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Stability and Instability of Limit Points for Stochastic
Approximation Algorithms
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Abstract—It is shown that the limit points of a stochastic approx-
imation (SA) algorithm compose a connected set. Conditions are
given to guarantee the uniqueness of the limit point for a given ini-
tial value. Examples are provided wherein of SA algorithm
converges to a limit independent of initial values, but is un-
stable for the differential equation _ = ( ) with a nonnegative
Lyapunov function. Finally, sufficient conditions are given for sta-
bility of _ = ( ) at if tends to for any initial values.

Index Terms—Pathwise convergent, stable/instable limit point,
stochastic approximation.

I. INTRODUCTION

T HE stochastic approximation (SA) algorithm

(1)

(2)

proposed by Robbins and Monro [1] is used to search the root
set : based on the observations , where

is the observation noise. SA methods are widely applied
in systems identification [2], adaptive control [3], optimization,
neural networks [4], and other fields [5]. In the convergence
analysis [6]–[10] of , most published results are concerned
with , i.e., the distance between and tends
to zero. Example given in [11] shows that the convergence of

to zero does not imply the convergence of itself.
In many applications of SA, however, people are not satisfied
with ; they are also interested in the convergence
of itself. For the convergence of , the sufficient condi-
tions are given for the one-dimensional case (i.e.,: )
in [11] and for the multidimensional case in [12].

Under the boundedness assumption on , the asymptotic
part of the interpolating function of with interpolating
length satisfies [2], [6] the following ordinary differential
equation:

(3)

It turns out that the stability or instability of the equilibriums of
(3) are of crucial importance for the behavior of the SA algo-
rithms (1), (2). The essence of the ordinary differential equation
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(ODE) method consists in connecting properties of (3) with the
convergence analysis of SA algorithms. Under certain condi-
tions on and , the convergence of and estimation
error bounds are established in [13] for the equilibrium being
asymptotically stable and exponentially asymptotically stable,
respectively. On the other hand, if a equilibriumof (3) is un-
stable and if is the gradient of some function whose
extreme is sought for, then may be a saddle point of ,
which has to be avoided in the optimization problem. Further, if
an equilibrium of (3) is unstable, then a finite precision imple-
mentation of an SA algorithm might not converge, even though
theoretical convergence is guaranteed.

The topics of this paper include general conditions on
and to guarantee the convergence of itself and to
establish the relationship between the convergence of and
the stability of an equilibrium of (3).

In order to remove the commonly used conditions, such as the
growth rate restriction on or the boundedness assumption
[1], [2], [6], [7] on , the algorithm with randomly varying
truncations is defined in Section II. The connectedness of its
limit points is also proven there. In Section III, it is shown that,
if a point exists that is dominantly stable and ifis a
limit point of , then must tend to . Sections IV and
V discuss the converse problem: is the limit of a stable
equilibrium of (3)? At first glance, if with an arbitrary
initial value converges to, then (3) must be stable at, which
is what intuition from ODE tells us. For SA, however, because of
the noise, the picture is different from ODE. Examples presented
in Section IV show that , with an arbitrary initial value,
converges to a limit unstable for (3). In Section V a reasonable
condition is proposed to ensureto be a stable equilibrium of
(3) if .

II. THE ALGORITHM AND ITS LIMIT POINTS

To avoid restrictive conditions on the randomly truncated
version of (1) and (2) is considered in [8]–[10] and is described
as follows.

Consider : . Let be a sequence of pos-
itive numbers strictly diverging to . Let . Consider

generated by the following algorithm truncated at ran-
domly varying bounds:

(4)

(5)

(6)

(7)
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The following conditions are needed:

A1) is measurable and locally bounded;
A2) , and ;
A3) a continuously differentiable function (not necessarily

being nonnegative) : such that

(8)

for any and :
is nowhere dense, where denotes the gradient of

;
A4) for any convergent subsequence

where : .
Remark 1: If converges, then A4) is obviously

satisfied.
Remark 2: It is worth noting that for the convergence of

a mild constraint exists on stated below in Proposition 1. For
example, if , then may serve as in A3)
and any is satisfactory except , , , .
If the noise effect is not strong, then converges to that root
of , which is the closest to .

In what follows, denotes a point in the underlying prob-
ability space. Then, for a fixed and a fixed initial value ,
the algorithm (4)–(7) defines a trajectory . For sim-
plicity of notations, we always suppress and write
instead of . The noise may depend not only on,
but also on the trajectory up to time with included.

