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Controllability is Not Necessary for
Adaptive Pole Placement Control

Han-Fu Chen,Fellow, IEEE, and Xi-Ren Cao,Fellow, IEEE

Abstract—The key issue for adaptive pole-placement control
of linear time-invariant systems is the possible singularity of
the Sylvester matrix corresponding to the coefficient estimate.
However, to overcome the difficulty, the estimate is modified by
several methods which are either nonrecursive and with high
computational load or recursive but with random search involved.
All of the previous works are done under the assumption that
the system is controllable. This paper gives the necessary and
sufficient condition, which is weaker than controllability, for
the system to be adaptively stabilizable. First, a nonrecursive
algorithm is proposed to modify the estimates, and the algorithm
is proved to terminate in finitely many steps. Then, with the help
of stochastic approximation, a recursive algorithm is proposed
for obtaining the modification parameters; it is proved that these
modification parameters turn out to be a constant vector in a
finite number of steps. This leads to the convergence of the
modified coefficient estimates. For both algorithms the Sylvester
matrices corresponding to the modified coefficient estimates are
asymptotically uniformly nonsingular; thus, the adaptive pole-
placement control problem can be solved, i.e., the system can be
adaptively stabilized.

Index Terms—Adaptive pole-placement control, controllability,
parameter modification, stochastic approximation.

I. INTRODUCTION

T HE NECESSARY and sufficient condition of arbitrary
pole placement for a linear deterministic system with

constant coefficients is the controllability of the system. The
problem of how to adaptively place poles of a system with
unknown coefficients is of practical importance and attracts
the attention of many researchers. It seems natural to deal with
the adaptive pole-placement problem under the controllability
condition. In fact, this is the assumption used in many works in
this direction until now. The challenging difficulty is that the
Sylvester matrix corresponding to the system with coefficients
replaced by their estimates may be degenerate. This prevents
one from obtaining the certainty equivalency control which is
normally used in adaptive control.

In [1], by using external excitation signals it is proved that
the coefficient estimates tend to the true values, and thus the
Sylvester matrices corresponding to the coefficient estimates
become uniformly nonsingular. This makes it possible to
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derive the certainty equivalency control and thus solves the
adaptive stabilization problem. The first theoretically complete
solution to the problem without invoking external excitation,
to the authors’ knowledge, belongs to Lozano and Zhao [2],
who introduce a coefficient estimation algorithm which is self-
convergent regardless of what control is taken. They choose a
modification parameter to modify the coefficient estimate
at each time so that the corresponding Sylvester matrix is
uniformly nondegenerate. However, the modification is non-
recursive and bears a very heavy computation burden. For
example, for a third-order system each modification requires
calculating 46 656 determinants of six-dimensional square
matrices, and the number of modifications is infinite. Later
in [3], the computational load was significantly reduced, and
a stopping technique is proposed so that the modification
terminates after a finite number of steps. In [4] it is shown
that the weighted least squares (WLS) estimate introduced
in [5] is self-convergent and has the same convergent rate
as the least squares estimate without any modification. Using
this estimate, [4] introduces a random search-type algorithm to
produce the modification parameter which guarantees the
uniform nondegeneracy of the corresponding Sylvester matri-
ces. However, by the nature of random search the modification
procedure must be very slow. All these works were done under
the controllability assumption.

The contribution of the present paper consists of the follow-
ing: 1) The necessary and sufficient condition for the system
to be adaptively stabilizable is given. The condition is weaker
than controllability, which is well known as the necessary and
sufficient condition for nonadaptive exact pole placement. 2)
In the proof of the sufficient part a coordinate method for
modification is proposed. The method is nonrecursive but
the modification terminates in a finite time. 3) Under the
same condition a recursive method for modifying estimates
is proposed. The modification parameter equals either
zero or , which is generated by a stochastic approximation
algorithm. Both the modified coefficient estimate and are
proved to be convergent. Since stochastic approximation is a
directed search algorithm, its convergence rate is hopefully
faster than random search. By using modification parameter

the adaptive stabilization problem is solved.

II. THE PROBLEM

Let us consider the SISO system

(1)

where and are the system input, output, and
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disturbance, respectively, and

where is the backward shift operator,
It is known that the poles of the closed-loop system can

arbitrarily be placed if and are coprime and if the
coefficient

is known.
Here we discuss the case whereis unknown. Without

introducing external excitation signals, an on-line coefficient
estimate is hard to keep consistent. Hence, we cannot expect
the adaptive pole-placement control to assign desired poles
even in asymptotic sense, unless a certain kind of excitation
is used [4]. The purpose of adaptive pole-placement control
is to achieve

(2)

System (1) can be written as

(3)

where

(4)

Two cases for will be considered.
Case 1: represents the unmodeled dynamics and satis-

fies the following condition:

(5)

where and are constants and denotes the Euclidean
norm.

