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Convergence Rates of Perturbation- As pointed out in [4], [5], and [13], the analysis of the convergence
Analysis-Robbins—Monro-Single-Run rate of the PARMSR algorithm with fixed-length observation period is
Algorithms for Single Server Queues an interesting and difficult problem and has been lacking. The difficul-
ties lie in the fact that the standard conditions for the convergence rate
Qian-Yu Tang, Han-Fu Chen, and Zeng-Jin Han established in the literature on stochastic approximation are not quite

verifiable in the special context of SDES’s. In this paper, we establish
the convergence rates of the PARMSR algorithms with a fixed-length
Abstract—In this paper the Perturbation-Analysis-Robbins—Monro-  Observation period for th&/I/G/1 queueing systems. It is shown
Single-Run algorithm is applied to estimating the optimal parameter of that the convergence rates of the PARMSR algorithms depend on
al peffﬁfm‘?‘”ce g‘eajwl?t for thEfo,/ (fj/ |1 q“ﬁueg‘g systems, vyh(jere()the the second derivative of the performance measure at the optimal
algorithm is updated after every fixed-length observation period. Our . - - :
aim is to analyze the limiting behavior of the algorithm. The almost sure point. It is worth noticing that our .anaIySIS of the convergence rates
convergence rate of the algorithm is established. It is shown that the f@kes advantage of the regenerative structure of the system, but the

convergence rate depends on the second derivative of the performanceimplementation of the algorithm does not depend on the regenerative

measure at the optimal point. structure. Thus, the PARMSR algorithm with fixed-length observation
Index Terms—Convergence rates, perturbation analysis, queueing sys- Period may be applicable.to much more general SDES's.
tems, stochastic approximation, stochastic discrete-event systems. The rest of the paper is organized as follows. For simplicity of

exposition, we give the PARMSR algorithm, updated every cus-

tomer, in Section Il. The proofs of the main results are presented

in Section Ill. In Section IV the obtained results are extended to the
Perturbation analysis (PA), since introduced by Eloal [11], case where parameter updates are performed after every fixed number

has been widely studied in the literature on stochastic discrete-evefitcustomers per period. Finally, a concluding remark is given in

systems (SDES'’s); see, for example, Ho and Cao [10], Glasserngection V.

[8], and the references therein. Roughly speaking, PA is a method

for estimating derivatives of performance measures with respect to II. THE PARMSR ALGORITHM UPDATED

system parameters from a single sample path of an SDES, where

analytic formulas of the performance measures are only available ) ) )

for a limited class of SDES’s. Combining the PA technique with Let us consider a special regenerative systemheGi/1 queue-

stochastic approximation algorithms leads to the so-called “singf@9 SYStem, with service in order of arrival, where thie customer
run optimization” algorithm. When the Robbins—Monro (RM) algol''at enters the system is denoted @y, ¥ > 1. The interarrival
rithm is applied, the resulting algorithm is called the “PerturbatiorimeS {4n,n > 1} and the service timeqx,(#),n > 1} are
Analysis-Robbins-Monro-Single-Run” (PARMSR) algorithm in Surf.l.d. sgquences and arelnutually independent with the first moments
and Leung [18] and Suri [17]. The PARMSR algorithm is used fof 41 = 1/AandEz,(#) = w(6), respectively, wheré is a decision
seeking the optimal parameter of a performance measure based mrgn&eter which can be adjusted. The traffic intensity is denoted by
single sample path of the system. p(8) = Az(#). Throughout the paper, we assum@) < 1,V6 € D,

For PAMRSR algorithms, the parameter updates may be performiiere D is a compact set.
after the observation of one or two regenerative cycles and may alsd-et 7 (#) be the system time of the customey,,vn > 1. We
be performed after every fixed-length observation period. In the figiscuss the performance measures of the type

