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Convergence Rates of Perturbation-
Analysis-Robbins–Monro-Single-Run
Algorithms for Single Server Queues

Qian-Yu Tang, Han-Fu Chen, and Zeng-Jin Han

Abstract—In this paper the Perturbation-Analysis-Robbins–Monro-
Single-Run algorithm is applied to estimating the optimal parameter of
a performance measure for theGI=G=1 queueing systems, where the
algorithm is updated after every fixed-length observation period. Our
aim is to analyze the limiting behavior of the algorithm. The almost sure
convergence rate of the algorithm is established. It is shown that the
convergence rate depends on the second derivative of the performance
measure at the optimal point.

Index Terms—Convergence rates, perturbation analysis, queueing sys-
tems, stochastic approximation, stochastic discrete-event systems.

I. INTRODUCTION

Perturbation analysis (PA), since introduced by Hoet al. [11],
has been widely studied in the literature on stochastic discrete-event
systems (SDES’s); see, for example, Ho and Cao [10], Glasserman
[8], and the references therein. Roughly speaking, PA is a method
for estimating derivatives of performance measures with respect to
system parameters from a single sample path of an SDES, where
analytic formulas of the performance measures are only available
for a limited class of SDES’s. Combining the PA technique with
stochastic approximation algorithms leads to the so-called “single-
run optimization” algorithm. When the Robbins–Monro (RM) algo-
rithm is applied, the resulting algorithm is called the “Perturbation-
Analysis-Robbins-Monro-Single-Run” (PARMSR) algorithm in Suri
and Leung [18] and Suri [17]. The PARMSR algorithm is used for
seeking the optimal parameter of a performance measure based on a
single sample path of the system.

For PAMRSR algorithms, the parameter updates may be performed
after the observation of one or two regenerative cycles and may also
be performed after every fixed-length observation period. In the first
case, convergence analysis is relatively simple, since the observation
noise typically constitutes a martingale difference sequence (m.d.s.),
and the standard stochastic approximation results are applicable;
see, e.g., [4] and [7]. In this case, the parameter updates may be
infrequent, since the regenerative cycles may be long in a high-load
system as well as in a queueing network with many nodes. In the
second case, the PARMSR algorithm has a relatively fast rate of
convergence as reported in the empirical studies [17]–[19]. However,
its convergence was not proved until recently; see, [5], [6], [12],
[13], and [20]. The proofs of weak convergence and convergence
in probability of the algorithm are provided in [12] and [13] (with
numerical experiments in a companion paper [14]), respectively. The
almost sure convergence of the algorithm is proved in [5], [6], and
[20].
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As pointed out in [4], [5], and [13], the analysis of the convergence
rate of the PARMSR algorithm with fixed-length observation period is
an interesting and difficult problem and has been lacking. The difficul-
ties lie in the fact that the standard conditions for the convergence rate
established in the literature on stochastic approximation are not quite
verifiable in the special context of SDES’s. In this paper, we establish
the convergence rates of the PARMSR algorithms with a fixed-length
observation period for theGI=G=1 queueing systems. It is shown
that the convergence rates of the PARMSR algorithms depend on
the second derivative of the performance measure at the optimal
point. It is worth noticing that our analysis of the convergence rates
takes advantage of the regenerative structure of the system, but the
implementation of the algorithm does not depend on the regenerative
structure. Thus, the PARMSR algorithm with fixed-length observation
period may be applicable to much more general SDES’s.

The rest of the paper is organized as follows. For simplicity of
exposition, we give the PARMSR algorithm, updated every cus-
tomer, in Section II. The proofs of the main results are presented
in Section III. In Section IV the obtained results are extended to the
case where parameter updates are performed after every fixed number
of customers per period. Finally, a concluding remark is given in
Section V.