Case 2: is a martingale difference sequence with
the following property:

(6)

In what follows, by the estimate for we mean the
one produced by the dead-zone (DZ) algorithm given in [2]
for Case 1 and the one generated by the WLS algorithm
considered in [4] for Case 2. Due to space limitations, here
we only give the WLS algorithm and refer to [2] for the DZ
algorithm. The WLS algorithm is defined as follows:

(7)

(8)

where and for some
It is shown in [2] and [4] that for both DZ and WLS

the estimate and the associated matrix are convergent,
where for the WLS algorithm.

It is known [2], [4] that there is a bounded sequence
such that

(9)

Let us call the following matrix:

...
...

...
...

...
...

...
...

...
...

the Sylvester matrix corresponding to
It is also known [2], [4] that if a bounded sequence

makes the Sylvester matrix corresponding to the modified
coefficient estimate

(10)

asymptotically uniformly nondegenerate, i.e.,

(11)

where and if is convergent, then the
control switching between the certainty equivalency control
(with used as the coefficient estimate), when ,
and zero, when , solves the adaptive pole-placement
control problem. The formulation of adaptive control and the
proofs of the desired properties of the closed system are given
in [2]–[4].

Therefore, the central issue in the adaptive pole-placement
control problem is to find a bounded sequence of modification
parameters such that is convergent and (11) is
satisfied. This gives rise to the following definition.

Definition: System (1) is called adaptively stabilizable by
the use of the parameter estimate if there is a bounded
sequence such that (11) is satisfied and given by
(10) is convergent.

Remark 1: From (9) it is seen that if (1) is controllable,
then it is adaptively stabilizable by use of , given by the
DZ algorithm [2] in Case 1 and by the WLS algorithm [4]
in Case 2.

III. N ECESSARY AND SUFFICIENT CONDITION

In [2] and [4] it is proved that

(12)

where , in general, does not equal the true coefficientand
may depend on the initial value of (7). Let be -
dimensional, , and consider the polynomial

in

(13)
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Theorem 1: System (1) is adaptively stabilizable by use of
if and only if

(14)

Proof (Necessity):Let (11) be held. Since is
bounded, we may select a convergent subsequence
By (11) and (12) we have which verifies
(14).

(Sufficiency): Let (14) hold. We now construct a bounded
and convergent sequence that satisfies (11). The con-
vergence of will be guaranteed by the convergence of

Let be -dimensional with only one nonzero element
equal either to or to Similarly, let
be -dimensional with only nonzero elements, each of which
equals either 1 or 1,

The total number of such vectors is

(15)

Denote these vectors by in the nondecreas-
ing order of the number of nonzero elements in Before
constructing we first make the following observations.

1) If then (14) guarantees for large ,
and one may take

2) If but then one may take
3) We need to construct only for the case where

It is clear that if , then

(16)

If (16) is zero, then

Continuing this procedure, we can finally reach the first
nonzero coefficient which is the largest in the sense of absolute
value in comparison with other coefficients of the same order;
for example, it is achieved at Then with sufficient
small may serve as the modification parameter for the
remaining time.

We now precisely describe the algorithm.
Take two sequences of real numbers,

Set

1) If then no modification is applied, i.e.,

2) If then from find the
smallest integer such that

(17)

and

(18)

where is the number of nonzero elements in

a) If such a exists, then take and
modify to and use to

produce which leads to set
Go back to Step 1).

b) If such a does not exist, i.e., (17) holds for all
then set and calculate

set Go back to Step 1).

We have

We now show that under (14), the algorithm defined by 1)
and 2) stops at a finite time and becomes a constant vector
with (11) satisfied.

In the case no matter whether or not, the
number of transitions from 2a) to 2b) can only be finite, i.e.,
there exists such that and
This is because converges to and if

It is clear that one of the following inequalities:

will hold for all Thus (11) is true.
In the case by (14) not all coefficients of

are zero. Therefore, for some , where is
the lowest nonzero degree, we have

(19)

Since there are

and a sufficiently large such that

(20)

This means that will not go to infinity, because for
sufficiently large say and (20)
implies

for all
Again, as shown above, once is finite, results in being

constant and (11) holds.
Remark 2: In the existing adaptive pole-placement control

systems [2]–[4], although the system is stabilized, the poles
of the homogeneous (i.e., with noise, unmodified dynamics,
and reference signal equal to zero) closed-loop system may be
asymptotically different from the desired ones if no external
excitation signal is introduced. This is because the adaptive
pole-placement control is given based on the modified param-
eter estimate which, in general, is inconsistent. This is
the price one has to pay for using the inconsistent estimate
to form adaptive control. Since in such an approach one is
interested in controllability of (the system corresponding to)

[see (11)] and almost all in the -space are controllable,
intuitively, can be modified to a controllable regardless
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of whether the open-loop system is controllable or not. This is
the reason why controllability is not necessary when forming
the adaptive pole-placement control to stabilize the system.