. INTRODUCTION

EVERY CUSTOMER FOR THEGI/G/1 QUEUE

case, convergence analysis is relatively simple, since the observation L&
noise typically constitutes a martingale difference sequence (m.d.s.), J(¢) = lim - Z.](E(&),H)
and the standard stochastic approximation results are applicable; i=1

see, e.g., [4] and [7]. In this case, the parameter updates may\figere (£, 6) is a differentiable function with respect {e, 6), v+ >
infrequent, since the regenerative cycles may be long in a high-logd) ¢ p. For example, we can chooskt,8) = ¢ + C(6), where
system as well as in a queueing network with many nodes. In tgg) is a known function; see, [4], [5], [7], [13], [18]-[20], etc.

second case, the PARMSR algorithm has a relatively fast rate rmally, our problem under consideration is to sea®tsuch that
convergence as reported in the empirical studies [17]-[19]. Howevergo) — 1nin,.;, J(6).

its convergence was not proved until recently; see, [5], [6], [12],
[13], and [20]. The proofs of weak convergence and convergeng
in probability of the algorithm are provided in [12] and [13] (with
numerical experiments in a companion paper [14]), respectively. T K

almost sure convergence of the algorithm is proved in [5], [6], and  8n4+1 =68, — an frti
[20].

We now define our recursive procedure. $gt) 2 dJ(6)/d8. We
§e the following projected RM algorithm to update the parameter
ﬁsetimateenﬂz

Ontr =0nta I[”<én+l<b1 + aI[énJrlﬁﬂr] + bI[’jn+125] @)
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{u;,i > 1} be an i.i.d. sequence with a uniform distribution on (0, Conditions A1) and A5) on the step sizes are standard; for example,

1]. Definex; () = F (6, u;) = inf {22 F(h,x) > u;},Vi > 1,

we can choose, = an~",Vv € (1/2,1]. Since our main concern

from which the derivativedx;(6)/df,Vi > 1 can be obtained; see, is with the convergence rate of the algorithm, Condition A2) is

e.g., [8], [10], and [19]. Thus thén + 1)th step estimate foff (6)
is given by
fn+l = Jt(ml+17 en)an+l + ']9 (Tn+la en) (3)

whereT,, 4+ is the system time of the custom@y, 4, and.J,(-, -) and
Jy(-,-) denote the partial derivatives df -, -) with respect to its first

reasonable, i.e.J(#) has a unique minim&° in (a,b). Condition
A3) requires that/(6) has positive second derivative &t, while
Condition A4) says that the second derivative/¢#) at4° is zero. It
will be shown that, roughly speaking, the convergence rafé,cf6°|
is o(ad) andO((loga; *)~Y/7), respectively, under Conditions A3)
and A4).

The bounds in Condition A6) are not essential for the convergence

and second component, respectively. Then we obtain the PARM8Ralysis, sinceu, 11, andp, are arbitrary. If.J(t,6) =t + C(9),
algorithm updated every customer by combining (1) with (2) and (Zhen iy = p11 = p2 = 0 and B, = By = 0. This performance

The observation noise is expressed as

Ent1 = fn+1 - f(en) (4)
For our results, let us introduce the following conditions.
that A3) and A4) are exclusive.
Al) 0<a, < an~” for somea>0,v € (3.1,Vn >

) —1 -
LEran =000 < apyq —a;, —n—sca >0,

A2) f(#) has a unique roo#’ € (a,b) C D,J(8°) =
mingep J(6).

A3) Asfd — 6°, f(#) can be expressed ggf) = M, (8 — 6°) +
A(6), where A(8) = O(]|9 — 6°|]*) asf — 6°, —M, +
a8 <0, ands € [0,1/2) is a constant.

Ad) f(8) = Ms(8 =610 =6°" +7(8),r(8) = o(|§ — 8°|*)
ast — 6° M, >0,v>0.

AB) T2, (a;/loga; ') = oc.