Proposition 1: Assume A1)–A3) hold and that exists such
that and . Let be de-
fined by (4)–(7) for some initial value . If A4) holds for a
given trajectory, then for this trajectory

The proof is given in [8], but for convenience, we attach it in
the Appendix. If is a singleton and if is continuous at

, then the converse is also true; i.e., “ ” implies A4).
Under the assumptions of Proposition 1, several conditions are
proven to be equivalent to A4) in [14]. We now show that limit
points of compose a connected set under the conditions
required in Proposition 1.

Proposition 2: Assume conditions of Proposition 1 are satis-
fied. Then, for fixed and , a connected subset exists
such that

where denotes the closure of and is generated by
(4)–(7).

Proof: Denote by the set of limit points of .
Assume the converse: i.e., is disconnected. In other words,
closed sets and exist such that and

.

Take . Because , an

exists such that

where denotes the-neighborhood of set . Define

It is clear that , , and

(9)

By Proposition 1, is bounded, and after a finite time,
the algorithm (4)–(7) becomes the one without truncations.
Without loss of generality, it may be assumed that

. By (9), it follows that .

On the other hand, by A1) and A4)

The obtained contradiction shows that is connected.

III. D OMINANT STABILITY

Under the conditions of Proposition 1, although the distance
between and tends to zero, may still not converge,
if is not a singleton. This result is because may still walk
about in even though the sequence is contained
in starting from some , which means that ,

. Let us take the example given in [11], where

, , , ,
, , .

Then, changes from one to zero and then from
zero to one, and this process repeats forever with decreasing
stepsizes. Take . Then,

It is clear that , and all conditions
A1)–A4) are satisfied, but is dense in [0, 1]. This phe-
nomenon hints that for convergence of the stability-like
condition A3) is not enough; a stronger stability is needed.

Definition 1: A point is called dominantly stable
for , if a and a positive measurable function :

exist satisfying the following condition
that at the interval is bounded from below by a pos-
itive constant for any such that

(10)

for all .
Remark 3: The dominant stability implies stability. To see

this, it suffices to take as the Lyapunov func-
tion. The dominant stability of , however, is not necessary for
asymptotic stability.
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Remark 4: Equation (10) holds for any , whatever is.
Therefore, all interior points of are dominantly stable for .
Further, for a boundary pointof to be dominantly stable for

, it suffices to verify (10) for with small
, i.e., all that are close to and outside .
Theorem 1: Assume A1)–A3) hold. If for a given ,

is convergent and a limit point of gen-
erated by (4)–(7) is dominantly stable for , then for this
trajectory, .

Proof: For any , define

It is clear that is well defined, because and
for any greater than some . If for any ,

for some , then by arbitrariness of. Therefore,

for proving the theorem, it suffices to show that, for any small
, an exists such that “ ” implies “ ”

if .
Assume is large enough so that the truncations no longer

exist in (4)–(7). It then follows that

(11)

Notice that for any ,
and is bounded by A1), and hence by (10)

(12)

, for some , because is convergent
and . Combining (11) and (12) leads to

for .
Further

The similar treatment yields

Inductively, it then follows that

where the elementary inequality

is used. Because is bounded,
and , an exists such that

This process means that .
Remark 5: The convergence of is also considered in [15],

but under different conditions. We now make a comparison be-
tween conditions used here and in [15]. First, [15, Theorem 2]
requires a condition called A-stability, which implies the bound-
edness of , while here (Theorem 1) does not make anya
priori assumption on . Second, concerning the noise
[15] requires that it can be decomposed into a sum
such that and . Obviously, this de-

composition implies A4). Furthermore, [15] requires an addi-
tional condition (see [15, (10)] for the case )

which, however, is rather difficult to check. Third, both [15] and
this paper require some attractiveness of: in [15] Condition B)
is used, and here the dominant stability is applied.

Example 1: Consider (4)–(7) with

where

if

otherwise

i.e., (4)–(7) is used for seeking the extrema of based on
the noisy observations

Then, all points of are dominantly
stable for .
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As mentioned before, it suffices to show that allwith
are dominantly stable for . For any with , it is

seen that

where denotes the angle between the vectorsand
. It is clear that

for all small enough . This process verifies that all points
in are dominantly stable for .

A1) and A3) are automatically satisfied in this example, be-
cause may serve as in A3).

Therefore, if A2) holds and is convergent for
some trajectory, then for this trajectory given by (4)–(7)
converges to a point belonging to .

Remark 6: If the results given in [12] are applied to Example
1, then for convergence of one needs to impose rather
restrictive conditions on and to have .