II. THE PARMSR ALGORITHM UPDATED

EVERY CUSTOMER FOR THEGI=G=1 QUEUE

Let us consider a special regenerative system, theGI=G=1 queue-
ing system, with service in order of arrival, where theith customer
that enters the system is denoted byCi; 8 i � 1: The interarrival
times fAn; n � 1g and the service timesfxn(�); n � 1g are
i.i.d. sequences and are mutually independent with the first moments
EA1

�
= 1=� andEx1(�)

�
= x(�), respectively, where� is a decision

parameter which can be adjusted. The traffic intensity is denoted by
�(�)

�
= �x(�): Throughout the paper, we assume�(�)< 1;8� 2 D;

whereD is a compact set.
Let Tn(�) be the system time of the customerCn;8n � 1: We

discuss the performance measures of the type

J(�) = lim
n!1

1

n

n

i=1

J(Ti(�); �)

whereJ(t; �) is a differentiable function with respect to(t; �);8 t �
0; � 2 D: For example, we can chooseJ(t; �) = t + C(�); where
C(�) is a known function; see, [4], [5], [7], [13], [18]–[20], etc.
Formally, our problem under consideration is to search�0 such that
J(�0) = min�2D J(�):

We now define our recursive procedure. Setf(�)
�
= dJ(�)=d�:We

use the following projected RM algorithm to update the parameter
estimate�n+1:

�̂n+1 = �n � anfn+1

�n+1 = �̂n+1I[a<�̂ <b] + aI[�̂ �a] + bI[�̂ �b] (1)

wherefn+1 is the(n+1)th step derivative estimate by infinitesimal
PA. Let Qn denote the queue length at the time instant when the
customerCn leaves the server. By theperturbation propagationrule,
the (n + 1)th step estimate fordTn+1(�)=d� is given by

�n+1 = �nI[Q �1] +
dxn+1(�n)

d�
(2)

where dxi(�)=d�; 8 i � 1 can be computed by the “inversion”
method. LetF (�; x) be the distribution function ofxi(�) and let
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fui; i � 1g be an i.i.d. sequence with a uniform distribution on (0,
1]. Definexi(�) = F�1(�; ui) = inf fx: F (�; x) � uig;8 i � 1;

from which the derivativesdxi(�)=d�;8 i � 1 can be obtained; see,
e.g., [8], [10], and [19]. Thus the(n + 1)th step estimate forf(�)
is given by

fn+1 = Jt(Tn+1; �n)�n+1 + J�(Tn+1; �n) (3)

whereTn+1 is the system time of the customerCn+1; andJt(�; �) and
J�(�; �) denote the partial derivatives ofJ(�; �) with respect to its first
and second component, respectively. Then we obtain the PARMSR
algorithm updated every customer by combining (1) with (2) and (3).
The observation noise is expressed as

"n+1 = fn+1 � f(�n): (4)

For our results, let us introduce the following conditions. Notice
that A3) and A4) are exclusive.

A1) 0<an � an�� for some a> 0; � 2 ( 1
2
; 1]; 8n �

1; �1n=1an = 1; 0 � a�1n+1 � a�1n �!n!1 � � 0:

A2) f(�) has a unique root�0 2 (a; b) � D;J(�0) =

min�2D J(�):

A3) As � ! �0; f(�) can be expressed asf(�) = M1(�� �0) +

�(�); where�(�) = O(jj� � �0jj2) as � ! �0;�M1 +

�� < 0; and � 2 [0; 1=2) is a constant.
A4) f(�) = M2(�� �0)j�� �0j + r(�); r(�) = o(j�� �0j1+ )

as � ! �0;M2> 0;  > 0:

A5) �1i=1 (ai= log a
�1
i ) = 1:

A6) There are constantsB1–B5; �0–�2 such that

max fjJ�(t; �)j; jJt(t; �)jg � B1 +B2t
�

max fjJ�(t1; �)� J�(t2; �)j; jJt(t1; �)� Jt(t2; �)jg

� B3jt1 � t2jmax (t1; t2)
�

max fjJ�(t; �1)� J�(t; �2)j; jJt(t; �1)� Jt(t; �2)jg

� B4j�1 � �2jt
�

jf(�1)� f(�2)j � B5j�1 � �2j; 8�; �1; �2 2 [a; b];

t; t1; t2 2 [0;1):

A7) There exists a measurable function�(�; x) which does
not change sign forx � 0; � 2 [a; b] and a polynomial
�
p
i=0 bix

i; p � 1 such that

dxi(�)

d�
=�(�; xi(�))

j�(�; x)j �

p

j=0

bjx
j
; 8 � 2 [a; b]; x � 0 (5)

j�(�1; xi(�1))� �(�2; xi(�2))j

�W0j�1 � �2j; 8 �1; �2 2 [a; b] (6)

whereEW 4
0 <1:

A8) We have the following.
a) There are two positive constants�0 and � such that

Pft1 � A1 � t1 + tg � �0t
�; 8t; t1 � 0.