Remark 3: If then , and the polynomial
in (14) degenerates to a constant and (14) coincides with
controllability of However, , in general, is inconsistent
and is not equal to zero. Therefore, the polynomial in (14)
may not degenerate to a constant no matter whether the open-
loop system (1) is controllable or not. This explains why (14)
is weaker than controllability.

Remark 4: In the proof of Theorem 1 under (14), a coor-
dinate method is used to design the algorithm for modifying
coefficient estimates. The modification terminates in a finite
number of steps. This greatly saves the computation and makes
the algorithm practically implementable.

IV. RECURSIVE METHOD FOR CONSTRUCTING

In this section, using a stochastic approximation algorithm
we recursively produce the modification parameterin (10)
which is convergent and satisfies (11).

We first introduce a stochastic approximation algorithm
seeking nonzero roots of the function

(21)

As a matter of fact, if we set

(22)

then

(23)

Let us denote the root set of (21) by
where

However, cannot be directly observed; the real observa-
tion is

(24)

which can be written as

(25)

where and is recursively generated
by (28).

For defining the algorithm for let us take a few real
sequences defined as follows:

In addition, we take the sequence of stepsizes

Let us normalize vectors and denote the resulting
vectors by Define and

for
Introduce

(26)

Define the recursive algorithm for as follows:

(27)

say (28)

(29)

(30)

and is a fixed vector,
Here we explain the meaning of the algorithm (27)–(30).

The algorithm basically is the Robbins–Monro (RM) algorithm
truncated at randomly varying bounds. From the upper side,
at time it is truncated at , and after each truncation
the algorithm is pulled back to and the truncation bound
enlarged from to At the lower side we do not
allow to tend to zero. Each time it reaches the lower bound

we pull it back to which will change to the next
whenever is satisfied. If for successive
resettings of we have to change to the next one, then
we reduce to

Theorem 2: Assume the stepsize satisfies the following
conditions:

(31)

If (14) holds and then:

1) after a finite number of steps the algorithm (27)–(30)
becomes the RM algorithm

(32)

2) converges;
3)

We now describe the algorithm recursively constructing the
modification parameters

Let

1) If then set , i.e., Using
we produce and go back to 1) for

2) If then define

a) for the case where
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b) defined by (27)–(30) for the case where

but

c) for the case, where

but

Define

(33)

and use to produce and go back to 1) for

3) If and none of a)–c) of 2) is the case,
then set and go back to 1) for ,
and at the same time change to , i.e.,

where is defined by (33).

Let us call 1)–3) for defining the modification algo-
rithm.

Theorem 3: Suppose (31) and (14) hold. Then there is
such that defined by (33) converges
and

V. PROOF OF THEOREMS 2 AND 3

We start with the lemmas. Define

Lemma 1: Let be a convergent subsequence of
Starting from any define the RM

algorithm

or for some

If (31) holds, then there are such that

(34)

if is large enough. (In what follows, always denotes a
sufficiently large integer; it may vary from time to time.)

Proof: Let be a constant such that

(35)

Since and are convergent, there is such that

Let We show that we can take

By (35), (34) is true for Let (34) hold for
Then we have

Thus, (34) has been inductively proved.
Lemma 2: Let (31) hold and let be a convergent

subsequence. There are such that

(36)

if is sufficiently large.
Proof: If defined by (29) is bounded, then (36)

directly follows.
Again take such that and set

Assume Then there is a such that

By Lemma 1, starting from the algorithm for
cannot directly hit the sphere with radius without a

truncation for So it may first
hit some lower truncation bound and switch to some

from which again by Lemma 1 cannot directly reach
without a truncation. The only possibility is to be truncated
again at a lower bound. Inductively using this argument proves
(36).

Note that is a polynomial in
and its highest possible degree is Both polynomials

and
diverge to infinity as Therefore, is a bounded
set. Clearly, it is also closed.
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Lemma 3: is a finite set, where

(37)

This is a fact from algebraic geometry. For the proof we
refer to [6].