IV. I NSTABILITY OF THE LIMIT

In this section, three examples of and are given.
For each of them, the corresponding stochastic approximation
algorithm converges to a limit independent of initial value,
but is not stable for (3). In the first example, the stability-like
condition A3) is not satisfied, and for the remaining examples,
A3) is satisfied with even nonnegative.

Example 2: Let . Here, we use , and
to denote the components ofjust for simplicity with the

hope that they will not be confused with the estimates .
Let : be defined as follows:

where

where is a decreasing function sat-
isfying

and is a increasing function satisfying

.

It is easy to check that , are mutually
orthogonal, , and

Therefore, all three points in are unstable for (3).
Consider the SA algorithm

(13)

with . Let be i.i.d. and uniformly dis-
tributed in . By [12] , , and
the results in [16] show that

Hence, for any a.e. In other words,
the limit of is unstable.

We might say that this phenomenon might be caused by the
nonexistence of a stable attractor for (3). The following two ex-
amples show that even though a stable attractor for (3) exists,

may still converge to a unstable.
Example 3: Let ,

, . For any , take
. It is clear that A1)–A4) hold with

, and , , , are stable attractors of (3).
However, for any and zero is not stable for

.
In this example, strongly depends on and thus is rather

special. In the following example, is general, a stable at-
tractor for (3) exists, and A1)–A4) hold with even nonneg-
ative.

Example 4: Let

It is straightforward to check that

satisfies A3). Take
, where is a sequence of mutually inde-

pendent random variables such that a.s.
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Then, with 1 being a stable attractor for (3) and all
A1)–A4) are satisfied. Take . Then, by Proposi-
tion 1 and by the fact that , it follows that a.s.

Zero, however, is unstable for .

V. STABILITY OF THE LIMIT

In Examples 3 and 4, A1)–A4) are satisfied, and
converges to a limit, which is independent of initial value
and unstable. This strange phenomenon happens because

as a function of is
singular for some in the sense that it restricts
the algorithm in a certain set in . Therefore, in order for
the limit of to be stable, certain regularity conditions on

and some restrictions on noises are unavoidable.
In what follows, we specify the noise in observa-

tion

as a Borel function defined on the product space , where
denotes the basic probability space and set

(14)

Let us introduce the following conditions.

A0) For a given , is a surjection for any
.

A4 ) For any and and for any
and ,

(15)

where denotes the ball with radiuscentered
at .

Remark 7: A4 ) is equivalent to the following condition: For
any and any compact set

Remark 8: If does not depend on , then (15) is equiv-
alent to condition A4). Condition A4) is applied to the case in
which the initial value of is arbitrary but fixed. In this
case a convergent subsequence is automatically located
in a compact set. Theorem 2, however, will consider the case in
which the initial value arbitrarily varies, and hence for any
fixed may be any point in . If in A4 ) were not restricted
to a compact set [i.e., with “ ” removed in (15)],
then the resulting condition would be too strong. Therefore, to
put “ ” in (15) is to make the condition reasonable.

Remark 9: If is continuous and if
as , then is a surjection by [17, Theorem 3.3].
Using this property, we can show that is a surjection for
a large class of . To see this, let be free of . In the case
in which the growth rate of is not faster than linearly as

, then can be selected such that A2) holds and
for all . Hence, A0) holds. In the

case in which the growth rate of is faster than linearly

as and : for some ,
then for all and A0) is satisfied.

Theorem 2: Assume A1)–A4) hold and that exists such
that and and for a given
A0) holds. If defined by (4)–(6) and (14) with any initial
value converges to a limit independent of , then be-
longs to the unique stable set of (3).

Proof: Because and ,
by the continuity of , exists with such that

. Thus, . By A3) and the
continuity of for any for which
. Thus, we must have , i.e. . Denote by the

connected component ofthat contains . We know that
is a connected set and is nowhere dense. Then is a
constant. By the Lyapunov Theorem, is a stable set; i.e., any

belongs to is stable.
Let be the connected component of ,

, such that contains . By the continuity
of for an arbitrary small , exist
such that and the distance between
the interval , and the set is posi-
tive; i.e., . For the given

, we show that an exists such that for
any whenever for some .
Here, the trajectories are considered for the same
fixed , but with different initial values. We first note that with

fixed, for any by A0) exists such that
. By arbitrary smallness of , from this it follows that

. Therefore, , which means is stable. If

another stable set existed such that , then by the
same argument would belong to . The contradiction shows
the uniqueness of the stable set.