b) EA
�
1 <1.

c) sup�2[a;b]E(x1(�))
� <1; where�0 = max f2(3p+

4�0 + �1 + �2); 2p2(p + �0); (2q=(p1 � 1))(2p +

�0)g; p1> 1; p2> 1; q 2 [0; �); (iv) � 2 [0; 1 �

(1=2�); �[(1� �) + (1=p1)(1� (1=p2))q]> 1:

Conditions A1) and A5) on the step sizes are standard; for example,
we can choosean = an�� ; 8 � 2 (1=2;1]: Since our main concern
is with the convergence rate of the algorithm, Condition A2) is
reasonable, i.e.,J(�) has a unique minima�0 in (a; b): Condition
A3) requires thatJ(�) has positive second derivative at�0; while
Condition A4) says that the second derivative ofJ(�) at �0 is zero. It
will be shown that, roughly speaking, the convergence rate ofj�n��

0
j

is o(a�n) andO((loga�1n )�1=), respectively, under Conditions A3)
and A4).

The bounds in Condition A6) are not essential for the convergence
analysis, since�0; �1; and�2 are arbitrary. IfJ(t; �) = t + C(�);

then �0 = �1 = �2 = 0 and B2 = B3 = 0: This performance
function has been widely discussed; see, e.g., [4]–[5], [7], and
[18]–[20]. Additionally, we need the Lipschitz condition onf(�) in
A6). Assumption A7) holds if, forF (�; x); either � is a location
parameter or� is a scale parameter. In this case, we can set
p = 1;W0 = 0; see [19]. IfA1 has a bounded probability density
function, then we can choose� = 1 in A8)-a). Comparing it with
that used in [5] and [6], where the distribution ofA1 is assumed
to have a bounded hazard rate, our condition is rather weak. Since
the distribution ofA1 is independent of�; the convergence of the
PARMSR algorithm should not depend on the distribution ofA1:

This is proved in [20]. Some moment conditions on the service times
and the interarrival times are required in Condition A8)-b) and c).

The main results of this paper are as follows.
Theorem 2.1: Assume that A1), A2), and A6)–A8) hold, then

�n�!n!1 �0; a.s.
Theorem 2.2: Let A1)–A3) and A6)–A8) hold. Thenj�n � �0j =

o(a�n) a.s., for those� 2 [0; 1 � (1=2�)) such that Conditions A3)
and A8)-c) are satisfied.

Theorem 2.3: If A1), A2), and A4)–A8) hold, then

(log a
�1
n )

1=
j�n � �

0
j �!
n!1

�

M2

1=

; a:s:

III. T HE PROOFS OF THEMAIN RESULTS

With the PARMSR algorithm applied, we denote the number of
customers served in the(m+1)th busy period (BP) by�m+1: Then
we have

�m+1 = inf i:

i

j=1

(Ak +j � xk +j(�k +j�1))> 0 (7)

wherekm
�
= �m

i=1 �i; 8m � 1; k0 = 0: By A7), dxi(�)=d� does
not change sign,8 i � 1; � 2 [a; b]: Without loss of generality,
we assume thatdxi(�)=d�> 0;8 i � 1; � 2 [a; b] henceforth. If
�k +1; �k +2; � � � are replaced by�; we denote the number of
customers in the(m + 1)th BP by �m+1(�): Denote the length of
the(m+1)th BP and the(m+1)th idle period byLm+1 andIm+1,
respectively, and byLm+1(�) andIm+1(�) if the service parameters
are fixed at� throughout the BP. More precisely, we have

Lm+1(�) =

� (�)

i=1

xk +i(�)

Lm+1 =

�

i=1

xk +i(�k +i�1)

Im+1(�) =

� (�)

i=1

(Ak +i � xk +i(�))

Im+1 =

�

i=1

(Ak +i � xk +i(�k +i�1)):

Before proving our main results, we need several lemmas.
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Lemma 3.1: Let A1) and A6)–A8) hold. Then for any fixedm0; i0;

and all � 2 [0; 1 � (1=2�)); we have

k +i

i=k

a
1��
i "i+1 �!

m!1
0; a:s:

Proof: For all i � 0; 1 � j � �m+i+1; by (5) and (7) it
follows that

Tk +j =

j

l=1

xk +l(�k +l�1)�
j�1

l=1

Ak +l

�Lm+i+1(b) (8)

j�k +j j �
j

l=1

dxk +l(�k +l�1)

d�

�
p

s=0

bs(Lm+i+1(b))
s
: (9)