A6) There are constantB,—Bs, uo—t2 such that

max {|Jo(t,0)|,|Ji(t,0)|} < By + Bat"®
Ill'(LX{|J(-)(t1,|9) - ']9(t2:9)|7 |']t(t199) - ']f(t%a)'}
S B3|tl bl t2| max (tl,tz)ﬂl
Ill'cLX{|J(-)(t,91) — .]y(t,ez) . |Jt(f,(91) - Jt(t, (92)”
< By, — 6y|t"2
|f(61) = f(02)] < Bs|61 — 0af,  V0,61,82 € [a,b].
t.t1,ts € [0,0C)

A7) There exists a measurable functieh(¢, ) which does
not change sign for: > 0,6 € [e,b] and a polynomial
P bixz', p > 1 such that

dx;(0) N
5 =2(6.2:(6))
)2
|B(6, )] <> bja’,  VOEab,x>0 (5)
J=0
| (01, 2i(61)) — (b2, wi(62))]
< Wolby =62, V01,02 € [a,b] (6)
where EW, < sc.
A8) We have the following.

a) There are two positive constants and p such that
P{ti < A1 <t1 41t} < fot", Vit > 0.

b) EA} <.

C)  SUPpel 4 E(z1(6))% < 0o, where&y = max {2(3p +

dpo + pa1 + p2). 2p2(p + po), (2¢/(p1 — 1))(2p +
wo)t, pi>1,pa>1,q9 € [0,p); (V) 6 € [0,1 —
(1/2v),v[(1 = &) + (1/p1)(1 = (1/p2))a] > 1.

function has been widely discussed; see, e.g., [4]-[5], [7], and
[18]-[20]. Additionally, we need the Lipschitz condition gi{é) in
AB). Assumption A7) holds if, forF(¢,z), eitherf is a location
parameter orf is a scale parameter. In this case, we can set

Noticg = 1, W, = 0; see [19]. If A; has a bounded probability density

function, then we can chooge = 1 in A8)-a). Comparing it with

that used in [5] and [6], where the distribution df; is assumed

to have a bounded hazard rate, our condition is rather weak. Since
the distribution ofA; is independent o#, the convergence of the
PARMSR algorithm should not depend on the distributionAf.

This is proved in [20]. Some moment conditions on the service times
and the interarrival times are required in Condition A8)-b) and c).

The main results of this paper are as follows.

Theorem 2.1: Assume that Al), A2), and A6)-A8) hold, then
B —n—oo H°, @.s.

Theorem 2.2: Let A1)-A3) and A6)-A8) hold. Thef¥,, — #°| =
o(a‘,’L) a.s., for thosed € [0,1 — (1/2v)) such that Conditions A3)
and A8)-c) are satisfied.

Theorem 2.3:1f A1), A2), and A4)-A8) hold, then

togazy 1o, = — (2} s
g n k13 o0 ARIQ,-) ) D

Ill. THE PROOFS OF THEMAIN RESULTS

With the PARMSR algorithm applied, we denote the number of
customers served in then + 1)th busy period (BP) byj,,,4+1. Then
we have

M1 = inf {ii > (Abts = et (Brpimr)) > 0} ™
g=1

wherek,, 2 7, ..¥m > 1, ko =
not change signyi > 1,60 € [a,b]. Without loss of generality,
we assume thatlx;(6)/df >0,V 1,6 € [a,b] henceforth. If
Ok, +1,0k,,+2,--- are replaced by, we denote the number of
customers in thém + 1)th BP by,.41(8). Denote the length of
the (m + 1)th BP and thdm + 1)th idle period byL,,,+1 and .41,
respectively, and by.,,.+1(6) and[,,.+(9) if the service parameters
are fixed at? throughout the BP. More precisely, we have

0. By A7), dz;(6)/d8 does

\Y%

N +1(0)
LWL+1(9) = Z l‘km-&-i(e)
i=1
Nm+1
L7n+1 = Z Ikm+i(9km+i71)
i=1
Trt1(0)
Lnp1(8) = > (Akpyi — Trpra(6))
=1
Nrm41
Im+l =

