1 k= 172.7 .-+, Occur and{HxnkH}is does not belong tQ}(J), then [(51, (52] C (U1, UQ) exists
bounded. Without loss of generality, we may assume — 7. sych thatd([6,,6,],v(J)) > 0 ands, > &. By 3) i) this
Becauser,, +1 — n, = an,(f(zn,) + €n,41) — 0 and process is impossible. So, both and v, belong towv(J)
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_ — i i algorithm in the root set of regression functio®foc. Chinese Contr.
Fhtl T TR a7 O, {v(zy)) is dense infur, v]. Conf, pp. 1018-1021, 1996.
Hence,v(J) is dense in[v1, v2], which contradicts to the [12] M. Benaim, “A dynamical system approach to stochastic approxima-
assumption. Hencez,(a:n) converges. tions,” SIAM J. Contr. Optim.vol. 34, pp. 437-472, 1996.
. . . ... [13] V. S. Borkar and S. P. Meyn, “Stability and convergence of stochastic
For provingd(x,,, J)njooo, it suffices to show that any limit approximation using ODE method,”, Tech. Rep..

points Of{a:n} belong toJ. Assume the converse;,, — 70 ¢ [14] I.J.Wang, E. K. P. Chong, and S. R. Kulkarni, “Equivalent necessary and

sufficient conditions on noise sequences for stochastic approximation

J,d(z°, J) 25>0. By (30), we have algorithms,”Adv. Appl. Probab.vol. 23, pp. 784-801, 1996.
[15] B. Delyon, “General results on the convergence of stochastic algo-
6 rithms,” IEEE Trans. Automat. Contwol. 41, pp. 1245-1255, 1996.
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for all largek if 7" is small enough. By (8), we then have
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