Noticing that ak � am�� ; 8m � 1; by (2), (3), (8), (9), and
Condition A6) we get

k +i

i=k

a
1��
i "i+1

�
m +i

i=0

�

j=1

a
1��
k +j�1j"k +j j

� a
1��
k

m +i

i=0

�

j=1

( max
�2[a;b]

jf(�)j+ (B1 +B2T
�

k +j)

� j�k +j j+ (B1 +B2T
�

k +j))

� a
1��

max
�2[a;b]

jf(�)j
m +i

i=0

1

m�(1��)
�m+i(b)

+ a
1��

m +i

i=0

�m+i+1(b)p
m�(1��)

� B1 +B2Lm+i+1(b)
�

p
m�(1��)

+ a
1��

m +i

i=0

p

s=0

bs

� [B1(Lm+i+1(b))
s
+B2(Lm+i+1(b))

s+�
]p

m�(1��)

� �m+i+1(b)p
m�(1��)

: (10)

By A8)-b) and c) it follows that (see, e.g., [9] and [20])

E��m (b) = E�
�
1 (b)<1;

EL�
m (b) = EL

�
1 (b)<1 ; 8m � 1: (11)

By (11) and [20, Lemma 2], from (10) the assertion of Lemma 3.1
follows immediately.

Lemma 3.2: Suppose that one of the following conditions is
satisfied.

1) 8 t � 0; t1 � 0; Pft1 � A1 � t1 + tg � �0t
�
;

2) 8 t � 0; t1 � 0; Pft1 � x1(�) � t1 + tg � �0t
�: Then

sup�2[a;b]EI
�q
m (�) � �1<1; 8 q 2 [0; �); where�0; �1

and � are constants.

Proof of 1): SetYi = Ai �Xi(�); 8 i � 1: By the indepen-
dence ofA1 and x1(�); we derive

Pft1 � Y1 � t1 + tg
= Pft1 � A1 � x1(�) � t1 + tg

=

1

0

Pft1 + u � A1 � t1 + u+ tg dPfx1(�)<ug
� �0t

�
; 8 t1 � 0; t > 0: (12)

SincefYi; i � 1g is an i.i.d. sequence, by (12) we get

PfI1(�) � tg

= P

� (�)

i=1

Yi � t

=

1

k=1

P

k

i=1

Yi � t; �1(�) = k

=

1

k=1

PfY1< 0; Y1 + Y2< 0; � � � ; Y1 + � � �+ Yk�1< 0g

� Pf�(Y1 + � � �+ Yk�1)<Yk � t

� (Y1 + � � �+ Yk�1)jY1< 0; � � � ; Y1 + � � �+ Yk�1< 0g

= �0t
�

1

k=1

Pf�1(�) � kg = �0t
�

max
�2[a;b]

E�1(�): (13)

By (13) we then derive

EI
�q
1 (�) = q

1

0

t
�q�1

PfI1(�)<tg dt

= q
1

0

t
�q�1

PfI1(�)<tg dt

+ q
1

1

t
�q�1

PfI1(�)<tg dt

� q�0 max
�2[a;b]

E�1(�)
1

0

t
(��q)�1

dt+ 1

=
q�0

�� q
max
�2[a;b]

E�1(�) + 1: (14)

2): The proof is similar to that of 1).
The proof of Lemma 3.2 goes through if, instead, we use the

conditional probability version.
Corollary 3.1: If Condition A8)-a) holds, thenE(I

�q
m+1jFk ) �

�1; 8m � 1; q 2 (0; �2) where the filtrationFk is defined by

Fk =�fB: B 2 �fAj ; uj ; 8j � 1g
B[km = i] 2�fA1; u1; � � � ;Ai; uig;8i � 1g:

Lemma 3.3: Let A6)–A8) hold. Then there exist constants�2> 0

and 1 2 (0; q) such that

Pf�m+1 6= �m+1(�k )jFk g � �2a


k ; 8m � 1:

Proof: By Condition A6), (8), and (9), from (1)–(3) it follows
that

j�k +i � �k j �
i

j=1

ak +j�1jfk +j j

� ak

i

j=1

[(B1 +B2T
�

k +j)j�k +j j

+B1 +B2T
�

k +j ] � ak Wm+1

8 1 � i � �m+1 (15)

where

Wm+1
�
= �m+1(b)(B1 +B2L

�
m+1(b))