Since as there is such that

(38)

and by Lemma 3

(39)

By using Lemma 2 and the convergence ofand it is
clear that for any convergent subsequence we have

(40)

In the sequel, we will say that the sequence
crosses an interval if

and
always denotes the starting point of a crossing,

Lemma 4: Let (31) hold. Assume that starting from
algorithm (28) is calculated as RM and

is bounded. Then for any with
cannot cross i.o., if

or cannot tend to if
For the proof we refer to [7] and [8], where (39) and (40)

are the required conditions. The lower bound truncation used
in (28) is not a problem because we have assumed that the
algorithm develops as an RM starting from

Lemma 5: Assume (31) holds. Then the sequence
defined by (28) is bounded.

Proof: If is unbounded, then There-

fore, is unbounded and comes back to the fixed
point infinitely many times. Since

by Lemma 3 there is an interval
with and such that

crosses , i.o., and starting from the algorithm (28)
behaves like an RM while crosses It is clear
that is bounded because as By
Lemma 4 this is impossible. Thus, we conclude that is
bounded.

Remark 5: Lemmas 1–5 are proved without using (14) and
After a finite number of steps, (28) becomes

(41)

Lemma 6: If (31) and (14) hold and then there
exists a such that the recursive equation (41) for
becomes an RM algorithm (32) for

Proof: From (19) it is seen that for some and a small

which tends to zero as
Noticing that the highest degree of is less than

or equal to for sufficiently small , we have

From this and convergence of and it follows that

for all sufficiently large Therefore, and hence
must be bounded, i.e., there is a such that

We now show that is bounded. Assume the converse
is true. We have

for all sufficiently large

and hence

The algorithm, starting from infinitely many times
enters the sphere with radius where is
small enough such that

The existence of such anis guaranteed because

as

Then would cross infinitely often an interval
By Lemma 3, we may assume

It is clear that during the crossing the algorithm behaves like
an RM. By Lemma 4, this is impossible.

Proof of Theorem 2:By Lemma 6, there is a such that

(42)

and cannot tend to zero.
Assume

If then by Lemma 3 there is an interval
such that and crosses

i.o. By Lemma 4 this is impossible. Therefore and
converges. Again by Lemma 4, in this case

Let be a limit point of , i.e., there is a subsequence
such that Assume the converse

Then
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For with given by (42), by the Taylor expansion
we have

where ’s components are in between the corresponding
components of and From here it follows
that

(43)

where as uniformly in Tending
the left-hand side of (43) tends to zero, while the right-hand
side converges to The contradiction means that

By Lemma 6 cannot be zero.
Since is an arbitrary limit point, we conclude

Proof of Theorem 3:We first show that for the proof it
suffices to show

If then there is a such that for
the modification algorithm will run over the

following cases: 1) and 2a)–2c). Since and are conver-
gent, the inequality implies

for sufficiently large This means
that the modification algorithm can be at 2b) only for finitely
many times. By the same reason, it cannot be at 2c) for
infinitely many times. Therefore, the algorithm will stick on
1) if and on 2b) if and in both
cases there is a such that and

The convergence of follows from the convergence of
and

We now show that
Assume the converse:

Case a ( ): The assumption implies

that and occurs infinitely many

times. However, this is impossible, since and
The contradiction shows

Case b ( ): The assumption implies

that there is a sequence of integers such that

and , i.e., for all the following
indicator equals one:

1

(44)

Take a convergent subsequence of For notational
simplicity denote by itself its convergent subsequence.
Thus

By Theorem 2,

1) If then

for all sufficiently large Thus, (44) may take place at
most a finite number of times. The contradiction shows
that

2) If then as we have

(45)

Since for sufficiently
large from (45) it follows that

which is greater than if

and is large enough. Notice that
if is large enough. This means

that

and

cannot simultaneously happen infinitely many times.
This contradicts (43). Thus, and the
proof of the theorem is completed.

VI. CONCLUDING REMARKS

This paper gives the necessary and sufficient condition for
(1) to be adaptively stabilizable and presents two methods
of parameter modification for the adaptive pole-placement
control. One of them is nonrecursive and the other one is re-
cursive, based on stochastic approximation. Both modifications
terminate in a finite number of steps and solve the problem.

We note for the case the origin is not a
stable equilibrium for the equation

Consequently, the truncation at lower the bound in (28) should
be very rare. The computation will be simpler if there is no
lower bound truncation.

It is quite remarkable that the adaptive stabilization can be
solved without the controllability condition which is necessary
for the nonadaptive exact pole-placement problem.
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