> (At = et Breptim1))-
=1

Before proving our main results, we need several lemmas.
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Lemma 3.1: Let A1) and A6)-A8) hold. Then for any fixed', i’,

= / P{ti+u< A <ti+u+tt}dP{z1(f) <u}
and allé € [0,1 — (1/2v)), we have 0

< Bot", Vit > 0,t>0. (12)
m+m’+’
> al e — 0, as. Since{Y;,i > 1} is an i.i.d. sequence, by (12) we get
o P{I,(6) < 1}
Proof: Foralli > 0, 1 < j < %mtit1, by (5) and (7) it 1(0)
follows that =P Z Y, <t

J j—1
Tkm+i+j = E :Ekm+i+l(6km+i+l71) - E Akm+i+l

[=S) k
=1 =1 E { E Y <ty (9):1@}
=

< Linyita(D) 8) =

IO iti—1) S
. m+i m—1 _
akm+i+]|§; - ; P{Y1<0,Y1+Ya<0,---, Y14+ 4+ Y1 <0}
P{ (1 -+ Y, 1)<§’fk<f
< DLt ()" ©) — (Y1 + - +Yk DY <0, Yh 4+ 4 Vi <0}
Noticing thatax,. < @m=".¥m > 1, by (2), (3), (8), (9), and = fot" ZP{’M” 2 k} = dot!" e En(9). (13)
Condition A6) we get k=1
By (13) we then derive
m+m’+7
1-6 i
> a4 lEn EIT4(#) :q/ t71T P{L(0) <t} dt
1=k o]
S
m/+i’ Mm+i :q/ tqulP{Il(H) <t} dt
Z Z m+z+j_l|5km+i+j| o
B -I-q/ 17 P{I,(8) <t} dt
m L mtt 1
<ap’ ( e |FO) + (By + BoTL° ) 1
; ]Zl it < qfo 9111[34}%] Emp (9)/ TGl N |
N €la,b
etk 5] + (Br + Blef i) B0 ’
= max_En(6) + 1. (14)
= e [0 |2+? o) el
<ua max N+
- 0€(a,b) m ”(1 5 e 2): The proof is similar to that of 1).
" o The proof of Lemma 3.2 goes through if, instead, we use the
+gt—? Nuntit1(0)  Bi+ BsLutit () conditional probability version.
= Vmri=o) Vimr(=9) Corollary 3.1: If Condition A8)-a) holds, therE (1,4, |F,.) <
m/4i’ p B1.Ym > 1,4 € (0, u2) where the filtrationFy,,, is defined by
1=
] bs .
ta ; ; Fr,, =0{B: B € o{Aj,u;,¥j > 1}
) [Bi(Lutit1(b))° + B2 (Lm+z+1(b))s+“0] Blkw =i] €o{Ar, urs- -5 Aiyui}, Vi > 13,
o) Vi (1=8) Lemma 3.3: Let A6)-A8) hold. Then there exist constarits > 0
Mmtitl d 0,¢) such that
LAt 10 10) andy € (0,9)
,‘/777/1/(176) ( )
P m Nm g Cm F " S 16} (771 . Ym Z 1.
By A8)-b) and c) it follows that (see, e.g., [9] and [20]) e Y
Enfo (b) = Ev,fo(b) < oo, . 4y that Proof: By Condition A6), (8), and (9), from (1)—(3) it follows
EL&(b) = FL(b) < 0o = _
By (11) and [20, Lemma 2], from (10) the assertion of Lemma 3.1 |emti = Ot <Y kg1 Fmts |
follows immediately. Jj=1
Lemma 3.2: Suppose that one of the following conditions is
satisfied. Sk, » (B + BT | )k, 4]

1) V> 0.6 > 0.P{t; < 41 <ty +1} < fot'; S :

2) Vt > 011 > 0,P{t; < 21(8) < t1 +t} < Bot". Then + Bi+ BTy 4] < an, Win
SUPgera p ELm(8) < 51 <oo, Vq € [0,1), where 3o, 5y V1 <i < it (15)
and i are constants.