� 1 +

p

s=0

bsL
s
m+1(b) : (16)
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By Condition A7) and the mean value theorem, we then obtain

� (� )

i=1

jxk +i(�k +i�1)� xk +i(�k )j

�

� (� )

i=1

p

s=0

bs(xk +i(b))
s
j�k +i�1 � �k j

� ak W
(1)
m+1 (17)

where

W
(1)
m+1 = Wm+1

p

s=0

bsL
s
m+1(b): (18)

By the Hölder inequality and Lemma 3.2, it follows from (7) that

Pf�m+1>�m+1(�k )jFk g

�
= PF f�m+1>�m+1(�k )g

� PF Im+1(�k ) �

� (� )

i=1

(xk +i(�k +i�1)

� xk +i(�k ))

� PF fIm+1(�k ) � ak W
(1)
m+1g

� a

k EfI

�
m+1(�k )W

(1)
m+1 jFk g

� a

k fsup

�

EI
�q
m+1(�)g

1=p
fEW

(1)
m+1 g

(p �1)=p

�
�2

2
a

k

where1 = q=p1; �2 = 2�
1=p
1 fEW

(1)
m+1 g(p �1)=p

; p1> 1:

By the Schwarz inequality and (11), we derive

E�1(b)
q=(p �1)

L1(b)
(2p+� )q=(p �1)

� (E�1(b)
2q=(p �1)

)
1=2

(EL1(b)
2(2p+� )q=(p �1)

)
1=2

<1

which yields�2<1:

Similarly, we havePf�m+1<�m+1(�k )jFk g � a

k � �

2
: We

thus complete the proof of the lemma.
Lemma 3.4: Suppose that A1) and A6)–A8) hold. Then�1m=1

�
�

i=1 a
1��
k +i�1"k +i converges a.s., for all� 2 [0; 1� (1=2�)):

Proof: By (4), it is seen that

1

m=1

�

i=1

a
1��
k +i�1"k +i

=

1

m=1

�

i=1

(a
1��
k +i�1 � a

1��
k )"k +i

+

1

m=1

a
1��
k

� (� )

i=1

(fk +i(�k )� f(�k ))

+

1

m=1

a
1��
k

�

i=1

(f(�k )� f(�k +i�1))

+

1

m=1

a
1��
k

�

i=1

(fk +i � fk +i(�k ))

+

1

m=1

a
1��
k

�

i=� (� )+1

(fk +i(�k )� f(�k ))

� If� >� (� )g

�

1

m=1

a
1��
k

� (� )

i=� +1

(fk +i(�k )� f(�k ))

� If� <� (� )g (19)

wherefk +i(�) is defined by

fk +i(�) =Jt(Tk +i(�); �)�k +i(�) + J�(Tk +i(�); �)

Tk +i(�) =

i

j=1

xk +j(�)�

i�1

j=1

Ak +j

�k +i(�) =

i

j=1

dxk +j(�)

d�
: (20)

To prove the lemma, it suffices to show that each term on the
right-hand side of the equality in (19) converges, a.s.

1): Under Condition A1), there is a constant�0 such that

0 � a
1��
n � a

1��
n+1 � �0a

2��
n ; 8n � 1

which yields

ja
1��
k +i�1 � a

1��
k j � �0�m+1(b)a

2��
k ; 8 1 � i � �m+1:

(21)

By (8), (9), and Condition A6) it follows from (2)–(4) that

j"k +ij � max
�2[a;b]

jf(�)j+ (B1 +B2Lm+1(b)
�
)

�

p

s=0

bsLm+1(b)
s
+B1 +B2Lm+1(b)

�

�
= W

(0)
m+1; 8 1 � i � �m+1: (22)

By (21) and (22), we derive
�

i=1

(a
1��
k +i�1 � a

1��
k )"k +i

� �0a
2��

m
�(2��)�

W
(2)
m+1; 8m � 1 (23)

where

W
(2)
m+1

�
= �

2
m+1(b)W

(0)
m+1:

By (11) and the Schwarz inequality, it is not difficult to see that

sup
m

E(W
(2)
m+1jFk )<1: (24)

Combining (23) and (24) with the local convergence theorem of
martingales (see, e.g., [16]) yields that the first term on the right-hand
side of the equality in (19) converges a.s.