We now prove the existence of such that
for any if . We first show that, for any

and , , , and exist such that,
for any if , then

(16)

where, and hereafter, is written as for sim-
plicity.

Note that

(17)

For any , let . By A4 ), suffi-

ciently small and exist such that for any

If for , , then (16) imme-
diately follows by setting . Assume
for some : . Let be the first one. Then

(18)
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By (17), however

which is contradictory with (18). Thus,
, and (16) is verified.

Assume the assertion above is not true; i.e., for any,
exists such that and for some

. Suppose and
, , i.e.,

, . Because

a subsequence of exists, also denoted
by for notational simplicity, such that

. By the continuity of

. Hence, . By (16) and the fact
, we can choose sufficiently small and large

enough such that

(19)

and , i.e.,

(20)

for any : . By (16), exists with the
property such that

(21)

Because , for sufficiently large ,

, by (16) the last term of (21) is . Then

(22)

By (16) and the continuity of , the third term on the
right-hand side of (22) is , and by A4), the norm of
the second term on the right-hand side of (22) is also
as . Hence, by A3) and (19), some exists
such that the right-hand side of (22) is less than for all

sufficient large if is small enough, and its left-hand side
is nonnegative by (20) and the selection of. The obtained
contradiction shows that, for any , an exists such that

for any if .

VI. CONCLUDING REMARKS

In this paper, we have given conditions to guarantee the
uniqueness of the limit point of the SA algorithm. The limit,
however, may be unstable, as shown by examples. Sufficient
conditions are also given for stability of the limit. All of these
conditions are reasonable, but may not be the weakest ones. It
is of interest to consider the possibility of weakening conditions
in Theorem 2 if we extend the stability notion of a point so that
it has attraction domain with positive Lebesgue measure.

APPENDIX

A. Proof of Proposition 1

In what follows, the analysis is deterministic.
1) Let be a convergent subsequence of

. It is shown that constants , and exist
such that, for any and

(23)

We now prove this. If for some , then the
algorithm is bounded and

whenever

Consider the case in which . Assume A1) is not true.

Take . exists such that

(24)

Take . By the converse assumption for any,
and exist such that

(25)

Without loss of generality, we may assume
and

(26)

Then, for any : , from (24) and (26), it follows
that

(27)

Because , exists such that .
Then, from (27), it follows that

(28)

and by (24), (27), and (28) ; hence

(29)
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For any , we have and if
is large enough. From condition A4), it follows that

By (29), we then have

and

On the other hand, by (26)

The obtained contradiction proves (23).
2) and exist such that

(30)

We now prove (30).
In the case in which , and exist

such that .
By (23), we have

if . Consequently

(31)

and, hence

(32)

This process with Condition A4) leads to (30).
If is bounded, then is bounded and (32) is still

valid. Hence, we also have (30).

3) i) For any interval with and
, the sequence

cannot cross infinitely many times
with bounded, where by “crossing

by ” we mean that
, and :

.
ii) If with , then no conver-

gent subsequence of occurs.
We first prove i). Assume the converse: infinitely many cross-
ings , , occur and is
bounded. Without loss of generality, we may assume .

Because and

, we have

and . By (30), we may take small enough
such that

(33)

for all sufficiently large . Then, a exists with
such that

(34)

By (30), (31), and the continuity of , the last term of (34)
is of and

(35)

By Conditions A3) and A4), from this it follows that and
exist such that

(36)

for sufficiently large . This process implies that

By (30), however, ,

which implies for small enough . This
result means that , which contradicts
(36).

For ii), let us assume the converse: a convergent subsequence
occurs. By the same argument, we arrive at (36). By

assumption, however, the left-hand-side of (36) tends to zero,
which leads to a contradiction.

4) We now show .

By assumptions of Proposition 1, a nonempty interval
exists such that , and

, . If , then , starting from ,
will cross the sphere infinitely many times and,
hence, will cross infinitely often with
bounded. We have shown this process is impossible. Therefore,
starting from some , the algorithm (4)–(7) will have no
truncations and is bounded.

Let .
If , then because otherwise a contradiction
with 3) ii) would occur. If and one of and
does not belong to , then exists
such that and . By 3) i) this
process is impossible. So, both and belong to
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and . Assume , because
is dense in .

Hence, is dense in , which contradicts to the
assumption. Hence, converges.

For proving , it suffices to show that any limit

points of belong to . Assume the converse:

, . By (30), we have

for all large if is small enough. By (8), we then have

and from (35) for small
enough . This process leads to a contradiction because
converges. The proof of Proposition 1 is completed.
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