where

Proof of 1): SetY; = 4; — X;(f), Vi > 1. By the indepen-
dence of4; andu:(6). we derive Wit = D1 (b)(Br + B2 L', (b))

P{ti <Yi <t + 1t} (1 + Zb L +1(b)) (16)
= P{t1 S fh —1?1((9) S t1 +t}
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By Condition A7) and the mean value theorem, we then obtain

Mot 1(0 kg )

>

=1

ket (Oheti—1) = Tk ti (B, )|

Tt 1(0k,,) p

S D S

) Oktim1 = Ok, |

S
< amzifll (17)
where
P
I/I/’Tgll = Wnt1 Z bo L}, 1 (D). (18)

s=0

By the Holder inequality and Lemma 3.2, it follows from (7) that

P{nmy1 > nmt1(0k,,) | Frr }

A
= Pr gt > a1 (0k,,) )

Tt 1(0k,,)
< Pr Lyg1(0s,,) < Z (ko ti Ok, +im1)
=1
= Tkt (O )

< Pry AL (8r,,) < ar, WL )
< ait B{L 4 (O, )W 1 )

<ajt {qup EI% ( (9)}/PL{EW ,Sfl/(m b V(p1=1)/p1
v
< Sai,
. /(p1—
wherey, = g/p1, B2 = 20/ PHEWLY T /e s,

By the Schwarz inequality and (11), we derive
E”h(b)q/(p1_1)Ll(b)(2ﬁ+po)rz/(m—1)
< (Eny (b)~2r1/(771—1))1/2(EL1 (b)2(2p+,,,0),,/(m_1))1/2
< 00

which yields 3, < cc.

Similarly, we haveP {141 < fm+1 Ok, )N Fr,, } < afl
thus complete the proof of the lemma.

Lemma 34 Suppose that Al) and A6)-A8) hold. Theif;_,

S ai -t ek, 40 converges a.s., for all € [0.1 — (1/2v)).
Proof. By (4), it is seen that

B
2. We

oo Mm+l

[y R )
A +i—1C ki
m=1 i=1

oo Mm+1

=3 > (e im0 ek
m=1 =1
oo Nnt1 (ko)
+3 0 Y (i (Br,) = F(B4,)
m=1 =1
M +1
Z“km Z JACTS))
M1
+ Z 20 (Frmti = Fretil0a,))
m=1 =1
Nm+1

S

m=1

.I{

>

=10, )1

(frmri(Or,) — f(O,))

Mot 1 > M1y, ) }

1445
oo Tont1(9ky, )
- a’ Z (Femti(O,,) — F(Ok,))
m=1 1=Nmp1+1
L1 <nms 10,03 (19)

where fi. +:(9) is defined by

Jrer4i(0) = Tt (Thpr4i(8), )t ti (6) + Jo (T, 4i(0). 6)
i i—1
Thti(8) =D whsi (0) = > Akt
=t =t
ok, 1i(f) = }; T (20)

To prove the lemma, it suffices to show that each term on the
right-hand side of the equality in (19) converges, a.s.
1): Under Condition Al), there is a constam$ such that

()Sa&fbk—lt5 2= Vn>1

Ay 41 < Aoy,

which vyields

1—6

la, i ak V1<i< mgtr.

(21)
By (8), (9), and Condition A6) it follows from (2)—(4) that
, . Ha
jmax [£(8)]+ (Br + B2Lm11(0)"°)

P
- bsLung1(0)" + By + BaLyug1 (b)"°

s=0

*| < aonmsr (b)a; ",

|ek il <

>

=W V1< < g

By (21) and (22), we derive
Mm+41

1—6 1
(g yi1—a

=8y~ )
ko LT
i=1

(22)

—(2— 5)V” 7(2)

<cma7 s

Vm>1 (23)

where
- A 2 -
Wi 2 m OWL
By (11) and the Schwarz inequality, it is not difficult to see that

sup E(W ,(,fJ)rl | Fr,, ) < 00 (24)
Combining (23) and (24) with the local convergence theorem of
martingales (see, e.g., [16]) yields that the first term on the right-hand
side of the equality in (19) converges a.s.
2): By Conditions A6)—A8) and the dominated convergence theo-
rem, the IPA derivative estimates are strongly consistent (cf. [8] and
[20)), i.e.,

n1(0)

1 dJ(T;(9),6)
Enp (O)E ; de

Then it is seen that
Mt 10k, )

E¢ > (f

kot Ok ) — F Ok D F b,
=1

(8=

V6 € [a,b].