2): By Conditions A6)–A8) and the dominated convergence theo-
rem, the IPA derivative estimates are strongly consistent (cf. [8] and
[20]), i.e.,

f(�) =
1

E�1(�)
E

� (�)

i=1

dJ(Ti(�); �)

d�
; 8� 2 [a; b]:

Then it is seen that

E

� (� )

i=1

(fk +i(�k )� f(�k ))jFk = 0

which means thatf�
� (� )

i=1 (fk +i(�k ) � f(�k ));Fk g

is a m.d.s. By the treatment similar to that used in (22)–(24), we
can show

E

� (� )

i=1

(fk +i(�k )� f(�k ))

2

Fk

� E(W
(0)
m+1�m+1(b))

2
<1; m � 1
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from which we get

1

m=1

a
2(1��)
k

� E

� (� )

i=1

(fk +i(�k )� f(�k ))

2

Fk

<1:

Then by the local convergence theorem of martingales (see, e.g.,
[16]), the second term on the right-hand side of the equality in (19)
converges a.s.

3): By A6) and (15), we have

�

i=1

(f(�k )� f(�k +i�1)) � B5ak �m+1(b)Wm+1:

Then the third term on the right-hand side of the equality in (19)
converges a.s., by the local convergence theorem of martingales (see,
e.g., [16]).

4): Using A6), A7), and (15), it follows from (20) that

j�k +i � �k +i(�k )j �W0�m+1(b)ak Wm+1 (25)

and similar to (17) it is seen that

jTk +i � Tk +i(�k )j

�

i

j=1

jxk +j(�k +j�1)� xk +j(�k )j

� ak W
(1)
m+1 (26)

whereW (1)
m+1 is defined by (18).

By (3) and (20) we have

jfk +i � fk +i(�k )j

� [jJt(Tk +i; �k +i�1)� Jt(Tk +i; �k )j

+ jJt(Tk +i; �k )� Jt(Tk +i(�k ); �k )j]j�k +ij

+ jJt(Tk +i(�k ); �k )jj�k +i(�k )� �k +ij

+ jJ�(Tk +i; �k +i�1)� J�(Tk +i; �k )j

+ jJ�(Tk +i; �k )� J�(Tk +i(�k ); �k )j:

By (8), (9), (15), (25), (26), and Conditions A6) and A7), we derive

jfk +i � fk +i(�k )j

� ak B4Wm+1L
�
m+1(b)

p

s=0

bsL
s
m+1(b)

+B3W
(1)
m+1L

�
m+1(b)

p

s=0

bsL
s
m+1(b)

+ (B1 +B2L
�
m+1(b))W0�m+1(b)Wm+1

+B4Wm+1L
�
m+1(b) +B3W

(1)
m+1L

�
m+1(b)

�
= ak Vm+1:

Using (11) and the Schwarz inequality, we see that

sup
m

Ef�m+1(b)Vm+1jFk g<1

which in conjunction with the local convergence theorem of martin-
gales yields that the fourth term on the right-hand side of the equality
in (19) converges a.s.

5): Similar to (22) we can prove

�

i=� (� )+1

(fk +i(�k )� f(�k ))If� >� (� )g

�W
(3)
m+1 (27)

whereW (3)
m+1 = �m+1(b)W

(0)
m+1:

By Lemma 3.3 and the H¨older inequality, we derive

E a
1��
k

�

i=� (� )+1

(fk +i(�k )� f(�k ))

� If� >� (� )gjFk

� a
1��
k fEW

(3)p
m+1 g

1=p
Pf�m+1>�m+1(�k )jFk g

1=q

� �
1=q
2 a

(1��)+ =q
k fEW

(3)p
m+1 g

1=p

where(1=p2)+(1=q2) = 1: Choosing the appropriatep1; q2 such that
�[(1� �) + (1=p1q2)q]> 1; then by the local convergence theorem
of martingales we obtain that the fifth term on the right-hand side of
the equality in (19) converges a.s.

Similarly, we can prove that the last term on the right-hand side
of the equality in (19) converges a.s. Thus we conclude the proof
of the lemma.