=0

which means thai{V”m“(e"m (FrmtiOkn) = F(Orp))s Fh 1}
is a m.d.s. By the treatment similar to that used in (22)—(24), we
can show

2

Mm+1(0k,,)
emti Oy ) — FOr )| | Froe

E >,

=1

< EWS nmir (b))’ <o,  m2>1
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from which we get

oo

j : 2(1-6)
(l,km
m=1

2

(FrmtiOkm) = FOk)) | [ Fhm

Nt 19k )

. E Z

=1

< 00.

Then by the local convergence theorem of martingales (see, e.g.,
[16]), the second term on the right-hand side of the equality in (19) £ ('k

converges a.s.
3): By A6) and (15), we have

M1

D (FOr) = FBrprim))] < Bsarp i1 ()W,

=1

Then the third term on the right-hand side of the equality in (19)
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5): Similar to (22) we can prove

N4l

2

=N 10y, )L

3
< VI 7(77-2-1

(Frmti(Ok,,) — f(ekm))l{'7m+l>77m+l(9km)}

(27)

where W | = ni ()W

By Lemma 3.3 and the dlder inequality, we derive

Ton+1

>

=010k, )1

(frp+i(Br,,) — f(8k,.))

) I{nm+1>nm+1(0km)}|fkm

< ap, LEWSE Y2 Plia > s (91, )| Fe /2

< ljl/flzagy;?i)-%n/qz{E”/;Si)rﬂlz }1/172

converges a.s., by the local convergence theorem of martingales (see,

e.g., [16]).
4): Using A6), A7), and (15), it follows from (20) that
[0k ti = Chpti (Ph )| < Wontng1 (D)ak,, Wing1  (25)
and similar to (17) it is seen that
T ti = Thti Ok
<Y ki Bt i1) = Thoot (B,
Jj=1
< ag,, W ,Sjrl (26)

where W), is defined by (18).
By (3) and (20) we have
[Fhmti = Frmti(Or,,)]
S ey tis bropti—1) = Je(Lreptis Ok, )|

+ (T i O0) = T (Thti (Or, ) O ) ] 0k 4
F [Tt (Dherri(O) s Ok M ke ti (O ) — ki
+ |Jo(Th, iy Obpizm1) — Jo (T 41, 05, |
+ | Jo(Thptis Ok ) — Jo (T poti Ok, )s On )|

By (8), (9), (15), (25), (26), and Conditions A6) and A7), we derive

[Fhmti = Frmti(0r,)]

o | BaWon i L2 (D) Z be L1 (D)

+B.W L ¢§3+1(b>zb Ly (b)

+ (Bi+ B2 L0 (b)) W077m+1( YWt

+ BiWonp LEZ () + BsW ,(nlj-lL:inlel(b)
2k, Vinia.

Using (11) and the Schwarz inequality, we see that

sup E{nm+1(0)Viny1|Fe,, } <0

m

which in conjunction with the local convergence theorem of martin-
gales yields that the fourth term on the right-hand side of the equality

in (19) converges a.s.

where(1/p2)+(1/q2) = 1. Choosing the appropriaje , ¢ such that
v[(1 — &)+ (1/p1g2)¢] > 1, then by the local convergence theorem
of martingales we obtain that the fifth term on the right-hand side of
the equality in (19) converges a.s.

Similarly, we can prove that the last term on the right-hand side
of the equality in (19) converges a.s. Thus we conclude the proof
of the lemma.

Lemma 3.5: If A1) and A6)-A8) hold, theri;2
verges a.s., for alb € [0,1 — (1/2v)).

Proof: Let the sample path be fixed. Defindf(:) =
sup{j: k; < i}, Vi > 1. Ve>0, by Lemmas 3.1 and 3.4 there
existsno such that for allne > n1 > no we have

1 (1,L -n+1 con-

no

1-6
a;

Sit1
ni

M(ng)—1 Nmy1 nq

S 1D SRD SIS

m=M(ny) i=1 1=k (g )L

no

1—-6
E a; Zit1 S e.
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This completes the proof of the lemma.

Proof of Theorems 2.1-2.3Theorem 2.1 follows easily from
Lemma 3.5 and [2, Th. 3.1]. By Lemma 3.5 and [3, Th. 3.2.1] we
obtain Theorem 2.2. Finally, by Lemma 3.5 and [1, Th. 3] we have
Theorem 2.3.

IV. THE PARMSR ALGORITHM UPDATED EVERY
L-CusTOMERS PERIOD FOR THEGI/G/1 QUEUE

We continue considering th&'I/G/1 queueing system. The
obtained results can easily be extended to the case where parameter
updates are performed aftércustomers depart from the server. Let
frnt1 be the(n + 1)th step estimate fof (#). Instead of (2) and (3),
we now have

L
1
For =7 ;[Jt(Tnm, 00)Bns1i + Jo(Turi02)]  (28)
where 3,41, 1 < i < L are defined by
677,4»1,0 = ,377,,La 61,0 =0

e dwn,ﬁ-‘,—i-‘,—] (977,)

Brativt =Bni1.idiQ, > + I 7 —
0<i<L-1. (29)
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Theorem 4.1: The assertions of Theorem 2.1-2.3 hold in thel®] A Gut, Stopped Random Walks: Limit Theorems and Applications

. . - s New York: Springer-Verlag, 1988.
present setting, if the conditions of the theorems are satlsfle[go] Y. C. Ho and X. R. CaoPerturbation Analysis of Discrete Event

respectively. Dynamic Systems Boston, MA: Kluwer, 1991.

Proof: The key step is to verify that>e , abl %2, converges, [11] Y. C. Ho, M. A. Eyler, and T. T. Chien, “A gradient technique
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defined bY (28). Alpng the same lines as in [20], we first |ntrodu<:ﬁ2] HTOJeclgﬂghngrS.\;?]d F.’ g.p'anuez—Ab’ad, “étochastic approximation
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[15] H. Robbins and S. Monro, “A stochastic approximation methddh.
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[17] R. Suri, “Perturbation analysis: The state of the art and research issues
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From (28) and (29) it is derived that [18] R. Suri and Y. T. Leung, “Single run optimization of discrete event
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70 , Vn > 0.

Ont1 = Bulig,>1 +

[=S) oo

which implies that the almost sure convergencegf. , al e

is equivalent to the almost sure convergenceXGt, aL~°z.41.

The proof of the convergence &}, at=%z,41 works the same

way as in Lemma 3.1 and Lemmas 3.3-3.5 if, instead, we replace

8oy Ensan DY Bo, 5., 80, an, respectively. Details are omitted,

for the brevity of the paper. Improved Upper Bounds for the
Mixed Structured Singular Value

V. CONCLUDING REMARK

We have established the convergence rates of the PARMSR algo-
rithm with fixed-length observation period for tlie/ /G'/1 queueing
systems. Along the same lines of the research, more precise convepbstract—n this paper, we take a new look at the mixed structured
gence results for the PARMSR algorithms, such as a central lir§ifigular value problem, a problem of finding important applications in

. - - robust stability analysis. Several new upper bounds are proposed using a
theorem and a law of the iterated logarithm, could be derived. very simple approach which we call the multiplier approach. These new

bounds are convex and computable by using linear matrix inequality
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