Lemma 3.5: If A1) and A6)–A8) hold, then�1n=1 a
1��
n "n+1 con-

verges a.s., for all� 2 [0; 1 � (1=2�)):
Proof: Let the sample path be fixed. DefineM(i) =

sup fj: kj � ig; 8i � 1: 8"> 0; by Lemmas 3.1 and 3.4 there
existsn0 such that for alln2>n1 � n0 we have

n

n

a
1��
i "i+1

=

M(n )�1

m=M(n )

�

i=1

a
1��
k +i�1"k +i �

n

i=k +1

� a
1��
i�1 "i +

n

i=k

a
1��
i "i+1 � ":

This completes the proof of the lemma.
Proof of Theorems 2.1–2.3:Theorem 2.1 follows easily from

Lemma 3.5 and [2, Th. 3.1]. By Lemma 3.5 and [3, Th. 3.2.1] we
obtain Theorem 2.2. Finally, by Lemma 3.5 and [1, Th. 3] we have
Theorem 2.3.

IV. THE PARMSR ALGORITHM UPDATED EVERY

L-CUSTOMERSPERIOD FOR THEGI=G=1 QUEUE

We continue considering theGI=G=1 queueing system. The
obtained results can easily be extended to the case where parameter
updates are performed afterL customers depart from the server. Let
fn+1 be the(n+1)th step estimate forf(�): Instead of (2) and (3),
we now have

fn+1 =
1

L

L

i=1

[Jt(TnL+i; �n)�n+1;i + J�(TnL+i; �n)] (28)

where�n+1;i; 1 � i � L are defined by

�n+1;0 =�n;L; �1;0 = 0

�n+1;i+1 =�n+1;iI[Q �1] +
dxnL+i+1(�n)

d�
0 � i � L� 1: (29)



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 42, NO. 10, OCTOBER 1997 1447

The PARMSR algorithm updated everyL-customers period is
composed of (1), (28), and (29); see, e.g., [18]–[20].

Theorem 4.1: The assertions of Theorem 2.1–2.3 hold in the
present setting, if the conditions of the theorems are satisfied,
respectively.

Proof: The key step is to verify that�1
n=1 ab

1��
n "n converges,

a.s. The observation noise of the algorithm is (4), wherefn+1 is
defined by (28). Along the same lines as in [20], we first introduce
the following notations:

�(n) =
n

L
; �n = ��(n); ~an = a�(n) (30)

�(n�1)L+j =�n;j ; j = 0; 1; � � � ; L� 1 (31)

"n =Jt(Tn; �n�1)�n + J�(Tn; �n�1)� f(�n�1)

8n � 1: (32)

By (29) and (31) we have

�n+1 = �nI[Q �1] +
dxn+1(�n)

d�
; 8n � 0:

From (28) and (29) it is derived that

1

n=1

a
1��
n "n+1 =

1

n=1

a
1��
n (fn+1 � f(�n))

=
1

L

1

n=L

~a
1��
n "n+1

which implies that the almost sure convergence of�1n=1 a
1��
n "n+1

is equivalent to the almost sure convergence of�1n=1 ~a
1��
n "n+1:

The proof of the convergence of�1n=1 ~a
1��
n "n+1 works the same

way as in Lemma 3.1 and Lemmas 3.3–3.5 if, instead, we replace
�n; �n; "n; an by �n; sn; "n; ~an; respectively. Details are omitted,
for the brevity of the paper.

V. CONCLUDING REMARK

We have established the convergence rates of the PARMSR algo-
rithm with fixed-length observation period for theGI=G=1 queueing
systems. Along the same lines of the research, more precise conver-
gence results for the PARMSR algorithms, such as a central limit
theorem and a law of the iterated logarithm, could be derived.
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Improved Upper Bounds for the
Mixed Structured Singular Value

Minyue Fu and Nikita E. Barabanov

Abstract—In this paper, we take a new look at the mixed structured
singular value problem, a problem of finding important applications in
robust stability analysis. Several new upper bounds are proposed using a
very simple approach which we call the multiplier approach. These new
bounds are convex and computable by using linear matrix inequality
(LMI) techniques. We show, most importantly, that these upper bounds
are actually lower bounds of a well-known upper bound which involves
the so-calledD-scaling (for complex perturbations) andG-scaling (for
real perturbations).

Index Terms—Robust control, robust stability, robustness, structured
singular value, uncertain systems.

I. INTRODUCTION

This paper addresses the problem of the mixed structured singular
value. The notion of structured singular value, or� for short, was
initially proposed by Doyle [4] for studying the robust stability
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